
Graph-based Similarity Measures for the Structural Comparison of

Process Traces

Clemens Schreibera (clemens.schreiber@kit.edu), Amine Abbad-Andaloussib

(amine.abbad-andaloussi@unisg.ch), Andrea Burattinc (andbur@dtu.dk),

Andreas Oberweisa (andreas.oberweis@kit.edu), Barbara Weberb

(barbara.weber@unisg.ch),

a Karlsruhe Institute of Technology, Karlsruhe, Germany

b University of St. Gallen, St. Gallen, Switzerland

c Technical University of Denmark, Lyngby, Denmark

Corresponding Author:

Clemens Schreiber

Kaiserstraße 89, 76133 Karlsruhe, Germany

Tel: +49 721 608-45688

Email: clemens.schreiber@kit.edu

Graph-based Similarity Measures for the Structural
Comparison of Process Traces

Clemens Schreibera,∗, Amine Abbad-Andaloussib, Andrea Burattinc,
Andreas Oberweisa, Barbara Weberb

aKarlsruhe Institute of Technology, Karlsruhe, Germany
bUniversity of St. Gallen, St. Gallen, Switzerland

cTechnical University of Denmark, Lyngby, Denmark

Abstract

Similarity measures are commonly applied for a variety of process mining tech-

niques, such as trace clustering, conformance checking, and event abstraction.

Yet, these measures generally fail to recognize similarity based on structural

process features, such as the order of activities, loops, skips, choices, and par-

allelism. To make this more explicit, we propose a set of properties that allow

to evaluate, what kind of structural features are reflected by a similarity mea-

sure. We further propose a novel approach leveraging existing graph-based

algorithms and instance graphs to extract high-level structural features (loops,

skips, choices, and parallelism) from traces, such that they can be used to extend

and improve existing similarity measures. These algorithms are well-established

in graph theory and can be computed efficiently. Finally, we provide an eval-

uation of the proposed approach based on synthetic and real-world datasets.

The evaluation provides evidence that the additional graph-based features can

substantially improve the similarity comparison of traces in several cases. This

applies in particular for the comparison of user behavior (e.g., based on eye-

tracking data) where structural features enable the detection of specific behav-

ioral patterns.

∗Corresponding author.
Email addresses: clemens.schreiber@kit.edu (Clemens Schreiber),

amine.abbad-andaloussi@unisg.ch (Amine Abbad-Andaloussi), andbur@dtu.dk (Andrea
Burattin), andreas.oberweis@kit.edu (Andreas Oberweis), barbara.weber@unisg.ch
(Barbara Weber)

Preprint submitted to Information Systems January 8, 2026

Keywords: Process Mining, Similarity Measure, Trace Variant Analysis

1. Introduction

Pairwise comparison of process traces is essential for many process mining

tasks, such as trace clustering [1, 2, 3, 4], conformance checking [5, 6], process

discovery [7, 8, 9], event log sampling [10], change point detection [11], and

variability analysis [12, 13]. Although the literature comprises a wide range of

trace similarity measures (for an overview, see Back and Simonsen [14]), they

generally exhibit several limitations.

The first main limitation of existing trace similarity measures is their failure

to account for process patterns [7], such as: loops (i.e., the repeated execution

of activity sequences), choices (i.e., alternative activity sequences), skips (i.e.,

alternative activity sequences that involves the omission of activities), and par-

allelism (i.e., a timely overlap of activity sequences). One reason why these

patterns are neglected is that commonly applied similarity measures in process

mining, such as edit distance [3, 4, 6, 7, 12, 13] and sequence alignment [5, 8, 9],

originate from other research disciplines and were developed for different pur-

poses, such as the comparison of binary code [15] or the comparison of DNA

sequences [16]. Yet, the named process patterns are essential for the description

of process behavior and for the comparison of the traces’ structure [17, 7, 9, 3, 4].

A second shortcoming of existing similarity measures is that they do not

allow for an activity-agnostic comparison between traces. When, for example,

comparing the two traces σ1 = ⟨A,B,D,A,C,D,A,D⟩ and σ2 = ⟨W,X,Z,W, Y,

Z,W,Z⟩, none of the commonly applied similarity measures in process analysis

[14] would identify any similarity between them. However, as illustrated in

Fig. 1, the ordering and repetition of activities within the two traces reveal

three common process patterns: a loop, a choice, and a skip, each involving

activity sequences of identical length.

The structural comparison between traces, independent of their specific ac-

tivity labels, can be crucial for process analysis across various domains. In this

2

paper we focus on two particular types of processes: (unstructured) behavioral

processes [18, 19] and (well-structured) business processes [20]. Behavioral pro-

cesses document some user behavior, e.g., when interacting with an information

system through eye-tracking [21], or click-streams [22]. They commonly contain

minimal constraints on the ordering and number of activities. However, the

structural differences between the user behavior can provide valuable insights

for the analysis of behavioral processes. For example, a trace that represents

the scan path of a user’s visual fixations on a screen can be analyzed accord-

ing to the order and reoccurrence of these fixations. Here, the activities of the

trace are associated with visual fixations of a user on a particular area on a

screen, e.g., representing specific graphical elements [23, 24, 25]. The structural

analysis of a scan path can thereby reveal the cognitive processes of a user.

For example, the repeated returning of a user to a particular area on a screen,

manifested as loops within the scan path, might indicate high cognitive effort

due to the distribution of information [23, 24] or due to the ambiguity of the

information [25]. In order to obtain these insights, we are much more interested

in the structure of the user behavior, such as the returning to particular areas

on a screen, rather than what specific areas a user looked at, which is indicated

by the activity labels.

Business processes refer to administrative processes, which are more restric-

tive in terms of the number and order of activities than behavioral processes.

Here, the activity labels might differ especially across different business units

and countries of operation [20]. Therefore, the comparison of traces at a struc-

tural level can support the identification of deviations related to compliance

and performance, e.g., based on the rate of rework [26], as well as the level of

business process standardization [13]. Another related example is the analysis

of business process changes, commonly referred to as concept drift [26]. Busi-

ness process changes caused by the introduction of new digital technologies,

such as automated technology or AI-based technology, can significantly alter

the structural properties of a process, while at the same time introducing new

activities [27]. Similar to the analysis of behavioral processes, in all these cases

3

A

B

C

D W

X

Y

Z

L

S

C

L

S

C

Figure 1: Graph representations of the traces σ1 = ⟨A,B,D,A,C,D,A,D⟩

(left side) and σ2 = ⟨W,X,Z,W, Y, Z,W,Z⟩ (right side), where a blue edge

indicates a loop (denoted by L), a red edge indicates a choice (denoted by C),

and a green edge indicates a skip (denoted by S). The graph representations are

derived based on the directly-follows relations between the activities within the

traces.

the primary focus of the analysis lies on the structural characteristics of the

process execution rather than on the actual activities denoted by the activity

labels.

A third main shortcoming of existing trace similarity measures is that their

derived similarity values are commonly not transparent and are therefore not

explainable. This is the case when the structural features, i.e., process patterns,

of the traces are not made explicit. For example, when comparing the edit

distances d(⟨A⟩, ⟨A,A,A⟩) and d(⟨A⟩, ⟨A,X, Y ⟩), both distances yield the same

value due to the insertions of two additional activities in the second trace.

However, in the first case the insertion is necessary due to a loop in the second

trace, while in the second case the insertion is necessary due to a sequence of

two alternative activities. This distinction is not considered by the similarity

measure.

However, such structural differences are for example relevant for the analysis

of user behavior, as they can potentially reveal different causes for comprehen-

sion issues, requiring specific user support [23, 24, 25]. Moreover, the trans-

parency of similarity measures can be essential to better understand anomalies

and deviations in business processes [28, 6].

Finally, a fourth shortcoming is that some similarity measures require high

4

computational effort [14, 29, 30], making them impractical to apply to large

event logs and in online settings, which require timely evaluation [31].

To address the four identified challenges, we first conduct a formal compara-

tive analysis of existing similarity measures, considering: (1) the extent to which

the measures capture different process patterns, (2) their ability to recognize

activity-agnostic similarity, (3) the degree of transparency and explainability

they offer, and (4) their computational efficiency. The findings indicate that

none of the existing measures adequately capture the structural similarities and

differences between traces, particularly with respect to the representation of

process patterns and the transparency of the similarity computation.

Subsequently, we introduce a novel feature-extraction approach based on

graph-algorithms, which allows to derive high-level structural trace features, i.e.,

loops, skips, and choices, including the length of the involved activity sequences.

Thus, enabling an activity-agnostic comparison between traces. Furthermore,

we leverage instance-graphs [17, 19] to also account for parallelism within traces.

The parallel execution of activity sequences is thereby assumed, when activities

occur in an interchangeable order within one or multiple traces of a business

process.

To account for the diverse structural characteristics of traces identified in the

formal comparison, we introduce four aggregated similarity measures. Each ag-

gregation combines distinct similarity measures that reflect distinct structural

aspects of the traces, i.e., activities, directly-follows relations, and high-level

structural features. The approach therefore enables a more comprehensive as-

sessment of structural similarities and differences between traces than existing

measures.

The subsequent empirical evaluation demonstrates that incorporating high-

level structural features, as well as aggregating different feature types, can sub-

stantially enhance the accuracy of trace similarity comparisons in various cases.

The empirical evaluation involves synthetic datasets, designed to exhibit di-

verse structural characteristics, and real-world datasets that represent business

processes and user behavior processes.

5

The main contributions of this paper are as follows:

1. We introduce ten formal properties, which allow for a comprehensive com-

parison of similarity measures, considering structural properties, activity-

agnostic behavior, transparency, and computational complexity.

2. Drawing upon the identified limitations of current trace similarity mea-

sures, we propose a novel feature-extraction approach based on graph

algorithms, which enables the detection of loops, skips, and choices, along

with their respective lengths within individual traces. Furthermore, we

leverage instance graphs to also enable the consideration of parallelism

within individual traces.

3. Furthermore, we consider different aggregations of similarity measures,

which allows to address structural similarities and differences between

traces in a more comprehensive way than previous measures.

4. Finally, we conduct a comprehensive empirical evaluation of the newly

introduced similarity measures. We thereby demonstrate the superiority

of these measures to existing once in terms of correctly detecting similarity

among traces, which share common structural characteristics. We thereby

extend the evaluation of existing studies on trace similarity measures, by

considering business processes, as well as behavioral processes.

In the remainder, Sect. 2 defines the basic notation and definitions used

throughout the paper. In Sect. 3 we introduce related work on trace similar-

ity measures, followed by a formal comparison of existing measures in Sect. 4.

Sect. 5 introduces the graph-based approach used to overcome the identified

shortcomings of the existing measures, followed by an empirical evaluation in

Sect. 6 and a discussion of the results in Sect. 7. Sect. 8 concludes the paper.

2. Preliminaries

Process mining is generally concerned with the analysis of processes based

on event logs. An event log comprises a set of process instances that follow

a specific business process or, more broadly, represent user interactions with

6

an information system. A process instance is represented as a trace, which is

defined as an ordered sequence of events.

Definition 2.1 (Event). Let A be the set of all possible activities, C the set of

all possible case identifiers, and T the set of all possible timestamps. An event

is a tuple e = (a, c, t) consisting of three attributes: an activity a ∈ A, a case id

c ∈ C, and a timestamp t ∈ T . The event universe is denoted by E = A×C×T .

We further define the following attribute-value mappings for an event e:

#act(e) = a, #case(e) = c, and #time(e) = t. A process trace, henceforth

denoted as trace, can be derived by considering multiple events in an ordered

fashion based on their timestamp and case identifier.

Definition 2.2 (Trace, Event Log). A trace σc = ⟨#act(e1),#act(e2), . . . ,

#act(en)⟩ = ⟨a1, a2, . . . , an⟩ ∈ A∗ is an event sequence corresponding to the case

c, where all events in σc are mapped to an activity a ∈ A, and the order of events

respects time, i.e., if e1, e2 ∈ σc and #time(e1) < #time(e2), then e2 ⊀ e1. An

event log L is a set of traces over A∗.

The length of a trace is denoted by |σc| = n and ak represents the kth activity

in a trace σc, with 1 ≤ k ≤ n.

It is assumed that each event possesses a unique case id, which enables

a comparison at trace level. Nevertheless, in reality it is also possible that an

event possesses multiple case ids, e.g., in the case of object-centric event logs [32].

In this case it is assumed that the similarity comparison is conducted among

identical case notions, e.g., defined by a specific object type [33]. Accordingly,

a similarity measures for two distinct process traces σi, σj ∈ L is defined as

follows.

