Graph-based Similarity Measures for the Structural Comparison of

Process Traces

Clemens Schreiber® (clemens.schreiber@kit.edu), Amine Abbad-Andaloussi’®
(amine.abbad-andaloussi@unisg.ch), Andrea Burattin® (andbur@dtu.dk),
Andreas Oberweis® (andreas.oberweis@kit.edu), Barbara Weber?

(barbara.weber@Qunisg.ch),

¢ Karlsruhe Institute of Technology, Karlsruhe, Germany
b University of St. Gallen, St. Gallen, Switzerland

¢ Technical University of Denmark, Lyngby, Denmark

Corresponding Author:

Clemens Schreiber

Kaiserstrafle 89, 76133 Karlsruhe, Germany
Tel: +49 721 608-45688

Email: clemens.schreiber@kit.edu

Graph-based Similarity Measures for the Structural
Comparison of Process Traces

Clemens Schreiber®*, Amine Abbad-Andaloussi®, Andrea Burattin®,
Andreas Oberweis®, Barbara Weber

% Karlsruhe Institute of Technology, Karlsruhe, Germany
bUniversity of St. Gallen, St. Gallen, Switzerland
¢ Technical University of Denmark, Lyngby, Denmark

Abstract

Similarity measures are commonly applied for a variety of process mining tech-
niques, such as trace clustering, conformance checking, and event abstraction.
Yet, these measures generally fail to recognize similarity based on structural
process features, such as the order of activities, loops, skips, choices, and par-
allelism. To make this more explicit, we propose a set of properties that allow
to evaluate, what kind of structural features are reflected by a similarity mea-
sure. We further propose a novel approach leveraging existing graph-based
algorithms and instance graphs to extract high-level structural features (loops,
skips, choices, and parallelism) from traces, such that they can be used to extend
and improve existing similarity measures. These algorithms are well-established
in graph theory and can be computed efficiently. Finally, we provide an eval-
uation of the proposed approach based on synthetic and real-world datasets.
The evaluation provides evidence that the additional graph-based features can
substantially improve the similarity comparison of traces in several cases. This
applies in particular for the comparison of user behavior (e.g., based on eye-
tracking data) where structural features enable the detection of specific behav-

ioral patterns.

*Corresponding author.

Email addresses: clemens.schreiber@kit.edu (Clemens Schreiber),
amine.abbad-andaloussi@unisg.ch (Amine Abbad-Andaloussi), andbur@dtu.dk (Andrea
Burattin), andreas.oberweis@kit.edu (Andreas Oberweis), barbara.weber@unisg.ch
(Barbara Weber)

Preprint submitted to Information Systems January 8, 2026

Keywords: Process Mining, Similarity Measure, Trace Variant Analysis

1. Introduction

Pairwise comparison of process traces is essential for many process mining
tasks, such as trace clustering [1, 2, 3, 4], conformance checking [5, 6], process
discovery [7, 8, 9], event log sampling [10], change point detection [11], and
variability analysis [12, 13]. Although the literature comprises a wide range of
trace similarity measures (for an overview, see Back and Simonsen [14]), they
generally exhibit several limitations.

The first main limitation of existing trace similarity measures is their failure
to account for process patterns [7], such as: loops (i.e., the repeated execution
of activity sequences), choices (i.e., alternative activity sequences), skips (i.e.,
alternative activity sequences that involves the omission of activities), and par-
allelism (i.e., a timely overlap of activity sequences). One reason why these
patterns are neglected is that commonly applied similarity measures in process
mining, such as edit distance [3, 4, 6, 7, 12, 13] and sequence alignment [5, 8, 9],
originate from other research disciplines and were developed for different pur-
poses, such as the comparison of binary code [15] or the comparison of DNA
sequences [16]. Yet, the named process patterns are essential for the description
of process behavior and for the comparison of the traces’ structure [17, 7, 9, 3, 4].