Definition 2.3 (Similarity Measure). A similarity measure s(σi, σj) = (d ◦

h)(σi, σj) is a composition of a distance function d and a feature-extraction

function h. The function h defines a set of features for each trace σ ∈ L, such

that h : L → P(F), where F ⊆ F is a set of possible trace features and P(F)

7

denotes its power set. The function d defines a pairwise distance for all distinct

traces σi, σj ∈ L according to the derived features, i.e., d : h(L)× h(L) → R+
0 .

A similarity measure s and an event log L form a metric space (L, s), if for

all σi, σj , σk ∈ L the following properties hold:

Property P1. s(σi, σj) ≥ 0 (non-negativity)

Property P2. s(σi, σj) = s(σj , σi) (symmetry)

Property P3. s(σi, σj) = 0 ⇔ σi = σj (identity of indiscernibles)

Property P4. s(σi, σk) ≤ s(σi, σj) + s(σj , σk) (triangle-inequality).

In general, these are considered desirable properties for a similarity measure,

as they ensure its consistency and uniqueness [14, 29].

Furthermore, one can distinguish between syntactic and feature-based simi-

larity measures [1, 4, 14]. Syntactic similarity measures are calculated directly

using the traces without any transformation. In this case h can be considered as

an identity function. The pairwise distance d is calculated based on the number

of operations required to convert one trace to the other. We will consider edit

distance as one particular type of syntactic similarity measure [15].

Definition 2.4 (Edit Distance). The similarity measure se(σi, σj) based on

the edit distance between two distinct traces σi and σj is determined by opti-

mizing a given cost function, taking into account the insertions, deletions, and

substitutions of activities necessary to convert one trace into the other.

Two particular variants of edit distance commonly applied in process analysis

are the Levenshtein distance and the normalized Levenshtein distance. The

Levenshtein distance assigns to each editing operation an equal cost of one.

The normalized Levenshtein distance additionally divides the derived editing

costs by the maximum possible number of required edits, i.e., max(|σi|, |σj |).

Compared to syntactic similarity measures, feature-based similarity mea-

sures first require a transformation of the traces based on some function h(σi) =

Fi before calculating a distance. There exist two types of feature-based similar-

ity measures: set comparison and vector-space embedding.

8

Definition 2.5 (Set Comparison). The similarity measure ss(σi, σj) based

on set comparison is directly calculated based on the extracted sets of features,

i.e., ss(σi, σj) = d(Fi, Fj).

One similarity measure based on set comparison considered in this work is

the Jaccard similarity [34], defined as the complement of the Jaccard coefficient,

which is the ratio of the size of the intersection of two sets (|Fi∩Fj |) to the size

of their union (|Fi ∪ Fj |).

In addition to feature extraction, vector-space embedding involves the trans-

formation of a derived set of trace features into a vector.

Definition 2.6 (Vector-space Embedding). The similarity measure sv(σi, σj)

based on vector-space embedding, involves the mapping of the trace feature into a

vector space v : F → Rn and the subsequent calculation of the distance between

the vectors, i.e., sv(σi, σj) = (d ◦ v)(Fi, Fj).

One particular variant of similarity measure based on vector-space embed-

ding considered in this work is the cosine distance [34]. The cosine distance is

calculated as the complement of the dot product of two vectors (Fi ·Fj), divided

by the product of their magnitudes (∥Fi∥∥Fj∥).

In addition to the different distance functions for the calculation of feature-

based similarity, there exist also different types of feature-extraction functions h.

In process mining, trace features are commonly derived on the basis of n-grams.

Definition 2.7 (n-gram). n-gram is a feature-extraction function hn : A∗ →

P(Fn) that takes a trace σ and returns a set of n-grams of length n: hn(σ) =

{⟨a1, a2, . . . , an⟩, ⟨a2, a3, . . . , an+1⟩, . . . , ⟨a|σ|−n+1, a|σ|−n+2, . . . , a|σ|⟩} for 1 ≤ n ≤

|σ|.

Based on n-grams it is possible to capture structural properties of a trace σ,

such as the activities in σ (based on 1-gram), or the directly follows relations in

σ (based on 2-gram).

However, identifying high-level structural features (such as loops, skips,

choices, and parallelism) requires the application of a discovery algorithm [35].

9

Process discovery is a method used to construct process models, i.e., graph-based

process representations, from event logs, such that high-level structural features

are revealed. While process discovery algorithms are commonly applied based

on event logs that contain multiple traces, it is also possible to derive graph

representations for single traces [17, 19].

To identify parallel executions of activities within traces, we adopt a process

discovery algorithm based on instance graphs [17, 19]. This algorithm infers

parallelism within a trace based on the ordering of activities within the entire

event log, that the trace belongs to. The algorithm first detects causal rela-

tions between activities, which then serve as the basis for identifying parallel

executions.

Following the definition of causal ordering by Dongen and van der Aalst [17],

causal relations can be derived by applying the feature-extraction functions 2-

gram (h2) and 3-gram (h3).

Definition 2.8 (Causal Relation). Let L be an event log over a set of Activi-

ties A. A causal relation between two activities ai, aj ∈ A, denoted as ai →L aj,

is defined in the following way:

- ai >L aj if and only if there is a trace σ ∈ L, such that ⟨ai, aj⟩ ∈ h2(σ),

- ai△Laj if and only if there is a trace σ ∈ L, such ⟨ai, aj , ak⟩ ∈ h3(σ) where

ai = ak and ai ̸= aj and not ai >L ai,

- ai →L aj if and only if ai >L aj and (aj ̸>L ai or ai△Laj or aj△Lai), or

ai = aj.

According to this definition, the causal relation between two activities a and

b, denoted as a →L b, is established if there exists a trace σ ∈ L in which a

is directly followed by b, and b is never directly followed by a. However, this

definition may be problematic when a and b are involved in a loop of length two.

To address this, a →L b also holds true if a trace σ ∈ L contains the sequence

⟨a, b, a⟩ or ⟨b, a, b⟩, provided that neither a nor b can directly follow themselves.

If an activity a does directly follow itself in a trace, then the relation a →L a

holds.

10

The definition of a causal relation is based on the assumption that if one ac-

tivity consistently precedes another, it is likely that a causal dependency exists

between them [36]. This assumption enables the identification of parallelism

within traces, even when those traces represent a strict total ordering of activi-

ties.

Definition 2.9 (Parallel Relation). Let σ ∈ L be a trace contained in L. A

parallel relation between two activities ai, aj ∈ σ, denoted as ai||aj, is defined

in the following way:

- ai >σ aj if and only if ⟨ai, aj⟩ ∈ h2(σ),

- ai||aj if and only if (ai >σ aj and ai ̸→L aj) or (aj >σ ai and aj ̸→L ai).

Following this definition, it is further possible to identify parallelism between

multiple activities.

Definition 2.10 (Set of Parallel Activities). Let σ ∈ L be a trace contained

in L and let λi = ⟨aj , ..., an⟩ ∈ σ denote an n-gram of activities contained in σ.

The n-gram is considered to be a set of parallel activities, denoted by Pi, if for

all 2-grams ⟨ak, al⟩ ∈ h2(λi) it holds that ak||al.

A set of parallel activities, contains a minimum of two activities and a maxi-

mum of |σ| = n activities. Furthermore, the subscript i represents its relative po-

sition in relation to its proceeding and succeeding activities. For example, given

a set of parallel relations R = {B||C,C||D} and a trace σ1 = ⟨A,B,C,D,E⟩

then P2 = {B,C,D} is considered as a set of parallel activities within σ1. It is

also possible that a set of parallel activities occurs multiple times within a trace

leading to a loop as depicted in Fig. 2.

To account for additional high-level features that might occur within an

individual trace, i.e., loops, skips, or choices, we introduce the following graph-

based trace abstraction.

Definition 2.11 (Trace Graph). Let A = [a ∈ σ] denote the set of all activ-

ities in σ, which are not part of a set of parallel activities and let P = [Pi ∈ σ]

11

L

{B,C,D} EA {B,C,D} EA

Figure 2: Graph representations of the traces σ1 = ⟨A,B,C,D,E⟩ (left side)

and σ2 = ⟨A,B,C,D,E,A,B,C,D,E⟩ (right side) with R = {B||C,C||D}.

The blue edge (denoted by L) indicates a loop between the activities A and E

in σ2.

denote the set of all sets of parallel activities in σ. Furthermore, let V be a set

of vertices and D ⊆ V × V a set of edges. A trace graph is a directed graph

Gσ(V,D) of a trace σ with:

- V = A ∪ P , and

- the edges respect the order of activities and sets of parallel activities, i.e.,

D = {(vi, vj) ∈ V × V |i < j}.

By considering the order of activities and the sets of parallel activities within

a trace, it is possible to identify specific types of edges within a trace graph.

Definition 2.12 (Edge-type). Edge-type is a feature-extraction function he :

A∗ → P(Fe), where each feature fe = (w, l, d) ∈ Fe, carries information regard-

ing the edge type w ∈ {sequence, skip, choice, loop} and the edge length l ∈ N of

an edge d ∈ G.

The four different edge types are defined according to the order of the activities

within a trace when iteratively exploring the trace from its start activity a1 to

its end activity an
1. Following the example of σ1 = ⟨A,B,D,A,C,D,A,D⟩

depicted in Fig. 1, the edge types can be described as follows:

• The edge (ai, ai+1) is of the type sequence, if the activities that ai+1 refers

to is explored for the first time when starting from the activity that ai

refers to. For σ1 this is for example the case for the egde connecting

activity A and activity B.

1This approach relates to the depth-first search algorithm [37] as will be shown in Sect. 5.

12

• The edge (ai, ai+1) is of the type skip, if the activity that ai+1 refers to has

occurred before ai, and can be reached from the activity that ai refers to

by an alternative (already explored) shortest path that does not include

ai. For σ1 this is the case for the egde connecting activity A and activity

D.

• The edge (ai, ai+1) is of the type choice, if the activity that ai+1 refers to

has occurred before the activity that ai refers to and ai and ai+1 share

a common preceding activity, respectively connected based on distinct

paths. For σ1 this is the case for the egde connecting activity C and

activity D with the common preceding activity A.

• The edge (ai, ai+1) is of the type loop, if the activity that ai+1 refers to

has occurred before the activity that ai refers to and is not involved in

a relation of type skip nor choice. For σ1 this is the case for the egde

connecting activity D and activity A.

These edge types represent four distinct structural features commonly ob-

served in process traces, i.e., the sequential order of activities (sequence), the

recurrence of activities (loop), the skipping of activities (skip), and the selection

of an alternative activity (choice). While the lengths of loops, skips, and choices

can differ (with a minimum length of one), the length of a sequence is always

one.

3. Related Work

A foundation for the measurement of trace similarity can be found in mea-

surement theory [38, 39]. A measurement can be formally defined as a mapping

from the domain of the empirical world to a numerical representation. A criti-

cal aspect in constructing such a mapping is its validity. Three key aspects are

commonly considered when assessing validity [39, 40]:

13

• Construct validity : This evaluates whether a measurement accurately rep-

resents the theoretical construct it is intended to measure. For example,

the execution duration of a trace is generally not suitable for measuring

structural similarity.

• Content validity : This refers to the extent to which a measurement rep-

resents the full range of the empirical phenomenon being studied. For

example, to compare the structural similarity between two traces, a simi-

larity measure should reflect a range of structural features.

• Criterion validity : This is determined by the relationship between a mea-

sure and an external criterion known to be an accurate indicator of the em-

pirical phenomenon. For example, a structural similarity measure should

accurately reflect the similarity between traces according to some prede-

fined structural classification of these traces, e.g., indicating complex or

non-complex user behavior.

When it comes to the validity of existing similarity measures, one can make

the following observations. Regarding construct validity, several different fea-

tures have been discussed in the literature for the analysis of trace structure,

such as n-grams [1, 4, 10, 41, 7, 42], maximal repeat alphabets [28, 7], and even-

tually follows relationships between activities [2]. In this study, we additionally

consider edge-types and parallelism as structural features. These features re-

flect fundamental structural process properties in the context of user behavior

analysis [21, 42] and business process analysis [35, 20, 29, 7, 43].

The content validity of trace similarity measures has been largely neglected

in research, as these measures have primarily been considered in conjunction

with downstream tasks such as process discovery, trace clustering, or anomaly

detection [14]. However, it has been recognized that similarity measures origi-

nating from other research disciplines such as natural language processing, con-

trol theory, and bioinformatics fail to recognize process specific structural prop-

erties [14, 44]. To address this issue more systematically, we provide a formal

14

comparison of trace similarity measures in the following section, allowing us to

determine which specific structural features are reflected by each measure.

Criterion validity of trace similarity measures has been initially addressed

by Back and Simon [14]. We build on their evaluation approach, by addition-

ally introducing synthetic event logs, that allows a clear classification of traces

according to their structural properties. Additionally, we consider not only

business processes, but also user behavior processes, where the ground truth is

determined by the complexity of user behavior.