A second shortcoming of existing similarity measures is that they do not
allow for an activity-agnostic comparison between traces. When, for example,
comparing the two traces 01 = (A, B, D, A,C,D, A, D) and 09 = (W, X, Z, W)Y,
Z,W,Z), none of the commonly applied similarity measures in process analysis
[14] would identify any similarity between them. However, as illustrated in
Fig. 1, the ordering and repetition of activities within the two traces reveal
three common process patterns: a loop, a choice, and a skip, each involving
activity sequences of identical length.

The structural comparison between traces, independent of their specific ac-

tivity labels, can be crucial for process analysis across various domains. In this

paper we focus on two particular types of processes: (unstructured) behavioral
processes [18, 19] and (well-structured) business processes [20]. Behavioral pro-
cesses document some user behavior, e.g., when interacting with an information
system through eye-tracking [21], or click-streams [22]. They commonly contain
minimal constraints on the ordering and number of activities. However, the
structural differences between the user behavior can provide valuable insights
for the analysis of behavioral processes. For example, a trace that represents
the scan path of a user’s visual fixations on a screen can be analyzed accord-
ing to the order and reoccurrence of these fixations. Here, the activities of the
trace are associated with visual fixations of a user on a particular area on a
screen, e.g., representing specific graphical elements [23, 24, 25]. The structural
analysis of a scan path can thereby reveal the cognitive processes of a user.
For example, the repeated returning of a user to a particular area on a screen,
manifested as loops within the scan path, might indicate high cognitive effort
due to the distribution of information [23, 24] or due to the ambiguity of the
information [25]. In order to obtain these insights, we are much more interested
in the structure of the user behavior, such as the returning to particular areas
on a screen, rather than what specific areas a user looked at, which is indicated
by the activity labels.

Business processes refer to administrative processes, which are more restric-
tive in terms of the number and order of activities than behavioral processes.
Here, the activity labels might differ especially across different business units
and countries of operation [20]. Therefore, the comparison of traces at a struc-
tural level can support the identification of deviations related to compliance
and performance, e.g., based on the rate of rework [26], as well as the level of
business process standardization [13]. Another related example is the analysis
of business process changes, commonly referred to as concept drift [26]. Busi-
ness process changes caused by the introduction of new digital technologies,
such as automated technology or Al-based technology, can significantly alter
the structural properties of a process, while at the same time introducing new

activities [27]. Similar to the analysis of behavioral processes, in all these cases

Figure 1: Graph representations of the traces oy = (A4,B,D,A,C,D, A, D)
(left side) and o9 = (W, X, Z, W)Y, Z, W, Z) (right side), where a blue edge
indicates a loop (denoted by L), a red edge indicates a choice (denoted by C),
and a green edge indicates a skip (denoted by S). The graph representations are
derived based on the directly-follows relations between the activities within the

traces.

the primary focus of the analysis lies on the structural characteristics of the
process execution rather than on the actual activities denoted by the activity
labels.

A third main shortcoming of existing trace similarity measures is that their
derived similarity values are commonly not transparent and are therefore not
explainable. This is the case when the structural features, i.e., process patterns,
of the traces are not made explicit. For example, when comparing the edit
distances d((A), (A, A, A)) and d({4), (4, X,Y)), both distances yield the same
value due to the insertions of two additional activities in the second trace.
However, in the first case the insertion is necessary due to a loop in the second
trace, while in the second case the insertion is necessary due to a sequence of
two alternative activities. This distinction is not considered by the similarity
measure.

However, such structural differences are for example relevant for the analysis
of user behavior, as they can potentially reveal different causes for comprehen-
sion issues, requiring specific user support [23, 24, 25]. Moreover, the trans-
parency of similarity measures can be essential to better understand anomalies
and deviations in business processes [28, 6].

Finally, a fourth shortcoming is that some similarity measures require high

computational effort [14, 29, 30], making them impractical to apply to large
event logs and in online settings, which require timely evaluation [31].

To address the four identified challenges, we first conduct a formal compara-
tive analysis of existing similarity measures, considering: (1) the extent to which
the measures capture different process patterns, (2) their ability to recognize
activity-agnostic similarity, (3) the degree of transparency and explainability
they offer, and (4) their computational efficiency. The findings indicate that
none of the existing measures adequately capture the structural similarities and
differences between traces, particularly with respect to the representation of
process patterns and the transparency of the similarity computation.