In general, one can distinguish between the measurement of process similar-

ity at an instance level [1, 4, 14, 41, 44, 45, 46] and at a model level [41, 29, 43,

47]. At the instance level, a similarity measure is directly calculated between

two traces. This approach is commonly applied for the analysis of business pro-

cesses [1, 14, 44] as well as behavioral processes [21, 42]. In business process

analysis, these measures are utilized, for example, in trace clustering or anomaly

detection. In user behavior analysis, these measures are applied, for example, in

the comparison of visual scanpaths, which are detected based on eye-tracking.

A scanpath can be considered as a process trace, which contains the order of a

user’s visual fixation points on a screen. By comparing the scanpaths, one can

identify the similarity in user behavior, e.g., when the users are solving tasks of

different complexity [23, 24].

At the model level, a similarity measure is calculated between two process

models, i.e., process graphs. This approach is commonly used for the analysis of

business processes, e.g., to measure the compliance between a reference and an

actual model [6], or to search for models in a repository [29]. The comparison

at the model level has the advantage that high-level structural features of the

process are explicit in the graph, which is not the case at the trace level. One

way to overcome this issue is to apply process discovery [35] to derive process

models from traces, which subsequently allow to extract additional structural

features for the trace comparison.

Thus, in this study we seek to combine both research approaches, based

on trace comparison (Sect. 3.1) and based on graph comparison (Sect. 3.2) by

15

leveraging process discovery (Sect. 3.3).

3.1. Trace Comparison

The measures used for process comparison at trace level can be classified as

syntactic and feature-based similarity measures [1, 45, 46, 14] 2.

3.1.1. Syntactic Similarity Measures

A commonly applied syntactic similarity measure in process analysis is edit

distance, which includes the two variants: Levenshtein distance and nor-

malized Levenshtein distance [6, 48, 7, 44, 45, 46]. An additional variant

of an edit distance is proposed by Bose and van der Aalst [44], where editing

costs are adjusted according to the context in which they occur. The cost values

are calculated on the basis of the relative frequency of activity pairs within the

traces. The approach thus does not explicitly consider structural features.

An alternative syntactic similarity measure is sequence alignment [10, 14,

20, 28, 45, 46]. Similarly to the edit distance, sequence alignment is calculated by

optimizing a given scoring function, taking into account operations necessary to

align one trace with the other. In general, edit distance and sequence alignment

yield equivalent outcomes (cf. Sellers [49]).

3.1.2. Feature-based Similarity Measures

A common approach for the calculation of feature-based similarity is the

transformation of traces into sets of n-grams [1, 48, 10, 20, 44, 50, 51]. However,

the length of n differs between the different studies. An issue is that long n-grams

(n > 2) can capture more complex structural properties, e.g. loops of length

> 2, but at the same time fail to capture structural properties in shorter n-grams

(n ≤ 2). One solution is to aggregate similarity measures, considering n-grams

of different length. While Delias et al. [2] propose to combine 1 and 2-grams,

2Back and Simonsen [14] use the distinction between syntactic similarity measures and

vector-space embedding. Our distinction is more generic, since we also include feature-based

similarity measures that do not depend on vector-space embedding, such as Jaccard similarity.

16

Back et al. [12] propose to combine all possible substrings of a trace, from length

one to length n = min(|σi|, |σj |). However, this approach is computationally

expensive and also does not differentiate between higher-level structural features

such as loops, skips, and choices.

An alternative to trace comparison based on n-grams is the comparison based

on sequential patterns [7], i.e., ordered sequences of activities that occur

repeatedly within a trace. Sequential pattern mining algorithms are commonly

applied in a variety of domains, such as bioinformatics, e-learning, market basket

analysis, and click-stream analysis of webpages [22]. Although there exist a

vast number of sequential pattern mining algorithms in the literature (for an

overview, see Fournier-Viger et al. [22]), they are not commonly applied in the

context of process analysis. The comparative study by Back and Simonsen [14]

showed that similarity measures based on sequential patterns do not perform as

well as other measures. One reason for this could be that the algorithms detect

very detailed sequential patterns that are specific to single traces, and thereby

fail to capture structural features that are common among multiple traces. We

therefore restrict our analysis to similarity measures using 1-grams and 2-grams.

Beyond the structural trace characteristics, there are additional features

that can be extracted from a trace and used for comparison. One such feature

is the relative frequency of n-grams within a trace, which can be captured by

eventually-follows relations between the activities. Delias et al. [2] propose

an aggregated similarity measure based on cosine similarity, considering 1-grams

and eventually-follows relations. According to the study by Back et al. [12] this

measure yields a particularly high performance for a number of different event

logs. The measurement approach is therefore also included in our analysis.

Additionally, traces can be compared not only in terms of structural fea-

tures, but also based on features representing different process perspectives.

For business processes, this often includes performance and resource attributes

corresponding to events in a trace [48, 10, 20, 52]. For behavioral analysis based

on scanpaths this often includes the position and duration of a visual fixation

on a screen [45, 46]. However, for this study, we will only consider trace simi-

17

larity measures on the basis of structural properties, also commonly defined as

control-flow perspective.

Finally, for the calculation of a similarity value based on features, exist-

ing studies either use vector space embedding [1, 4, 44] or set compari-

son [1, 10, 11, 50]. Vector-space embedding involves the comparison of trace

features represented in a vector space, whereas set comparison involves the direct

comparison between sets of features (cf. Sect. 2). To the best of our knowledge,

there exists no study with a direct comparison of the two approaches.

There exist different methods for representing a trace in vector space. A

commonly applied method is to construct a trace vector by evaluating the fre-

quency of specific trace features [1, 4, 44]. Another alternative method involves

employing neural networks [20, 41, 51]. Neural networks thereby learn a vector

space representation for a trace based on a set of training data.

However, neural network-based approaches exhibit three key limitations in

the context of structural trace similarity measurement. First, they require la-

beled training data, which may not always be readily available. Second, the

resulting vector representations are typically opaque, making it difficult to inter-

pret the learned features and their associated weights [41]. Third, the similarity

outcomes are sensitive to the choice of neural network architecture (see [51] for

an overview), as well as to several parameters, including the selection of input

features and the dimensionality of the output vectors.

To the best of our knowledge, these limitations have not yet been systemati-

cally investigated in the context of trace similarity measurement. Nevertheless,

for the purpose of empirical evaluation (cf. Sect. 6.4), we include a neural

network-based representation using the Trace2Vec architecture and parameter

configuration as proposed by De Koninck et al. [41].

3.1.3. Aggregation of Trace Similarity Values

Building on feature-based similarity measures, a common approach to im-

prove the outcome of the structural comparison between traces, is the aggrega-

tion of multiple distinct similarity measures, which reflect different structural

18

J1 J2 J1 + J2

s(σ1 = ⟨A,B,C,D⟩, σ2 = ⟨A,B,C,D⟩) 0 0 0

s(σ1 = ⟨A,B,C,D⟩, σ2 = ⟨C,D,A,B⟩) 0 1
3

1
3

s(σ1 = ⟨A,B,C,D⟩, σ2 = ⟨W,X, Y, Z⟩) 1 1 2

Table 1: Example for the aggregation of the two saperate similarity values J1

(Jaccard similarity based on 1-gram) and J2 (Jaccard similarity based on 2-

gram).

properties of the traces [2, 11, 50]. This approach allows to combine different

types of feature, such as n-grams of different length, in order to consider struc-

tural trace similarities and differences in a more comprehensive way. A simple

example, for the aggregation of two similarity values based on 1-grams (the

set of activities) and 2-grams (the set of directly-follows relations) as proposed

by Burattin et al. [11] is shown in Table 1. Other proposed aggregations in-

volve the combination of 1-grams and eventually-follows relations [2], and the

combination of different order relations between activities, i.e., directly-follows

relations, exclusiveness, and parallelism [50]. The separate values are thereby

either calculated based on Jaccard similarity [11, 50] or cosine distance [2].

The proposed aggregations, always involve the aggregation according to the

weighted sum of the considered similarity measures. This allows to weight fea-

ture types, according to the context in which the measurement is applied [2,

11, 50]. These weights can either by assigned randomly [50], according to some

heuristic [2], or by solving an optimization problem, e.g., to find an optimal

clustering of traces [11].

In Sect. 5, we extend existing aggregation approaches by combining trace

similarity measures that account for activities, directly-follows relations, and

high-level structural features. While context-specific weighting of these compo-

nents could potentially improve the accuracy of the aggregated measures, its

definition lies beyond the scope of this work. Accordingly, all distinct measures

are weighted equally.

19

3.2. Model-based Similarity Measures

The measures used for process comparison at model level commonly lever-

age structural features, which are explicit in the models (for an overview, see

[29, 43, 47]). These measures focus on the comparison of process model ele-

ments, such as node types and edges. Their outcome depends on the labeling of

the nodes and edges, as well as the applied modeling language. Other measures

focus only on the comparison of the graph structure, without considering spe-

cific process model elements (for an overview on graph similarity measures, see

Emmert-Streib et al. [53]). However, these measures do not reflect the higher-

level structural features (loops, skips, and choices), which are an important

aspect of process analysis.

Finally, some measures are based on the comparison of sets of traces which

can be derived from the execution of process models, such as trace align-

ments [6]. These measures are similar to those once proposed for trace com-

parison (Sect. 3.1), except that they focus on the comparison of sets that con-

tain multiple traces. These measures also fail to capture higher-level structural

features of the traces and therefore provide little explanation for the derived

similarity values.

Overall, it can be stated that the similarity measures developed for pro-

cess comparison at model level have several shortcomings when applied for the

comparison at trace level, i.e., the dependency on specific modeling languages,

the comparison between sets of traces rather than single traces, and the failure

to consider high-level structural features. To overcome these shortcomings, we

propose a similarity comparison based on trace graphs (cf. Sect. 2). Deriving

a respective trace graph for a trace requires some form of abstraction, which is

commonly achieved based on process discovery.

3.3. Process Discovery

Process discovery can be seen as a way to derive structural features from a

set of traces. There exist several process discovery algorithms that are capa-

ble of deriving sequential patterns [19, 17, 54] and non-sequential patterns [8],

20

which represent reoccurring structural properties within an event log. However,

these algorithms are based on the assumption that the process structure can be

abstracted from multiple distinct traces, that arise from multiple executions of

the same process. This generally involves a high level of abstraction in order

to generate comprehensible graphical process representations. Some of these

algorithms thereby focus only on the detection of frequently reoccurring pat-

terns and neglect non-frequent once [54, 8]. Thus, the detection of all process

patterns contained in a single trace is not guaranteed. Furthermore, some of the

discovery algorithms focus on the discovery of only a single type of pattern, such

as the parallel execution of activities, as in the case of instance graphs [17, 19],

and frequent episodes [54].

In particularly, parallelism requires a high level of abstraction, since the

number of possible orderings of activities increases exponentially with the num-

ber of activities that can be executed in parallel. This makes it difficult to detect

parallelism based on a single trace.

Furthermore, due to the abstraction, more fine-granular structural properties

are ignored. E.g., based on σ1 = ⟨A,B,C,D,A,C,B,D⟩, a process discovery al-

gorithm, such as the local process model miner [8], would assume that activities

B and C can be executed in parallel, suggesting that the structure of σ1 equals

the structure of σ2 = ⟨A,C,B,D,A,B,C,D⟩. However, this can be particularly

misleading for the comparison of traces describing user behavior [55, 56]. For ex-

ample, the particular order of clicks can be an indicator for different approaches

to process modeling [55], and the order of visual fixations on a screen can be an

indicator for exploratory or goal oriented behavior [56]. Different behaviors can

thereby be associated with different cognitive processes of a user [24, 25, 57],

which require different interpretations and potentially different user support.

Nevertheless, parallelism has been consistently considered as a relevant struc-

tural feature in the context of business processes [17, 36, 19, 17, 54, 8, 35, 58].

We therefore consider parallelism as an additional high-level feature for the

comparison of the structural similarity between traces in the context of busi-

ness processes. To discover parallelism within a single trace, we leverage a

21

discovery algorithm initially proposed by van Dongen and van der Aalst [17],

which explicitly focuses on the structural analysis of single traces. Furthermore,

the algorithm has been successfully applied in the context of business process

analysis [19]. An additional advantage of the algorithm is its assumption of a

strict total order of activities within a trace, which eliminates the need for par-

tial ordering, i.e., the documentation of overlapping time intervals, to identify

parallelism [58].

To better distinguish which similarity aspects are considered by different

similarity measures, especially with respect to structural trace features, we pro-

vide a formal comparison on the basis of several measurement properties in the

following section.