Subsequently, we introduce a novel feature-extraction approach based on
graph-algorithms, which allows to derive high-level structural trace features, i.e.,
loops, skips, and choices, including the length of the involved activity sequences.
Thus, enabling an activity-agnostic comparison between traces. Furthermore,
we leverage instance-graphs [17, 19] to also account for parallelism within traces.
The parallel execution of activity sequences is thereby assumed, when activities
occur in an interchangeable order within one or multiple traces of a business
process.

To account for the diverse structural characteristics of traces identified in the
formal comparison, we introduce four aggregated similarity measures. Each ag-
gregation combines distinct similarity measures that reflect distinct structural
aspects of the traces, i.e., activities, directly-follows relations, and high-level
structural features. The approach therefore enables a more comprehensive as-
sessment of structural similarities and differences between traces than existing
measures.

The subsequent empirical evaluation demonstrates that incorporating high-
level structural features, as well as aggregating different feature types, can sub-
stantially enhance the accuracy of trace similarity comparisons in various cases.
The empirical evaluation involves synthetic datasets, designed to exhibit di-
verse structural characteristics, and real-world datasets that represent business

processes and user behavior processes.

The main contributions of this paper are as follows:

1. We introduce ten formal properties, which allow for a comprehensive com-
parison of similarity measures, considering structural properties, activity-
agnostic behavior, transparency, and computational complexity.

2. Drawing upon the identified limitations of current trace similarity mea-
sures, we propose a novel feature-extraction approach based on graph
algorithms, which enables the detection of loops, skips, and choices, along
with their respective lengths within individual traces. Furthermore, we
leverage instance graphs to also enable the consideration of parallelism
within individual traces.

3. Furthermore, we consider different aggregations of similarity measures,
which allows to address structural similarities and differences between
traces in a more comprehensive way than previous measures.

4. Finally, we conduct a comprehensive empirical evaluation of the newly
introduced similarity measures. We thereby demonstrate the superiority
of these measures to existing once in terms of correctly detecting similarity
among traces, which share common structural characteristics. We thereby
extend the evaluation of existing studies on trace similarity measures, by

considering business processes, as well as behavioral processes.

In the remainder, Sect. 2 defines the basic notation and definitions used
throughout the paper. In Sect. 3 we introduce related work on trace similar-
ity measures, followed by a formal comparison of existing measures in Sect. 4.
Sect. 5 introduces the graph-based approach used to overcome the identified
shortcomings of the existing measures, followed by an empirical evaluation in

Sect. 6 and a discussion of the results in Sect. 7. Sect. 8 concludes the paper.

2. Preliminaries

Process mining is generally concerned with the analysis of processes based
on event logs. An event log comprises a set of process instances that follow

a specific business process or, more broadly, represent user interactions with

an information system. A process instance is represented as a trace, which is

defined as an ordered sequence of events.

Definition 2.1 (Event). Let A be the set of all possible activities, C the set of
all possible case identifiers, and T the set of all possible timestamps. An event
is a tuple e = (a, ¢, t) consisting of three attributes: an activity a € A, a case id

c € C, and a timestamp t € T. The event universe is denoted by € = AxXCxT.

We further define the following attribute-value mappings for an event e:
Hact(€) = a, #ease(€) = ¢, and #iime(e) = t. A process trace, henceforth
denoted as trace, can be derived by considering multiple events in an ordered

fashion based on their timestamp and case identifier.

Definition 2.2 (Trace, Event Log). A trace o. = (#act(€1), #act(€2), - - -,

Hact(en)) ={a1,a9,...,a,) € A* is an event sequence corresponding to the case
¢, where all events in 0. are mapped to an activity a € A, and the order of events
respects time, i.e., if e1,e3 € 0c and FHiime(€1) < H#time(€2), then ea £ e1. An

event log L is a set of traces over A*.

The length of a trace is denoted by |o.| = n and aj, represents the k" activity
in a trace o, with 1 < k <n.

It is assumed that each event possesses a unique case id, which enables
a comparison at trace level. Nevertheless, in reality it is also possible that an
event possesses multiple case ids, e.g., in the case of object-centric event logs [32].
In this case it is assumed that the similarity comparison is conducted among
identical case notions, e.g., defined by a specific object type [33]. Accordingly,
a similarity measures for two distinct process traces o;,0; € L is defined as

follows.

Definition 2.3 (Similarity Measure). A similarity measure s(o;,0;) = (do
h)(oi,0;) is a composition of a distance function d and a feature-extraction
function h. The function h defines a set of features for each trace o € L, such

that h : L — P(F), where F C F is a set of possible trace features and P(F')

denotes its power set. The function d defines a pairwise distance for all distinct

traces o;,0; € L according to the derived features, i.e., d : h(L) x h(L) — R .

A similarity measure s and an event log L form a metric space (L, s), if for

all 0;,0;, 01 € L the following properties hold:

Property P1. s(o;,0;) > 0 (non-negativity)

Property P2. s(0;,0;) = s(0j,0;) (symmetry)

Property P3. s(0;,0;) =04 0; = 0; (identity of indiscernibles)
Property P4. s(o;,01) < s(0;,0;) + s(oj,0k) (triangle-inequality).

In general, these are considered desirable properties for a similarity measure,
as they ensure its consistency and uniqueness [14, 29).

Furthermore, one can distinguish between syntactic and feature-based simi-
larity measures [1, 4, 14]. Syntactic similarity measures are calculated directly
using the traces without any transformation. In this case h can be considered as
an identity function. The pairwise distance d is calculated based on the number
of operations required to convert one trace to the other. We will consider edit

distance as one particular type of syntactic similarity measure [15].

Definition 2.4 (Edit Distance). The similarity measure sc(o;,0;) based on
the edit distance between two distinct traces o; and o; is determined by opti-
mizing a given cost function, taking into account the insertions, deletions, and

substitutions of activities necessary to convert one trace into the other.

Two particular variants of edit distance commonly applied in process analysis
are the Levenshtein distance and the normalized Levenshtein distance. The
Levenshtein distance assigns to each editing operation an equal cost of one.
The normalized Levenshtein distance additionally divides the derived editing
costs by the maximum possible number of required edits, i.e., maz(|o;|,|o;|).

Compared to syntactic similarity measures, feature-based similarity mea-
sures first require a transformation of the traces based on some function h(o;) =
F; before calculating a distance. There exist two types of feature-based similar-

ity measures: set comparison and vector-space embedding.

Definition 2.5 (Set Comparison). The similarity measure ss(0;,0;) based
on set comparison is directly calculated based on the extracted sets of features,

i.e., SS(O',',O']‘) = d(FZ,Fj)

One similarity measure based on set comparison considered in this work is
the Jaccard similarity [34], defined as the complement of the Jaccard coefficient,
which is the ratio of the size of the intersection of two sets (|F; N F}|) to the size
of their union (|F; U F}|).

In addition to feature extraction, vector-space embedding involves the trans-

formation of a derived set of trace features into a vector.

Definition 2.6 (Vector-space Embedding). The similarity measure s, (o;,0;)
based on vector-space embedding, involves the mapping of the trace feature into a
vector space v : F — R™ and the subsequent calculation of the distance between

the vectors, i.e., s,(04,0;) = (d o v)(F;, Fj).

One particular variant of similarity measure based on vector-space embed-
ding considered in this work is the cosine distance [34]. The cosine distance is
calculated as the complement of the dot product of two vectors (F;-F;), divided
by the product of their magnitudes (||F;||||F;]|).

In addition to the different distance functions for the calculation of feature-
based similarity, there exist also different types of feature-extraction functions h.

In process mining, trace features are commonly derived on the basis of n-grams.