4. Formal Comparison of Trace Similarity Measures

For the formal comparison of trace similarity measures, we propose ten de-

sirable properties. These include the already introduced metric properties in

Sect. 2 (P1-P4), properties concerning the structural trace features (P5-P7), as

well as general similarity properties (P8-P10).

4.1. Properties Related to Structure and Similarity

Existing studies on trace similarity measures [14, 41, 28, 44] show that trace

similarity measures perform differently depending on the characteristics of an

event log, such as the number of activities, length of traces, and number of

trace classes. While this event log perspective provides some insights into the

applicability of similarity measures, it does not consider how these measures

reflect specific trace characteristics, such as structural features. To solve this

issue, we identify three desirable properties a similarity measure should have, in

order to reflect the traces’ structure. These properties build on the assumption

that a similarity measure should be monotonically increasing with respect to

the number of structural differences between traces. We consider three types of

structural differences based on (1) activities, (2) directly-follows relations, and

22

(3) high-level structural features (loops, skips, and choices). These three types

of structural features provide a comprehensive description of the trace structure

and are commonly deemed relevant in the literature [35, 20, 29, 43]. It is worth

noting that parallelism, which is also commonly deemed a relevant high-level

structural feature in the literature [17, 36, 19, 17, 54, 8, 35, 58] is implicitly

captured through differences based on directly-follows relations.

The first structural property refers to the differences among the activities.

A similarity measure should be strictly increasing with respect to differences in

the number of activities. This is based on the intuitive notion that the more

distinct the respective sets of activities, the greater the dissimilarity between

the traces. For comparison of the dissimilarity between two sets, we use their

symmetric difference Fi△Fj = (Fi∪Fj \Fi∩Fj). The set of activities contained

within a trace can be derived according to the feature-extraction function based

on 1-gram, i.e., h1(σi) = Fi,1.

Property P5. The similarity measure is strictly increasing with an increase

in the number of dissimilar activities between two traces, i.e.: s(Fi,1, Fj,1) <

s(Fi,1, Fk,1) for all |Fi,1△Fj,1| < |Fi,1△Fk,1|.

Looking at the traces σ0, σ3 and σ4 depicted in Fig. 3, according to Property

P5 we would expect s(σ0, σ3) < s(σ0, σ4) since the sets of activities contained

in σ0 and σ4 are more distinct than it is the case for σ0 and σ3.

A B C D

C A D BA X Y D

A B C D A B C D A B

C

D

C D A B

LL L L

S C

Figure 3: Different traces and their representation as trace graph.

23

The second structural property refers to the differences among the directly-

follows relations. A similarity measure should be strictly increasing with respect

to the differences in the number of directly-follows relations. This is based

on the intuitive notion that the more distinct the ordering of activities, with

respect to their directly-follows relations, the greater the dissimilarity between

the traces. The set of directly-follows relations contained within a trace can

be derived according to the feature-extraction function based on 2-gram, i.e.,

h2(σi) = Fi,2.

Property P6. The similarity measure is strictly increasing with an increase

in the number of dissimilar directly-follows relations between two traces, i.e.:

s(Fi,2, Fj,2) < s(Fi,2, Fk,2) for all |Fi,2△Fj,2| < |Fi,2△Fk,2|.

Looking at the traces σ0, σ3 and σ5 depicted in Fig. 3, according to Property P6

we would expect s(σ0, σ3) < s(σ0, σ5), since the sets of directly-follows relations

contained in σ0 and σ5 are more distinct than it is the case for σ0 and σ3.

In addition to the set of activities and their relative order, a similarity mea-

sure should also consider high-level structural features of the traces on the basis

of edge-types (cf., Def. 2.12). The set of edge-types contained within a trace

can be derived according to the feature-extraction function het(σi) = Fi,et.

Property P7. The similarity measure is strictly increasing with an increase

in the number of dissimilar edge-types between two traces, i.e.: s(Fi,et, Fj,et) <

s(Fi,et, Fk,et) for all |Fi,et△Fj,et| < |Fi,et△Fk,et|.

Looking at the traces depicted in Fig. 3, according to Property P7 we would

expect s(σ0, σ3) < s(σ0, σ6) due to the loop in σ6. Similarly we would expect

s(σ0, σ3) < s(σ0, σ7) due to the loop and skip in σ7, and s(σ0, σ3) < s(σ0, σ8)

due to the loop and choice in σ8.

In addition to the structure-related properties P5-P7, we define three ad-

ditional properties related to general similarity considerations. A trace simi-

larity measure should also consider the overall size of the features contained

in the traces. For example, the similarity between σ0 = ⟨A,B,C,D⟩ and

σ9 = ⟨A,B,C,D,X⟩ should be considered to be greater than between σ9 = ⟨A⟩

24

and σ10 = ⟨A,X⟩, although in both cases the traces differ only based on a single

activity. Thus, a new feature should contribute less to the dissimilarity between

two traces, the larger the overall set of features contained in both traces. This

property is also known as submodularity.

Property P8. For all (Fi ∪ Fj) ⊆ (Fk ∪ Fl) and f /∈ Fk, Fl we have that

s(Fi, Fj ∪ f)− s(Fi, Fj) ≥ s(Fk, Fl ∪ f)− s(Fk, Fl).

However, this property only considers the overall set of features contained

in the traces, but not the ratio between similar and dissimilar features. From

a process analysis perspective, Becker and Laue [29] argue that a similarity

measure should take into account commonalities, as well as differences between

the traces.

Property P9. A similarity measure should consider both commonalities Fi∩Fj

and differences Fi△Fj between two traces.

Finally, we also consider the computational costs of the similarity measures

to ensure that they can be calculated for large event logs and in online settings

(cf. Sect. 1), which was also proposed by Becker and Laue [29] as a relevant

property for the comparison of similarity measures.

Property P10. The similarity measure can be calculated efficiently.

Table 2 provides an overview of all desirable properties for trace similarity

measures, including the metric properties defined in Sect. 2.

Metric

P1 non-negativity

P2 Symmetry

P3 Identity of indiscernibles

P4 Triangle-inequality

Structure

P5 Strict monotonicity with an increase in the number of dissimilar activities

P6 Strict monotonicity with an increase in the number of dissimilar directly-follows relations

P7 Strict monotonicity with an increase in the number of dissimilar edge types

Similarity

P8 Submodularity

P9 Consideration of commonalities and differences

P10 Computational efficiency

Table 2: Overview of the desirable properties for similarity measures.

25

4.2. Formal Comparison

Based on the defined properties in Table 2 we will now provide a comparison

of the trace similarity measures shown in Table 3. One main criterion for select-

ing these measures is their ability to represent structural features (cf. Sect. 3).

Furthermore, we consider similarity measures, which are commonly applied in

the literature (cf. Sect. 3) and can be computed with reasonable computational

effort in the context of both behavioral processes and business processes.

Type Measure Label

Syntactic
Levenshtein distance LD

Normalized Levenshtein distance N-LD

Feature-based

Vector-space embedding

Euclidean similarity based on MR EMR

Cosine similarity based on MR CMR

Jaccard similarity based on MR JMR

Eventually-Follows EF

Euclidean similarity based on 1-gram E1

Euclidean similarity based on 2-gram E2

Euclidean similarity based on 3-gram E3

Cosine similarity based on 1-gram C1

Cosine similarity based on 2-gram C2

Cosine similarity based on 3-gram C3

Feature-based

Set comparison

Jaccard similarity based on 1-gram J1

Jaccard similarity based on 2-gram J2

Jaccard similarity based on 3-gram J3

Table 3: Selection of similarity measures.

To investigate whether the selected similarity measures reflect the structural

properties defined by P5-P7, we calculate the respective similarity values be-

tween σ0 and σ3 − σ8 that are shown in Fig. 3. The traces differ according to

the activities, the order of activities, and high-level structural features. For a

measure to accurately distinguish between traces based on the number of ac-

tivities (P5), it should satisfy the condition that s(σ0, σ3) < s(σ0, σ4), since the

sets of activities that can be extracted from σ0 and σ3 are more similar com-

pared to those derived from σ0 and σ4. Similarly, for a measure to accurately

26

s(σ0, σ3) s(σ0, σ4) s(σ0, σ5) s(σ0, σ6) s(σ0, σ7) s(σ0, σ8)

LD 4.000 2.000 4.000 2.000 2.000 2.000

N-LD 1.000 0.500 1.000 0.333 0.333 0.333

EMR 0.000 0.000 0.000 1.414 1.414 1.414

CMR 0.000 0.000 0.000 0.000 0.000 0.000

JMR 0.000 0.000 0.000 0.000 0.000 0.000

EF 0.179 0.150 0.299 0.169 0.072 0.113

E1 0.000 2.000 0.000 1.414 1.414 1.414

E2 2.449 2.449 3.162 1.414 1.414 2.000

E3 2.828 2.828 2.828 2.449 2.000 2.449

C1 0.000 0.500 0.000 0.051 0.051 0.051

C2 0.600 0.600 1.000 0.155 0.155 0.324

C3 1.000 1.000 1.000 0.592 0.388 0.592

J1 0.000 0.667 0.000 0.000 0.000 0.000

J2 0.750 0.750 1.000 0.286 0.286 0.500

J3 1.000 1.000 1.000 0.750 0.571 0.75

Table 4: Calculated similarity values for the pairwise comparison between σ0

and σ3 −σ8, where s(σ0, σ3) is considered as baseline. According to the defined

properties P5-P7, s(σ0, σ4) should reflect an increase in the number of activities

(P5), s(σ0, σ5) should reflect an increase in the number directly-follows relations

(P6), and s(σ0, σ6−8) should reflect an increase in the number of edge-types (P7).

Values that are less than or equal to s(σ0, σ3) indicate a violation of one of the

defined properties P5-P7 and are highlighted in gray.

distinguish between traces based on the number directly-follows relations (P6)

it should hold that s(σ0, σ3) < s(σ0, σ5). Finally, for a measure to accurately

distinguish between traces based on the of number of edge-types it should hold

that s(σ0, σ3) < s(σ0, σ6−8). Table 4 shows all calculated similarity values. All

similarity values that are less than or equal to s(σ0, σ3) indicate a violation of

one of the defined properties P5-P7 and are highlighted in gray. The results of

the calculated similarity values are summarized in Table 5.

Table 5 provides an overview of the considered similarity measures with an

indication of whether they adhere to the defined properties P1-P10. Regarding

27

Metric Structure Similarity

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

LD yes yes yes yes no no no no no O(|σ1| · |σ2|)

N-LD yes yes yes no no no no no no O(|σ1| · |σ2|)

EMR yes yes yes yes no no yes no yes O(|Fi,MR ∪ Fj,MR|)

CMR yes yes yes no no no no no yes O(|Fi,MR ∪ Fj,MR|)

JMR yes yes yes yes no no no yes yes O(|Fi,MR ∪ Fj,MR|)

EF yes yes yes no no yes no no yes O(|Fi,2 ∪ Fj,2|)

E1 yes yes yes yes yes no yes no yes O(|Fi,1 ∪ Fj,1|)

E2 yes yes yes yes no yes no no yes O(|Fi,2 ∪ Fj,2|)

E3 yes yes yes yes no no no no yes O(|Fi,3 ∪ Fj,3|)

C1 yes yes yes no yes no yes no yes O(|Fi,1 ∪ Fj,1|)

C2 yes yes yes no no yes no no yes O(|Fi,2 ∪ Fj,2|)

C3 yes yes yes no no no no no yes O(|Fi,3 ∪ Fj,3|)

J1 yes yes yes yes yes no no yes yes O(|Fi,1 ∪ Fj,1|)

J2 yes yes yes yes no yes no yes yes O(|Fi,2 ∪ Fj,2|)

J3 yes yes yes yes no no no yes yes O(|Fi,3 ∪ Fj,3|)

Table 5: Comparison between similarity measures based on the identified desir-

able properties P1− P10.

the metric properties (P1-P4) it can be stated that the Levenshtein distance

(LD), as well as the measures based on Jaccard similarity (JMR, J1,J2, and

J3) and based on Euclidean similarity (EMR, E1, E2, and E3) adhere to the

four metric properties (cf. Yujian and Bo [59], Kosub [60]). The normalized

Levenshtein distance (N-LD) and the measures based on cosine similarity (CMR,

EF, C1, C2, and C3) cannot be considered a metric since they violate triangle-

inequality (cf. Yujian and Bo [59], Han et al. [34]).

Regarding the structure-related properties (P5-P7), it can be stated that

none of the measures adheres to all defined properties. Only the measures

based on 1-gram (E1, C1, and J1) correctly evaluate the dissimilarity between

the number of activities (P5). Furthermore, only the measures involving 2-gram

(EF, E2, C2, and J2) correctly evaluate the dissimilarity between the directly-

follows relations (P6). Additionally, the measures that also reflect the relative

frequencies of the activities within the traces (EMR, E1, C1) correctly evaluate

28

the dissimilarity between the edge-types (P6).

Regarding the general similarity properties (P8-P10) it can be stated that

only measures based on Jaccard similarity (JMR, J1, J2, and J3) satisfy sub-

modularity (P8), which is characterized by the diminishing returns condition:

for any sets A ⊆ B ⊆ V and element x ∈ V \B, the marginal gain from adding x

to A is at least as large as adding it to B (for a formal proof see Kosub [60]). In

contrast, the remaining measures do not exhibit submodularity. Specifically, the

measures based on Levenshtein distance (LD and N-LD) fail to account for the

cardinality of the feature set, which is essential for satisfying the diminishing

returns property. Furthermore, measures based on cosine similarity and Eu-

clidean similarity are inherently geometric and depend on the relative positions

of feature vectors in a continuous space [61]. These measures do not define set

functions over discrete subsets and do not satisfy the submodularity condition,

as the returns are not guaranteed to decrease with increasing set size.

It can be further stated that all similarity measures, except those based on

Levenshtein distance (LD and N-LD), account for both commonalities and dif-

ferences between traces, as required by property (P9) [29]. In particular, the

Jaccard similarity can be reformulated as J(A,B) = 1− |A∩B|
|A∪B| =

|A△B|
|A∪B| , where

the numerator |A△B| captures the symmetric difference, and the denomina-

tor |A ∪ B| reflects the total number of distinct elements, encompassing both

shared and non-shared features [60]. Similarly, cosine similarity and Euclidean

distance are computed based on the relative positions of feature vectors in a

continuous space, where both shared and non-shared features influence the re-

sulting values [61]. These measures inherently incorporate both overlap and

divergence in feature representation. In contrast, LD and N-LD focus solely on

the edit operations required to transform one trace into another, without ex-

plicitly considering the set of shared features [15], and therefore do not satisfy

(P9).

Finally, it can be stated that all similarity measures can be calculated in

linear time (P10), depending on the length of the traces or the respective sets

of features.

29

In conclusion, only Jaccard similarity measures (J1 and J2) can be consid-

ered as a proper metric (P1-P4), satisfying submodularity (P8) and recognizing

dissimilarities and similarities between traces (P9). Furthermore, none of the

similarity measures considered correctly evaluates all structural dissimilarities

between the traces (P5-P7). In the following section, we propose a novel ap-

proach to solve this problem by incorporating different structural features into

the similarity evaluation.

5. Similarity Measures Based on Graph-based Features

To address the limitations of existing trace similarity measures identified in

the previous chapter, we propose the integration of high-level structural fea-

tures into the comparison of trace similarity. Specifically, we introduce a novel

feature extraction approach based on graph algorithms, which enables the iden-

tification of loops, skips, and choices within individual traces. In addition, we

leverage instance graphs [17, 19] to detect parallelism by analyzing directly-

follows relations across multiple traces. Building on the aggregation approach

identified in the literature (cf. Sect. 3.1.3), we further present four aggregated

similarity measures that incorporate at least two of the structural dimensions

considered in the previous chapter: activities, directly-follows relations, and

high-level structural features. A formal analysis of the introduced measures in

this section, shows that the high-level structural features and the aggregation

can indeed lead to a more complete comparison of the traces’ structure.

5.1. Identifying Parallelism within Traces

As discussed in Sect. 3.1.2, parallelism between activities is commonly re-

garded as a key structural feature in traces representing business processes. In

contrast, user behavior processes typically exhibit strictly sequential execution

and generally lack parallel activity patterns (cf. Sect. 1). Therefore, parallelism

is treated as an optional high-level feature and is only considered for traces that

represent business processes.

30

According to Definition 2.9, parallel relations between activities are derived

by identifying all directly-follows relations (i.e., 2-grams) within a trace σ ∈ L

and all causal relations within the event log L. Once parallel relations have been

established, sets of parallel activities (cf. Definition 2.10) can be derived, which

can then be used for the construction of trace graphs (cf. Definition 2.11).

5.2. Incorporating Graph-based Features into Similarity Measures

Identifying loops, skips, and choices within a trace requires the transforma-

tion of a trace into a trace graph G(A,D) (cf. Sect. 2). This can be achieved

by deriving an adjacency list from a trace. In an adjacency list, each vertex

a ∈ A is linked to a list providing information of all neighboring vertices con-

nected by an edge d ∈ D [37]. The transformation of a trace into an adjacency

list leads to some abstraction, e.g., even though loops might be repeated more

than once in a trace, based on the transformation, they are always considered to

have the same frequency. This abstraction allows for a direct comparison of the

trace structure in a computationally efficient manner, independent of process

performance aspects, such as the number of loop repetitions [62].

Based on the adjacency list, one can subsequently derive high-level structural

features, which are implicitly contained in the trace. This can be achieved by

identifying the graph’s edge-types (cf. Sect. 2). Two examples of trace graphs

with different edge-types are shown in Fig. 1. In order to identify the edge-types

and their respective lengths within a trace graph, we apply the following graph

algorithms: depth-first search (DFS), breadth-first search (BFS), and lowest-

common ancestor (LCA). Overall, the measurement approach consists of three

steps.

5.2.1. Step 1: Identifying Edge-types

The DFS [37] is applied to detect the edge-type between the vertices of the

graph. The DFS starts at the first edge between two vertices according to the

adjacency list and then continues to look at all the other edges in the list. The

algorithm thus considers whether the edge was visited before and which other

31

edges have been already visited. The edge-types are assigned accordingly as

depicted in Algorithm 1.

Algorithm 1 DFS to detect graph-features including length

Input: G(V,D) in the form of adjacency list AdjList

Output: List of tuples (W,N, e) with edge-type and length for all e ∈ G(V,D)

1: main() function

2: i← 0 ▷ initialize counter

3: numList(|v|)← 0 ▷ initialize list with counters of vertex visits

4: recList(|v|)← 0 ▷ initialize list with vertices currently on recursion stack

5: for all v ∈ AdjList do

6: if numList(v) = 0 then dfs(v) ▷ apply recursive DFS function

7:

8: dfs() function

9: i← i+ 1, numList(v)← i, recList(v)← 1

10: for all w ∈ adj(v) do ▷ adj(v) is the list for v ∈ AdjList

11: if numList(w) = 0 then dfs(w) ▷ ⟨v, w⟩ is a sequence edge

12: else if numList(w) > numList(v) then ▷ ⟨v, w⟩ is a skip edge

13: call BFS(start = v, end = w) ▷ derive length based on Algo. 2

14: return (type = forward, length, ⟨v, w⟩)

15: else if numList(w) < numList(v) then ▷ ⟨v, w⟩ is a choice edge

16: call LCA(w,v) ▷ derive length based on Algo. 3

17: return (type = cross, length, ⟨v, w⟩)

18: else ▷ ⟨v, w⟩ is a loop edge

19: call BFS(start = w, end = v) ▷ derive length based on Algo. 2

20: return (type = back, length, ⟨v, w⟩)

21: recList(v)← 0

5.2.2. Step 2: Identifying the Length of Edge-types

While sequences only indicate a directly-follows relation between two con-

secutive activities, loops, skips, and choices can span over multiple activities.

For example, the trace σ1 = ⟨A,B,D,A,C,D,A,D⟩ depicted in Fig. 1 contains

a loop of length three, a skip of length one, and a choice of length one. These

32

Algorithm 2 BFS

Input: G(V,D) in the form of adjacency list AdjList, start vertex a, end vertex

b

Output: Minimum number of steps from a to b, list of all visited vertices

1: bfs() function

2: queueList ← (a, steps = 0) ▷ initialize queue

3: visitedList ← 0 ▷ initialize list of visited vertices

4: while queueList not empty do

5: currentVertex, steps ← last entry queueList

6: if currentVertex not in visitedList then

7: visitedList ← currentVertex

8: if currentVertex = b then

9: steps + sum(parallel activities in visitedList) ▷ adjust length

10: return steps, visitedList

11: for all neighboringVertex of currentVertex ∈ AdjList do

12: queueList ← (neighboringVertex, steps + 1)

13: if neighboringVertex not in visitedList then

14: visitedList ← (neighboringVertex, steps)

Algorithm 3 LCA

Input: G(V,D) in the form of adjacency list AdjList, vertex a, vertex b

Output: Lowest-common ancestor of a and b, and the min number of steps

1: remove edge ⟨a, b⟩ from AdjList

2: AdjList’ ← invert(AdjList)

3: LCA() function

4: v ← startVertex(AdjList’)

5: l1 = BFS(v, a) ▷ derive list of visited vertices with min. steps based on Algo.2

6: l2 = BFS(v, b) ▷ derive list of visited vertices with min. steps based on Algo.2

7: x ← firstCommonVertex(l1,l2)

8: return min number of steps between a and x, b and x

lengths are derived based on the first occurrence of the respective edge-types

within the trace, i.e., the loop-edge between D and A first occurs after the

33

execution of ⟨A,B,D⟩, thus it is assigned a length of three.

Since the length of a structural construct can be an important aspect for

the comparison of traces, we combine the DFS with two other graph-algorithms

to derive this additional information. First, we use the BFS algorithm [37] to

identify the minimum number of steps required to get from one vertex a ∈ A to

another vertex b ∈ A following the edges in a graph. Starting from a selected

vertex a ∈ A, BFS explores the neighbor vertices at the present depth before

moving on to the vertices at the next depth level. This process continues until

the target vertex b ∈ A is found. The final depth indicates the minimum number

of steps to get from a to b. In our implementation, we use a queue data structure

to keep track of the vertices that remain to be explored (cf. Algorithm 2).

While the BFS can identify the length of loops and skips, for choices, it

is necessary to first identify the start vertex of an alternative path. This can

be solved based on the LCA algorithm [37]. As described by Algorithm 3,

before applying the LCA the trace graph needs to be inverted such that all

start vertices become the end vertices of the graph. The LCA algorithm is

subsequently applied to find the lowest-common ancestor of two given vertices

a, b ∈ A. The lowest-common ancestor is defined as the lowest vertex that has

a and b as descendants.

5.2.3. Step 3: Aggregating the Features

To leverage the identified high-level features in trace comparison, we pro-

pose six measures, shown in Table 7. The measures are based on two distinct

measurement approaches: cosine similarity based on vector-space embedding,

and Jaccard similarity based on set comparison. To show that the structural

properties P5-P7 can be addressed by the aggregation of different structural

feature types, we consider the following combinations of feature types: (1) high-

level structural features, (2) 1-grams and 2-grams, and (3) 1-grams, 2-grams

and high-level structural features.

Graph-based cosine similarity (Cg) is calculated based on the identified edge-

types with their length and the identified parallelism between activities with

34

M. Transformation Calculation

Cg σ⃗1 =

(sequ.)

(parallel, 3)

(loop, 4)


1

1

0

 σ⃗2 =

(sequ.)

(parallel, 3)

(loop, 4)


1

1

1

 1− σ⃗1·σ⃗2

∥σ⃗1∥∥σ⃗2∥ = 1− 2√
6

Jg
Fσ1 = {(sequ.), (parallel, {B,C,D})}

Fσ2
= {(sequ.), (parallel, {B,C,D}), (loop, 4, ⟨A,E⟩)}

1− Fσ1
∩Fσ2

Fσ1∪Fσ2
= 1

3

Table 6: Example for calculating the similarity between σ1 = ⟨A,B,C,D,E⟩

and σ2 = ⟨A,B,C,D,E,A,B,C,D,E⟩ with the parallel relations R =

{B||C,C||D} based on the two measures Cg and Jg.

the cardinality of the respective sets of parallel activities (cf. Definition 2.10).

Both types of features are encoded based on their frequency. Alternatively,

graph-based Jaccard similarity (Jg) is calculated based on the identified directly-

follows relations with the respective edge-type and length and the identified

sets of parallel activities. The number of edges of the type sequence are not

considered, as they do not indicate any high-level structural feature, and are

partially considered by the length of high-level structural features, as well as

the directly-follows relations of traces. Furthermore, considering the number of

sequences would bias the outcome towards the length of the traces. Nevertheless,

traces that are strictly sequential, i.e., only contain edges of type sequence,

should be considered as structurally similar. For this reason (sequ.) is added

as an edge type (without considering length or frequency) to any trace that

contains at least one edge of type sequence, i.e., an activity sequence longer

than one, which is not a loop. An example for the calculation of Jg and Cg is

provided in Table 6 based on the two traces depicted in Fig. 2.

The aggregated measures, denoted by Agg(), are computed as the sum of

individual similarity measures with uniform weighting applied. For example,

Agg(C1, C2) = C1 + C2 represents the aggregation of Cosine similarity values

derived from 1-gram and 2-gram representations, as introduced in Sect. 4.2.