Definition 2.7 (n-gram). n-gram is a feature-extraction function h, : A* —
P(F,) that takes a trace o and returns a set of n-grams of length n: h,(c) =
{<alv az, ..., an>a <a2a as, ..., an+1>v SR <a|o\—n+la Alo|—n+2) -+ a|o|>} forl<n <

|o].

Based on n-grams it is possible to capture structural properties of a trace o,
such as the activities in o (based on 1-gram), or the directly follows relations in
o (based on 2-gram).

However, identifying high-level structural features (such as loops, skips,

choices, and parallelism) requires the application of a discovery algorithm [35].

Process discovery is a method used to construct process models, i.e., graph-based
process representations, from event logs, such that high-level structural features
are revealed. While process discovery algorithms are commonly applied based
on event logs that contain multiple traces, it is also possible to derive graph
representations for single traces [17, 19].

To identify parallel executions of activities within traces, we adopt a process
discovery algorithm based on instance graphs [17, 19]. This algorithm infers
parallelism within a trace based on the ordering of activities within the entire
event log, that the trace belongs to. The algorithm first detects causal rela-
tions between activities, which then serve as the basis for identifying parallel
executions.

Following the definition of causal ordering by Dongen and van der Aalst [17],
causal relations can be derived by applying the feature-extraction functions 2-

gram (hg) and 3-gram (hg).

Definition 2.8 (Causal Relation). Let L be an event log over a set of Activi-
ties A. A causal relation between two activities a;,a; € A, denoted as a; — 1, a;,
1s defined in the following way:

- a; >, a; if and only if there is a trace o € L, such that (a;,a;) € ha(0),

- a;Apa; if and only if there is a trace o € L, such (a;,a;,ar) € hs(o) where
a; = ay and a; # a; and not a; >, a;,

-a; = aj if and only if a; >, a; and (a; 1 a; or a;Apaj or a;Apa;), or

a; = aj.

According to this definition, the causal relation between two activities a and
b, denoted as a —, b, is established if there exists a trace ¢ € L in which a
is directly followed by b, and b is never directly followed by a. However, this
definition may be problematic when a and b are involved in a loop of length two.
To address this, a —, b also holds true if a trace ¢ € L contains the sequence
(a,b,a) or (b,a,b), provided that neither a nor b can directly follow themselves.
If an activity a does directly follow itself in a trace, then the relation a = a

holds.

10

The definition of a causal relation is based on the assumption that if one ac-
tivity consistently precedes another, it is likely that a causal dependency exists
between them [36]. This assumption enables the identification of parallelism
within traces, even when those traces represent a strict total ordering of activi-

ties.

Definition 2.9 (Parallel Relation). Let o € L be a trace contained in L. A
parallel relation between two activities a;,a; € o, denoted as a;||aj, is defined
in the following way:

- a; >4 aj if and only if (a;,a;) € ha(o),

- ail|aj if and only if (a; > a; and a; A1 aj) or (aj >4 a; and a; A1 a;).

Following this definition, it is further possible to identify parallelism between

multiple activities.

Definition 2.10 (Set of Parallel Activities). Leto € L be a trace contained
in L and let \; = (a;, ...,an) € 0 denote an n-gram of activities contained in o.
The n-gram is considered to be a set of parallel activities, denoted by P;, if for

all 2-grams (ag, a;) € ha(N;) it holds that ayl||a;.

A set of parallel activities, contains a minimum of two activities and a maxi-
mum of |o| = n activities. Furthermore, the subscript i represents its relative po-
sition in relation to its proceeding and succeeding activities. For example, given
a set of parallel relations R = {B||C,C||D} and a trace o1 = (A, B,C, D, E)
then P, = {B,C, D} is considered as a set of parallel activities within oy. It is
also possible that a set of parallel activities occurs multiple times within a trace
leading to a loop as depicted in Fig. 2.

To account for additional high-level features that might occur within an
individual trace, i.e., loops, skips, or choices, we introduce the following graph-

based trace abstraction.