This aggregation approach has already been applied in related studies (cf.

Sect. 3.1.3).

35

Type Measure Label

Vector-space emb.

Graph-based cosine similarity Cg

Aggregated cosine similarity Agg(C1,C2)

Aggreagted graph-based cosine similarity Agg(C1,C2,Cg)

Set comparison

Graph-based Jaccard similarity Jg

Aggregated Jaccard similarity Agg(J1,J2)

Aggreagted graph-based Jaccard similarity Agg(J1,J2,Jg)

Table 7: Set of proposed trace similarity measures.

In the following subsection, we show that the proposed measures better

reflect similarities and differences between traces based on structural features

(P5-P7) than previous measures.

5.3. Formal Comparison

To evaluate the identified similarity measures (cf. Table 7) with respect

to their ability to consider structural features (P5-P7), we first calculate the

respective similarity values between σ0 and σ3 − σ8 (cf. Fig. 1). The calculated

similarity values are shown in Table 8. The results show that the novel measures

better reflect structural similarities and differences between the traces than the

measures from the literature (cf. Sect. 4.2).

Table 9 provides an overview of the proposed similarity measures with an in-

dication of whether they adhere to the defined properties (P1-P10). With regard

to the metric properties (P1-P4) it can be stated that the measures based on

cosine similarity generally do not adhere to triangle-inequality (P4) [34]. Mea-

sures based on Jaccard similarity, on the other hand, generally satisfy triangle-

inequality (P4) even in their aggregated form [50].

Regarding the structure-related properties (P5-P7), it can be stated that

Cg, Jg, and Agg(J1,J2,Jg) correctly reflect the high-level structural features

(P7), which is a clear improvement compared to the measures in the previ-

ous Sect. 4.2. Furthermore, the proposed aggregations of feature types (i.e.,

Agg(C1,C2), Agg(C1,C2,Cg), Agg(J1,J2), and Agg(J1,J2,Jg)) successfully re-

flect multiple defined structural properties. Agg(J1,J2,Jg) in fact reflects all

36

defined structural properties (P5-P7).

Regarding the general similarity properties (P8-P10) it can be stated that

only measures based on Jaccard similarity can be considered as submodular

functions (P8), while both measures based on Jaccard similarity and cosine

similarity consider similarities as well as dissimilarities between the traces (P9).

Regarding computational efficiency (P10), it can be stated that the additional

calculations of the graph-features based on Algorithm 1 do not add to the

time complexity compared to the similarity measures considered in the pre-

vious Sect. 4. Both DFS and BFS have a time complexity of O(|A|+ |D|), while

LCA can be computed in O(h), where h represents the length of the longest

distinct path between two vertices in G(A,D).

s(σ0, σ3) s(σ0, σ4) s(σ0, σ5) s(σ0, σ6) s(σ0, σ7) s(σ0, σ8)

Cg 0.000 0.000 0.000 0.553 0.423 0.423

Agg(C1,C2) 0.600 1.100 1.000 0.206 0.206 0.375

Agg(C1,C2,Cg) 2.449 2.949 3.162 2.018 1.888 2.474

Jg 0.000 0.000 0.000 0.667 0.667 0.667

Agg(J1,J2) 0.750 1.417 1.000 0.286 0.286 0.500

Agg(J1,J2,Jg) 0.750 1.417 1.000 0.952 0.952 1.167

Table 8: Calculated similarity values for the pairwise comparison between σ0

and σ3 −σ8, where s(σ0, σ3) is considered as baseline. According to the defined

properties P5-P7, s(σ0, σ4) should reflect an increase in the number of activities

(P5), s(σ0, σ5) should reflect an increase in the number directly-follows relations

(P6), and s(σ0, σ6−8) should reflect an increase in the number of edge-types (P7).

Values that are less than or equal to s(σ0, σ3) indicate a violation of one of the

defined properties P5-P7 and are highlighted in gray.

6. Evaluation

To evaluate the performance of the measures proposed in the previous section

compared to the measures considered in Sect. 4 we perform an evaluation based

on four synthetic event logs and four real-life event logs. The performance is

evaluated in terms of the accuracy with which the measures assess the structural

37

Metric Structure Similarity

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Cg yes yes yes no no no yes no yes O(|Fi,2 ∪ Fj,2|)

Agg(C1,C2) yes yes yes no yes yes no no yes O(|Fi,2 ∪ Fj,2|)

Agg(C1,C2,Cg) yes yes yes no yes yes no no yes O(|Fi,2 ∪ Fj,2|)

Jg yes yes yes yes no no yes yes yes O(|Fi,2 ∪ Fj,2|)

Agg(J1,J2) yes yes yes yes yes yes no yes yes O(|Fi,2 ∪ Fj,2|)

Agg(J1,J2,Jg) yes yes yes yes yes yes yes yes yes O(|Fi,2 ∪ Fj,2|)

Table 9: Comparison between similarity measures based on the identified desir-

able properties P1− P10.

similarity between traces in the respective event logs. Each trace thereby belongs

to a unique class, with traces in the same class being more structurally similar

to each other than to traces in a different class. To quantify the accuracy of the

similarity measures, we apply three different evaluation measures. Overall, the

evaluation seeks to answer two main questions: (1) can the proposed measures

outperform alternative measures in terms of accuracy, and (2) can the considered

high-level structural features (i.e., edge-types and parallelism) generally improve

the accuracy of similarity measures.

The event logs and a Python implementation of the similarity measures and

evaluation measures are available at:

https://bwsyncandshare.kit.edu/s/bNrqiXMkSebag6Q.

6.1. Evaluation Measures

Our evaluation of the similarity measures is based on three evaluation mea-

sures proposed by Back and Simonsen [14]: Nearest Neighbor, Precision@k, and

Triplet. These measures are well established in the literature on similarity met-

ric learning [63, 64]. Furthermore, Back and Simonsen [14] present a validation

of these measures based on an extensive comparison of trace similarity mea-

sures. The proposed evaluation measures are deliberately selected to minimize

confounding factors from downstream tasks such as process discovery [28], and

trace clustering [1, 41, 2, 44]. As discussed in Sect. 3, this enables a more direct

evaluation of the validity of the similarity measures with regard to content va-

38

https://bwsyncandshare.kit.edu/s/bNrqiXMkSebag6Q

lidity (i.e., the extent to which the measures capture a broad range of structural

features) and criterion validity (i.e., the degree to which the measures align with

predefined trace classifications).

To evaluate the accuracy of the similarity measures, the evaluation measures

compare the derived similarity values of the in-class data points with the sim-

ilarity values of the out-of-class data points. A similarity measure receives a

positive evaluation if the similarity values between data points within a class

are high and the similarity values between data points belonging to different

classes are low.

Based on this idea the Nearest Neighbor measure calculates the ratio of data

points whose nearest neighbor, i.e., the data point which is nearest based on

some similarity measure, belongs to the same class and the data points whose

nearest neighbor does not belong to the same class.

The Precision@k measure further extends this evaluation by calculating the

ratio of in-class and out-of-class data points for the k-nearest data points. In

accordance with [14], for this study we set k = 10.

The Triplet measure provides an even more precise evaluation of similarity

by considering for each data point all the distances between in-class and out-of-

class data points. Given an anchor data point x, the measure calculates for each

in-class data point y the ratio of out-of-class data points z with d(x, y) < d(x, z)

to out-of-class data points z with d(x, y) > d(x, z).

6.2. Datasets

For the empirical evaluation of the similarity measures introduced in Sect. 4

and Sect. 5, seven different event logs are considered. Table 10 provides an

overview of these logs, including three synthetic event logs (SynL1, SynL2,

SynL3) and four real-world event logs (WABO, PO, EyeT1, EyeT2).

These event logs are selected according to two main criteria. First, for

the evaluation it is essential that the traces in the event logs can be classified

according to some trace attribute. Furthermore, the traces should be equally

distributed among the classes to increase the validity of the evaluation, i.e.,

39

Activity Trace Min Max Class T./C. Class Type Origin

SynL1 16 300 8 194 3 100 edge-type Simulation

SynL2 16 300 8 202 6 50 edge-type and length Simulation

SynL3 16 300 8 179 6 50 edge-type and activity Simulation

SynL4 16 320 8 202 4 80 edge-type and activity Simulation

WABO 465 350 1 110 5 70 process type Administration

PO 42 300 8 324 3 100 process type Administration

EyeT1 1194 349 27 1152 8 43-44 task type Eye tracking

EyeT2 1194 349 27 1152 2 174-175 task complexity Eye tracking

Table 10: Overview of the event logs including the number of activities, num-

ber of traces, the minimum and maximum length of traces, number of classes,

number of traces per class, class type and their origin.

if all traces belong to the same class, the evaluation measures would yield a

value of one for every similarity measure. Secondly, trace classes should be

distinguishable based on their structural characteristics, i.e. activities, directly-

follows relations, and edge-types, as defined by the properties P5-P7 in Sect. 4.

Especially, the ability to distinguish trace classes based on edge-types (P7) is

important to evaluate whether the proposed graph-based approach introduced

in Sect. 5.2 can improve the performance of similarity measures. For this reason,

we first look at three simulated event logs containing the desired properties, and

then continue with real-world datasets.

6.2.1. SynL1, SynL2, SynL3, and SynL4.

These synthetic event logs are generated with the PLG tool [65]. The traces

in the event logs can be clearly distinguished based on (a) edge types (loops,

skips, or choice), (b) length of the edge types (short, or long) and (c) the set

of activities (A1 = {A, ...,H}, or A2 = {K, ..., R}). To test different scenarios

for the application of similarity measures, we apply four different classifications

of the traces, resulting in four different event logs. In SynL1 the traces are

classified only according to the edge types, leading to three classes: loops, skips,

and choices. In each class the traces additionally differ in terms of (b) the length

of the edge types and (c) the set of activities involved. This scenario is closely

related to the example provided in Fig. 1, since in some cases the affiliation of

40

the traces with one class can only be detected based on the edge types.

In SynL2, the trace classes are additionally separated by the edge type

length, leading to six classes (loops-short, loops-long, skips-short, skips-long,

choices-short, choices-long). In each class the traces additionally differ in terms

of (c) the set of activities involved. In this way, the similarity measures are

additionally evaluated on the basis of their ability to distinguish between the

length of the edge types.

In SynL3, the trace classes are separated by the edge types and the set of

activities, also leading to six classes (loops-A1, loops-A2, skips-A1, skips-A2,

choices-A1, choices-A2). In each class the traces additionally differ in terms of

(b) length of the edge types. In this scenario, the effectiveness of the similarity

measures is evaluated according to their ability to differentiate between edge

types and distinct sets of activities.

In SynL4, an additional trace class is added to SynL1. This new class com-

prises traces that exhibit combinations of multiple edge types, resulting in four

distinct classes: loops, skips, choices, and mixed. In each class the traces addi-

tionally differ in terms of (b) length of the edge types and (c) the set of activ-

ities involved. Compared to SynL1, SynL4 presents a more realistic scenario,

enabling the evaluation of whether similarity measures can effectively identify

traces that incorporate heterogeneous edge types.

6.2.2. WABO and PO.

These event logs were originally published for BPI Challenges 2015 [66] and

2019 [67]. Both data sets are derived from real-world business processes. WABO

consists of five sublogs coming from five separate municipalities in the Nether-

lands, documenting their administration process for providing environmental

permissions. PO documents a purchase order handling process of a large multi-

national company in the Netherlands, which can be classified into four types

of flows. The classification of the traces in both cases is based on their pro-

cess structure, making them suitable for our evaluation and allowing us to test

whether graph-based features can also improve the similarity measurement of

41

traces in the context of business processes.

6.2.3. EyeT1 and EyT2.

The two event logs EyeT1 and EyeT2 contain eye tracking data, collected

during an experiment on process model comprehension [23, 24] using the eye-

tracking data collection tool EyeMind [68]. The data allows to analyze at which

point in time during the experiment a person was looking at a specific process

model element on a computer screen. This results in an event log, where each

trace reflects the number and order of elements that a person looked at during

a given comprehension task. Hence, the traces contain structural patterns,

such as loops, skips, and choices, depending on the order in which a person

looked at the different elements. 349 such traces could be recorded from 44

participants. The experiment is designed in such a way that each participant

has to answer eight different comprehension tasks that can be divided into two

complexity classes (low and high task complexity). In Schreiber et al. [24], the

authors showed that the participants exhibit different information search and

integration behaviors depending on the given tasks and its complexity, which

is also reflected in the recorded traces. We therefore create the two trace logs

EyeT1 and EyeT2 to evaluate how well the similarity measures can differentiate

(a) between traces belonging to the eight different task types (EyeT1) and (b)

between traces belonging to the two different task complexity classes (EyeT2).

6.3. Sampling Strategy

Due to the computational complexity of the evaluation measures, specifically

the Triplet evaluation measure with O(|L|3), we restrict the number of traces

per event log. This is in line with the comparative study on traces similarity

measures by Back and Simonson [14]. While the eye tracking event logs (EyeT1,

EyeT2) are sufficiently small for the evaluation, the synthetic event logs (SynL1,

SynL2, SynL3, SynL4) and the event logs derived from real-world business pro-

cesses (WABO, PO) require some additional sampling. To prevent a sampling

bias, traces are sampled randomly. Furthermore, they are sampled in such a

42

way that they are equally distributed among the classes, in order to ensure the

effectiveness of the evaluation measures (cf. Sect. 6.2).

6.4. Results

Fig. 4 provides an overview of the three calculated evaluation measures for

the similarity measures in Sect. 4.2 and the novel similarity measures proposed

in Sect. 5. Additionally, three similarity measures are included in the evaluation,

each computed as the cosine similarity between vector representations learned

using Trace2Vec [41] (as described in Sect. 3.1.2). These representations differ

in dimensionality, comprising vectors with 32 (T2V-32), 64 (T2V-64), and 128

(T2V-128) features, respectively.

Looking at the Triplet, which is the most elaborate evaluation measure in-

cluded in the evaluation (cf. Sect. 6.1), it can be stated that the novel distance

measures, marked in gray, consistently outperform the other similarity mea-

sures, except for the event log EyeT1. This observation is partially confirmed

by Nearest Neighbour and Precision@10.

It should be noted that, in particular, the commonly applied LD and N-LD

(cf. Sect. 3) are consistently outperformed by the other measures. The same

holds true for the measures based on Trace2Vec (T2V-32, T2V-64, and T2V-

128). It is also worth mentioning that the similarity measures based on 2-gram

(C2 and J2) consistently perform well across the evaluation measures, especially

for Precision@10.

It can also be stated that the aggregation of separate similarity measures

leads in several cases to an improvement of the similarity evaluation (indicated

by the underlined values in Fig. 4). This is particularly true for Agg(C1,C2) in

the case of the two administrative processes (WABO and PO). Again looking

at the Triplet, the similarity measures involving edge-type features perform in

particular well with respect to the synthetic event logs (SynL1, SynL2, SynL3,

SynL4) and EyeT2. This is also partially confirmed by Nearest Neighbour.

Regarding evaluation question 1, it can be stated that in terms of accuracy,

the proposed measures (Cg, Agg(C1, C2), Agg(C1,C2,Cg), Jg, Agg(J1, J2),

43

Figure 4: The tables show the calculated evaluation measures for the similarity

measures on the basis of eight different event logs. The proposed similarity mea-

sures based on the formal comparison in Sect. 5 are marked in gray. Values that

indicate best-performing similarity evaluations are marked in bold, performance

improvement due to aggregations are underlined.

44

Agg(J1,J2,Jg)) outperform the other trace similarity measures with respect to

the synthetic event logs (SynL1, SynL2, SynL3, and SynL4) based on all three

evaluation measures, except for SynL4 based on Precision@10. Furthermore, the

aggregation of 1-gram and 2-gram (Agg(C1,C2) and Agg(J1,J2)) consistently

outperform the other trace similarity measures on the business process event

logs (WABO and PO) across all four evaluation measures, except for PO based

on Precision@10.. For the user behavior processes (EyeT1 and EyeT2) the

measures J3 and Jg (excluding parallelism) achieved the best performance with

respect to the Triplet evaluation measure.

Regarding evaluation question 2, it can be stated that the high-level features

(edge-types and parallelism) lead to improvements in the similarity evaluation

in several cases. For the synthetic event logs (SynL1, SynL2, SynL3, and SynL4)

this is especially true with regard to Agg(J1,J2,Jg) when considering Triplet.

Furthermore, for the business process PO the additional consideration of high-

level features (including parallelism) could even improve similarity evaluation

when calculating Agg(J1,J2,Jg). Only for the user behavior processes (EyeT1

and EyeT2) no improvement could be observed, even though Jg (excluding par-

allelism) yielded the highest performance with respect to the Triplet evaluation

measure for EyeT2.

7. Discussion

The results confirm the comparative analyses in Sect. 4.2 and Sect. 5.3. The

evaluation across all event logs shows that the aggregation of distinct similarity

measures can substantially improve the similarity evaluation between the traces.

The evaluation further shows that the consideration of high-level structural

features can substantially improve the similarity evaluation between traces in

several cases, and therefore provides a validation of the measurement approach

proposed in Sect. 5.

Furthermore, the identified properties P1-P10 (cf. Table 3) help to better

evaluate trace similarity measures. More specifically, P5-P7 provide insights

45

on the content validity of similarity measures, i.e., to which extent they reflect

different structural features. This aspect has been largely neglected by existing

studies on trace similarity measures.

The empirical evaluation in Sect. 6 shows that the structural distinction be-

tween traces on the basis of activities (P5), directly-follows relations (P6), and

high-level structural features (P7) appears to be particularly valuable for (un-

structured) behavioral processes, as well as (structured) business processes. In

practice the proposed similarity measures could help to differentiate more nu-

anced structural similarities and differences between traces, which, subsequently

might improve the performance of downstream tasks, such as anomaly detection

and trace clustering. Moreover, the proposed aggregated measures potentially

provide more transparency, as similarities and differences can be attributed to

specific structural features. However, it should be noted that the aspect of

transparency has not been empirically examined within the scope of this study.

From a research perspective, our study suggests that an assessment of trace

similarity measures should not merely rely on empirical comparison, but should

also consider formal properties of these measures to gain a better understanding

of what trace features are respectively considered.

Integrating high-level structural features into the similarity comparison be-

tween traces opens up a variety of new opportunities for future research. It

allows investigating the role of structural features in more detail and could

therefore potentially improve a variety of process mining techniques, such as

trace clustering, conformance checking, event abstraction, event log sampling,

change point detection, and variety analysis (cf. Sect. 1).

The empirical evaluation further shows that there is not a single similarity

measure dominating the others. Rather, it is the case that event logs require

different similarity measures according to their structural features. One way to

solve this issue is to apply aggregation and assign different weights to the distinct

measures, focusing on different features. This can, for example, be solved by

using domain knowledge to assign appropriate weights. Another approach would

be to automatically assign weights based on feature learning [63, 41, 64].

46

When analyzing user behavior through data, e.g., based on eye-tracking,

edge types can provide better differentiation between traces that exhibit vari-

ous behavioral patterns, such as repetitive actions, skipping, or choices. This

differentiation can, for example, be useful in identifying whether a user is search-

ing for information or integrating it [23, 24].

7.1. Limitations

The evaluation stresses some limitations of the applied evaluation measures.

Nearest Neighbour and Precision@10 only consider a small number (respectively

two and ten) of the most similar data points within a class, thereby ignoring

the similarity between the rest of the class’s data points. This also explains the

relative similarity of the outcomes in comparison to Triplet, which offers greater

distinction among the considered similarity measures (cf. Fig. 4).

Moreover, due to the computational complexity of the evaluation measure

Triplet (with O(|L|3)) the evaluation contains only event logs with a relatively

small number of traces. This introduces some limitation regarding the gener-

alizability of the results. However, this concern is partially mitigated by the

diversity of event logs included in the evaluation, spanning a wide range of

structural trace characteristics based on synthetic processes, eye-tracking, and

real-world business processes.

Additionally, there exist some validity risk from the applied sampling of the

synthetic event logs (SynL1, SynL2, SynL3) and the event logs derived from real-

world business processes (WABO, PO). This risk is mitigated by the employed

sampling strategy, i.e., traces were randomly sampled in such a way that they

are equally distributed among the trace classes.

A further potential limitation arises from the extraction of the edge types

based on the transformation of the traces into a graph representation, which

inevitably leads to some abstraction of the process behavior. So far we have,

for example, not considered relative frequencies of the occurring sequences in

the traces, which could lead to some bias in the pairwise trace comparison. In

future work, graph-based features could be weighted according to their relative

47

frequency, thereby emphasizing the stochastic properties of the traces [6].

Similarly, aggregating activities into sets of parallel activities based on causal

relations (cf. Definition 2.10) introduces an abstraction of the trace struc-

ture. For example, when considering the trace σ1 = ⟨A,B,C,D,E⟩ with

R = {B||C,C||D} (as shown in Fig. 2), {B,C,D} is defined as a set of par-

allel activities within σ1, even though no direct parallel relation exists be-

tween B and D, i.e., the information regarding the causality between B and

D is lost. Similarly, the causality between B and D is ignored for the traces

σ2 = ⟨A,C,B,D,E⟩ and σ3 = ⟨A,B,D,C,E⟩. Addressing this limitation would

require refining the notion of a vertex in the trace graph (cf. Definition 2.11) to

represent more complex parallel structures than simple sets of activities. Nev-

ertheless, this abstraction is arguably reasonable, in order to detect additional

high-level structural features, such as loops, skips, and choices, which is for

example not possible based on instance graphs [17, 19].

Furthermore, deriving parallelism from causal relations between activities

is sensitive to noise in the event log, which may introduce incorrect directly-

follows relations. A common mitigation strategy is to apply data pre-processing

techniques to filter out noisy traces before deriving parallelism between activities

[17, 19]. An alternative approach would be to consider partially ordered traces,

assuming correctly recorded timestamps [58].

Finally, certain similarity measures proposed in the literature, specifically

optimal alignments [14] and generic edit distance [44], were excluded from the

comparison due to their computational infeasibility when applied to the eye-

tracking data. This limitation arises from the considerable length of these traces

and the increased number of distinct activities involved.

8. Conclusion and Future Work

In this paper, we show the relevance of different structural features for the

measurement of the similarity between two traces. We propose a novel ap-

proach to extract additional high-level structural features from the traces, re-

48

flecting loops, skips, choices, and parallelism. We further propose a set of novel

similarity measures, which incorporate these structural features. The formal

comparison in Sect. 5.3 and the evaluation in Sect. 6 show that these features

can improve the similarity measurement, without an increase in computational

time complexity.

As future work, we plan to further extend the proposed similarity measures,

such that they can incorporate additional process perspectives, such as resources

or data. For this purpose, the suggested graph-based approach could be em-

ployed on event knowledge graphs as detailed in [69], which encompass different

process perspectives beyond their structural properties.

Furthermore, it would be interesting to investigate how the identified struc-

tural trace features can improve the training of neural networks and thus im-

prove subsequent tasks, such as similarity measurement [41].

Declaration of Generative AI and AI-assisted technologies in the writ-

ing process. During the preparation of this work, the authors used ChatGPT

4o mini in order to polish sentences and ensure correct spelling. After using

this service, the authors reviewed and edited the content as needed and take

full responsibility for the content of the publication.

References

[1] M. Song, C. W. Günther, W. M. P. van der Aalst, Trace clustering in

process mining, in: Business Process Management Workshops: BPM 2008

International Workshops, Milano, Italy, September 1-4, 2008. Revised Pa-

pers 6, Springer, 2009, pp. 109–120.

[2] P. Delias, M. Doumpos, E. Grigoroudis, P. Manolitzas, N. Matsatsinis,

Supporting healthcare management decisions via robust clustering of event

logs, Knowledge-Based Systems 84 (2015) 203–213.

[3] M. Boltenhagen, T. Chatain, J. Carmona, Generalized alignment-based

trace clustering of process behavior, in: International Conference on Ap-

49

plications and Theory of Petri Nets and Concurrency, Springer, 2019, pp.

237–257.

[4] F. Zandkarimi, J.-R. Rehse, P. Soudmand, H. Hoehle, A generic framework

for trace clustering in process mining, in: 2020 2nd International Confer-

ence on Process Mining (ICPM), IEEE, 2020, pp. 177–184.

[5] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen, W. M.

van der Aalst, Alignment based precision checking, in: International con-

ference on business process management, Springer, 2012, pp. 137–149.

[6] S. J. Leemans, W. M. P. van der Aalst, T. Brockhoff, A. Polyvyanyy,

Stochastic process mining: Earth movers’ stochastic conformance, IS 102

(2021) 101724.

[7] R. J. C. Bose, W. M. P. van der Aalst, Abstractions in process mining:

A taxonomy of patterns, in: International Conference on Business Process

Management, Springer, 2009, pp. 159–175.

[8] N. Tax, N. Sidorova, R. Haakma, W. M. P. van der Aalst, Mining local

process models, Journal of Innovation in Digital Ecosystems 3 (2) (2016)

183–196.

[9] C. Diamantini, L. Genga, D. Potena, W. van der Aalst, Building instance

graphs for highly variable processes, Expert Systems with Applications 59

(2016) 101–118.