Definition 2.11 (Trace Graph). Let A = [a € o] denote the set of all activ-

ities in o, which are not part of a set of parallel activities and let P = [P; € o]

11

(Pt (©)

Figure 2: Graph representations of the traces o1 = (A, B,C, D, E) (left side)
and 09 = (A,B,C,D,E, A, B,C,D, E) (right side) with R = {B||C,C||D}.
The blue edge (denoted by L) indicates a loop between the activities A and E

in os.

denote the set of all sets of parallel activities in o. Furthermore, let V' be a set
of vertices and D C V x V' a set of edges. A trace graph is a directed graph
Go(V,D) of a trace o with:

-V=AUP, and

- the edges respect the order of activities and sets of parallel activities, i.e.,

D = {(v;,v;) e Vx Vi < j}.

By considering the order of activities and the sets of parallel activities within

a trace, it is possible to identify specific types of edges within a trace graph.

Definition 2.12 (Edge-type). Edge-type is a feature-extraction function h, :
A* — P(F.), where each feature f. = (w,l,d) € F., carries information regard-
ing the edge type w € {sequence, skip, choice,loop} and the edge length | € N of

an edge d € G.
The four different edge types are defined according to the order of the activities

within a trace when iteratively exploring the trace from its start activity a; to
its end activity a, '. Following the example of oy = (A, B, D, A,C,D, A, D)
depicted in Fig. 1, the edge types can be described as follows:

e The edge (a;,a;11) is of the type sequence, if the activities that a;; refers
to is explored for the first time when starting from the activity that a;
refers to. For oy this is for example the case for the egde connecting

activity A and activity B.

IThis approach relates to the depth-first search algorithm [37] as will be shown in Sect. 5.

12

e The edge (a;,a;+1) is of the type skip, if the activity that a; ;1 refers to has
occurred before a;, and can be reached from the activity that a; refers to
by an alternative (already explored) shortest path that does not include
a;. For oy this is the case for the egde connecting activity A and activity

D.

e The edge (a;,a;11) is of the type choice, if the activity that a;41 refers to
has occurred before the activity that a; refers to and a; and a;41 share
a common preceding activity, respectively connected based on distinct
paths. For o; this is the case for the egde connecting activity C' and

activity D with the common preceding activity A.

e The edge (a;,a;+1) is of the type loop, if the activity that a;y; refers to
has occurred before the activity that a; refers to and is not involved in
a relation of type skip nor choice. For o7 this is the case for the egde

connecting activity D and activity A.

These edge types represent four distinct structural features commonly ob-
served in process traces, i.e., the sequential order of activities (sequence), the
recurrence of activities (loop), the skipping of activities (skip), and the selection
of an alternative activity (choice). While the lengths of loops, skips, and choices
can differ (with a minimum length of one), the length of a sequence is always

one.

3. Related Work

A foundation for the measurement of trace similarity can be found in mea-
surement theory [38, 39]. A measurement can be formally defined as a mapping
from the domain of the empirical world to a numerical representation. A criti-
cal aspect in constructing such a mapping is its validity. Three key aspects are

commonly considered when assessing validity [39, 40]:

13

e (Construct validity: This evaluates whether a measurement accurately rep-
resents the theoretical construct it is intended to measure. For example,
the execution duration of a trace is generally not suitable for measuring

structural similarity.

e Content validity: This refers to the extent to which a measurement rep-
resents the full range of the empirical phenomenon being studied. For
example, to compare the structural similarity between two traces, a simi-

larity measure should reflect a range of structural features.

o Criterion validity: This is determined by the relationship between a mea-
sure and an external criterion known to be an accurate indicator of the em-
pirical phenomenon. For example, a structural similarity measure should
accurately reflect the similarity between traces according to some prede-
fined structural classification of these traces, e.g., indicating complex or

non-complex user behavior.

When it comes to the validity of existing similarity measures, one can make
the following observations. Regarding construct validity, several different fea-
tures have been discussed in the literature for the analysis of trace structure,
such as n-grams [1, 4, 10, 41, 7, 42], maximal repeat alphabets [28, 7], and even-
tually follows relationships between activities [2]. In this study, we additionally
consider edge-types and parallelism as structural features. These features re-
flect fundamental structural process properties in the context of user behavior
analysis [21, 42] and business process analysis [35, 20, 29, 7, 43].

The content validity of trace similarity measures has been largely neglected
in research, as these measures have primarily been considered in conjunction
with downstream tasks such as process discovery, trace clustering, or anomaly
detection [14]. However, it has been recognized that similarity measures origi-
nating from other research disciplines such as natural language processing, con-
trol theory, and bioinformatics fail to recognize process specific structural prop-

erties [14, 44]. To address this issue more systematically, we provide a formal

14

comparison of trace similarity measures in the following section, allowing us to
determine which specific structural features are reflected by each measure.

Criterion validity of trace similarity measures has been initially addressed
by Back and Simon [14]. We build on their evaluation approach, by addition-
ally introducing synthetic event logs, that allows a clear classification of traces
according to their structural properties. Additionally, we consider not only
business processes, but also user behavior processes, where the ground truth is
determined by the complexity of user behavior.

In general, one can distinguish between the measurement of process similar-
ity at an instance level [1, 4, 14, 41, 44, 45, 46] and at a model level [41, 29, 43,
47]. At the instance level, a similarity measure is directly calculated between
two traces. This approach is commonly applied for the analysis of business pro-
cesses [1, 14, 44] as well as behavioral processes [21, 42]. In business process
analysis, these measures are utilized, for example, in trace clustering or anomaly
detection. In user behavior analysis, these measures are applied, for example, in
the comparison of visual scanpaths, which are detected based on eye-tracking.
A scanpath can be considered as a process trace, which contains the order of a
user’s visual fixation points on a screen. By comparing the scanpaths, one can
identify the similarity in user behavior, e.g., when the users are solving tasks of
different complexity [23, 24].

At the model level, a similarity measure is calculated between two process
models, i.e., process graphs. This approach is commonly used for the analysis of
business processes, e.g., to measure the compliance between a reference and an
actual model [6], or to search for models in a repository [29]. The comparison
at the model level has the advantage that high-level structural features of the
process are explicit in the graph, which is not the case at the trace level. One
way to overcome this issue is to apply process discovery [35] to derive process
models from traces, which subsequently allow to extract additional structural
features for the trace comparison.

Thus, in this study we seek to combine both research approaches, based

on trace comparison (Sect. 3.1) and based on graph comparison (Sect. 3.2) by

15

leveraging process discovery (Sect. 3.3).

3.1. Trace Comparison

The measures used for process comparison at trace level can be classified as

syntactic and feature-based similarity measures [1, 45, 46, 14] 2.

8.1.1. Syntactic Similarity Measures

A commonly applied syntactic similarity measure in process analysis is edit
distance, which includes the two variants: Levenshtein distance and nor-
malized Levenshtein distance [6, 48, 7, 44, 45, 46]. An additional variant
of an edit distance is proposed by Bose and van der Aalst [44], where editing
costs are adjusted according to the context in which they occur. The cost values
are calculated on the basis of the relative frequency of activity pairs within the
traces. The approach thus does not explicitly consider structural features.

An alternative syntactic similarity measure is sequence alignment [10, 14,
20, 28, 45, 46]. Similarly to the edit distance, sequence alignment is calculated by
optimizing a given scoring function, taking into account operations necessary to
align one trace with the other. In general, edit distance and sequence alignment

yield equivalent outcomes (cf. Sellers [49]).

3.1.2. Feature-based Similarity Measures

A common approach for the calculation of feature-based similarity is the
transformation of traces into sets of n-grams [1, 48, 10, 20, 44, 50, 51]. However,
the length of n differs between the different studies. An issue is that long n-grams
(n > 2) can capture more complex structural properties, e.g. loops of length
> 2, but at the same time fail to capture structural properties in shorter n-grams
(n < 2). One solution is to aggregate similarity measures, considering n-grams

of different length. While Delias et al. [2] propose to combine 1 and 2-grams,

2Back and Simonsen [14] use the distinction between syntactic similarity measures and
vector-space embedding. Our distinction is more generic, since we also include feature-based

similarity measures that do not depend on vector-space embedding, such as Jaccard similarity.