[10] M. Kabierski, H. L. Nguyen, L. Grunske, M. Weidlich, Sampling what

matters: relevance-guided sampling of event logs, in: 2021 3rd International

Conference on Process Mining (ICPM), IEEE, 2021, pp. 64–71.

[11] A. Burattin, H. A. López, L. Starklit, Uncovering change: A streaming

approach for declarative processes, in: International Conference on Process

Mining, Springer, 2022, pp. 158–170.

50

[12] C. O. Back, S. Debois, T. Slaats, Entropy as a measure of log variability,

Journal on Data Semantics 8 (2019) 129–156.

[13] C. Schreiber, A. Abbad-Andaloussi, Structural process variety and stan-

dardization, in: 2024 6th International Conference on Process Mining

(ICPM), IEEE, 2024, pp. 153–160.

[14] C. O. Back, J. G. Simonsen, Comparing trace similarity metrics across

logs and evaluation measures, in: International Conference on Advanced

Information Systems Engineering, Springer, 2023, pp. 226–242.

[15] V. I. Levenshtein, Binary codes capable of correcting deletions, insertions,

and reversals, in: Soviet physics doklady, Vol. 10, Soviet Union, 1966, pp.

707–710.

[16] S. B. Needleman, C. D. Wunsch, A general method applicable to the search

for similarities in the amino acid sequence of two proteins, Journal of molec-

ular biology 48 (3) (1970) 443–453.

[17] B. F. Van Dongen, W. M. P. van der Aalst, Multi-phase process mining:

Building instance graphs, in: Conceptual Modeling–ER 2004: 23rd Inter-

national Conference on Conceptual Modeling, Shanghai, China, November

8-12, 2004. Proceedings 23, Springer, 2004, pp. 362–376.

[18] F. Zerbato, R. Seiger, G. Di Federico, A. Burattin, B. Weber, Granularity

in process mining: Can we fix it?, in: International Workshop on BPM

Problems to Solve Before We Die, CEUR-WS, 2021, pp. 40–44.

[19] C. Diamantini, L. Genga, D. Potena, Behavioral process mining for un-

structured processes, Journal of Intelligent Information Systems 47 (2016)

5–32.

[20] F. Taymouri, M. La Rosa, M. Dumas, F. M. Maggi, Business process variant

analysis: Survey and classification, Knowledge-Based Systems 211 (2021)

106557.

51

[21] K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka,

J. Van de Weijer, Eye tracking: A comprehensive guide to methods and

measures, oup Oxford, 2011.

[22] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, R. Thomas, A

survey of sequential pattern mining, Data Science and Pattern Recognition

1 (1) (2017) 54–77.

[23] C. Schreiber, A. Abbad-Andaloussi, B. Weber, On the cognitive effects of

abstraction and fragmentation in modularized process models, in: Inter-

national Conference on Business Process Management, Springer, 2023, pp.

359–376.

[24] C. Schreiber, A. Abbad-Andaloussi, B. Weber, On the cognitive and be-

havioral effects of abstraction and fragmentation in modularized process

models, Information Systems 125 (2024) 102424.

[25] M. Franceschetti, A. Abbad-Andaloussi, C. Schreiber, H. A. López, B. We-

ber, Exploring the cognitive effects of ambiguity in process models, in: In-

ternational Conference on Business Process Management, Springer, 2024,

pp. 493–510.

[26] W. Van der Aalst, Process Mining: Data Science in Action, Springer,

Berlin, Heidelberg., 2016.

[27] B. Pentland, L. Ping, W. Kremser, T. Hærem, The dynamics of drift in

digitized processes, MIS quarterly.

[28] R. J. C. Bose, W. M. P. van der Aalst, Trace clustering based on conserved

patterns: Towards achieving better process models, in: Business Process

Management Workshops: BPM 2009 International Workshops, Ulm, Ger-

many, September 7, 2009. Revised Papers 7, Springer, 2010, pp. 170–181.

[29] M. Becker, R. Laue, A comparative survey of business process similarity

measures, Computers in Industry 63 (2) (2012) 148–167.

52

[30] R. Dijkman, M. Dumas, L. Garćıa-Bañuelos, Graph matching algorithms

for business process model similarity search, in: Business Process Manage-

ment: 7th International Conference, BPM 2009, Ulm, Germany, September

8-10, 2009. Proceedings 7, Springer, 2009, pp. 48–63.

[31] A. Burattin, Streaming process mining, in: Process Mining Handbook, Vol.

349, Springer Cham, 2022.

[32] W. M. P. van der Aalst, Object-centric process mining: dealing with di-

vergence and convergence in event data, in: Software Engineering and For-

mal Methods: 17th International Conference, SEFM 2019, Oslo, Norway,

September 18–20, 2019, Proceedings 17, Springer, 2019, pp. 3–25.

[33] J. N. van Detten, P. Schumacher, S. J. Leemans, A framework for advanced

case notions in object-centric process mining, in: International Conference

on Process Mining, Springer, 2024, pp. 402–414.

[34] J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, Mor-

gan Kaufmann Publishers, 2012.

[35] W. M. P. van der Aalst, Process mining: a 360 degree overview, in: Process

Mining Handbook, Springer, 2022, pp. 3–34.

[36] W. Van der Aalst, T. Weijters, L. Maruster, Workflow mining: Discovering

process models from event logs, IEEE transactions on knowledge and data

engineering 16 (9) (2004) 1128–1142.

[37] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to

algorithms, MIT press, 2022.

[38] D. Krantz, D. Luce, P. Suppes, A. Tversky, Foundations of measurement,

Vol. I: Additive and polynomial representations, New York Academic Press,

1971.

[39] J. Mendling, Metrics for process models: empirical foundations of verifi-

cation, error prediction, and guidelines for correctness, Vol. 6, Springer

Science & Business Media, 2008.

53

[40] G. R. Marczyk, D. DeMatteo, D. Festinger, Essentials of research design

and methodology, Vol. 1, John Wiley & Sons, 2005.

[41] P. De Koninck, S. vanden Broucke, J. De Weerdt, act2vec, trace2vec,

log2vec, and model2vec: Representation learning for business processes, in:

Business Process Management: 16th International Conference, BPM 2018,

Sydney, NSW, Australia, September 9–14, 2018, Proceedings 16, Springer,

2018, pp. 305–321.

[42] G. Wang, X. Zhang, S. Tang, H. Zheng, B. Y. Zhao, Unsupervised click-

stream clustering for user behavior analysis, in: Proceedings of the 2016

CHI conference on human factors in computing systems, 2016, pp. 225–236.

[43] R. Dijkman, M. Dumas, B. Van Dongen, R. Käärik, J. Mendling, Similarity

of business process models: Metrics and evaluation, Information Systems

36 (2) (2011) 498–516.

[44] R. J. C. Bose, W. M. P. van der Aalst, Context aware trace clustering:

Towards improving process mining results, in: proceedings of the 2009

SIAM International Conference on Data Mining, SIAM, 2009, pp. 401–412.

[45] R. Dewhurst, M. Nyström, H. Jarodzka, T. Foulsham, R. Johansson,

K. Holmqvist, It depends on how you look at it: Scanpath comparison in

multiple dimensions with multimatch, a vector-based approach, Behavior

research methods 44 (2012) 1079–1100.

[46] N. C. Anderson, F. Anderson, A. Kingstone, W. F. Bischof, A comparison

of scanpath comparison methods, Behavior research methods 47 (2015)

1377–1392.

[47] A. Schoknecht, T. Thaler, P. Fettke, A. Oberweis, R. Laue, Similarity of

business process models—a state-of-the-art analysis, ACM CSUR 50 (4)

(2017) 1–33.

[48] N. Tax, N. Sidorova, R. Haakma, W. M. P. van der Aalst, Event abstraction

for process mining using supervised learning techniques, in: Proceedings of

54

SAI Intelligent Systems Conference (IntelliSys) 2016: Volume 1, Springer,

2018, pp. 251–269.

[49] P. H. Sellers, On the theory and computation of evolutionary distances,

SIAM Journal on Applied Mathematics 26 (4) (1974) 787–793.

[50] M. Kunze, M. Weidlich, M. Weske, Behavioral similarity–a proper met-

ric, in: Business Process Management: 9th International Conference, BPM

2011, Clermont-Ferrand, France, August 30-September 2, 2011. Proceed-

ings 9, Springer, 2011, pp. 166–181.

[51] G. M. Tavares, R. S. Oyamada, S. B. Junior, P. Ceravolo, Trace encoding

in process mining: A survey and benchmarking, Engineering Applications

of Artificial Intelligence 126 (2023) 107028.

[52] J. Pflug, S. Rinderle-Ma, Process instance similarity: Potentials, metrics,

applications, in: On the Move to Meaningful Internet Systems: OTM 2016

Conferences, Springer, 2016, pp. 136–154.

[53] F. Emmert-Streib, M. Dehmer, Y. Shi, Fifty years of graph matching, net-

work alignment and network comparison, Information sciences 346 (2016)

180–197.

[54] M. Leemans, W. M. P. van der Aalst, Discovery of frequent episodes in

event logs, in: International symposium on data-driven process discovery

and analysis, Springer, 2014, pp. 1–31.

[55] A. Abbad Andaloussi, J. Buch-Lorentsen, H. A. López, T. Slaats, B. Weber,

Exploring the modeling of declarative processes using a hybrid approach,

in: International conference on conceptual modeling, Springer, 2019, pp.

162–170.

[56] A. Abbad Andaloussi, F. Zerbato, A. Burattin, T. Slaats, T. T. Hilde-

brandt, B. Weber, Exploring how users engage with hybrid process arti-

facts based on declarative process models: a behavioral analysis based on

55

eye-tracking and think-aloud, Software and Systems Modeling 20 (2021)

1437–1464.

[57] P. Bera, P. Soffer, J. Parsons, Using eye tracking to expose cognitive pro-

cesses in understanding conceptual models, MIS quarterly 43 (4) (2019)

1105–1126.

[58] S. J. Leemans, S. J. van Zelst, X. Lu, Partial-order-based process mining:

a survey and outlook, Knowledge and Information Systems 65 (1) (2023)

1–29.

[59] L. Yujian, L. Bo, A normalized levenshtein distance metric, IEEE transac-

tions on pattern analysis and machine intelligence 29 (6) (2007) 1091–1095.

[60] S. Kosub, A note on the triangle inequality for the jaccard distance, Pattern

Recognition Letters 120 (2019) 36–38.

[61] A. Levy, B. R. Shalom, M. Chalamish, A guide to similarity measures and

their data science applications, Journal of Big Data 12 (1) (2025) 188.

[62] H. Zha, J. Wang, L. Wen, C. Wang, J. Sun, A workflow net similarity

measure based on transition adjacency relations, in: Computers in Industry,

Vol. 61, Elsevier, 2010.

[63] A. Bellet, A. Habrard, M. Sebban, A survey on metric learning for feature

vectors and structured data, in: arXiv preprint arXiv:1306.6709, 2013.

[64] M. Kaya, H. Ş. Bilge, Deep metric learning: A survey, in: Symmetry,

Vol. 11, MDPI, 2019.

[65] A. Burattin, Plg2: Multiperspective process randomization with online and

offline simulations., in: BPM (Demos), Citeseer, 2016, pp. 1–6.

[66] B. F. van Dongen, Bpi challenge 2015, in: 4TU.ResearchData. dataset,

2015.

56

[67] B. F. van Dongen, Bpi challenge 2019, in: 4TU.ResearchData. dataset,

2019.

[68] A. Abbad-Andaloussi, D. Lübke, B. Weber, Conducting eye-tracking stud-

ies on large and interactive process models using eyemind, SoftwareX 24

(2023) 101564.

[69] D. Fahland, Process mining over multiple behavioral dimensions with event

knowledge graphs, in: Process Mining Handbook, Springer, 2022, pp. 274–

319.

57

	Introduction
	Preliminaries
	Related Work
	Trace Comparison
	Syntactic Similarity Measures
	Feature-based Similarity Measures
	Aggregation of Trace Similarity Values

	Model-based Similarity Measures
	Process Discovery

	Formal Comparison of Trace Similarity Measures
	Properties Related to Structure and Similarity
	Formal Comparison

	Similarity Measures Based on Graph-based Features
	Identifying Parallelism within Traces
	Incorporating Graph-based Features into Similarity Measures
	Step 1: Identifying Edge-types
	Step 2: Identifying the Length of Edge-types
	Step 3: Aggregating the Features

	Formal Comparison

	Evaluation
	Evaluation Measures
	Datasets
	SynL1, SynL2, SynL3, and SynL4.
	WABO and PO.
	EyeT1 and EyT2.

	Sampling Strategy
	Results

	Discussion
	Limitations

	Conclusion and Future Work