16

Back et al. [12] propose to combine all possible substrings of a trace, from length
one to length n = min(|o;,|o;|). However, this approach is computationally
expensive and also does not differentiate between higher-level structural features
such as loops, skips, and choices.

An alternative to trace comparison based on n-grams is the comparison based
on sequential patterns [7], i.e., ordered sequences of activities that occur
repeatedly within a trace. Sequential pattern mining algorithms are commonly
applied in a variety of domains, such as bioinformatics, e-learning, market basket
analysis, and click-stream analysis of webpages [22]. Although there exist a
vast number of sequential pattern mining algorithms in the literature (for an
overview, see Fournier-Viger et al. [22]), they are not commonly applied in the
context of process analysis. The comparative study by Back and Simonsen [14]
showed that similarity measures based on sequential patterns do not perform as
well as other measures. One reason for this could be that the algorithms detect
very detailed sequential patterns that are specific to single traces, and thereby
fail to capture structural features that are common among multiple traces. We
therefore restrict our analysis to similarity measures using 1-grams and 2-grams.

Beyond the structural trace characteristics, there are additional features
that can be extracted from a trace and used for comparison. One such feature
is the relative frequency of n-grams within a trace, which can be captured by
eventually-follows relations between the activities. Delias et al. [2] propose
an aggregated similarity measure based on cosine similarity, considering 1-grams
and eventually-follows relations. According to the study by Back et al. [12] this
measure yields a particularly high performance for a number of different event
logs. The measurement approach is therefore also included in our analysis.

Additionally, traces can be compared not only in terms of structural fea-
tures, but also based on features representing different process perspectives.
For business processes, this often includes performance and resource attributes
corresponding to events in a trace [48, 10, 20, 52]. For behavioral analysis based
on scanpaths this often includes the position and duration of a visual fixation

on a screen [45, 46]. However, for this study, we will only consider trace simi-

17

larity measures on the basis of structural properties, also commonly defined as
control-flow perspective.

Finally, for the calculation of a similarity value based on features, exist-
ing studies either use vector space embedding [1, 4, 44] or set compari-
son [1, 10, 11, 50]. Vector-space embedding involves the comparison of trace
features represented in a vector space, whereas set comparison involves the direct
comparison between sets of features (cf. Sect. 2). To the best of our knowledge,
there exists no study with a direct comparison of the two approaches.

There exist different methods for representing a trace in vector space. A
commonly applied method is to construct a trace vector by evaluating the fre-
quency of specific trace features [1, 4, 44]. Another alternative method involves
employing neural networks [20, 41, 51]. Neural networks thereby learn a vector
space representation for a trace based on a set of training data.

However, neural network-based approaches exhibit three key limitations in
the context of structural trace similarity measurement. First, they require la-
beled training data, which may not always be readily available. Second, the
resulting vector representations are typically opaque, making it difficult to inter-
pret the learned features and their associated weights [41]. Third, the similarity
outcomes are sensitive to the choice of neural network architecture (see [51] for
an overview), as well as to several parameters, including the selection of input
features and the dimensionality of the output vectors.

To the best of our knowledge, these limitations have not yet been systemati-
cally investigated in the context of trace similarity measurement. Nevertheless,
for the purpose of empirical evaluation (cf. Sect. 6.4), we include a neural
network-based representation using the Trace2Vec architecture and parameter

configuration as proposed by De Koninck et al. [41].

8.1.8. Aggregation of Trace Similarity Values
Building on feature-based similarity measures, a common approach to im-
prove the outcome of the structural comparison between traces, is the aggrega-

tion of multiple distinct similarity measures, which reflect different structural

18

J1 J2 J1 4+ J2

8(0'1:<A,B,C,D>,0'2:<A7B7C,D>) 0 0 0
s(01=(A,B,C,D),0»=(C,D,A,B)) 0 § 3
8(0’1=<A,B,C,D>,O'2:<VV,X,Y,Z>) 1 1 2

Table 1: Example for the aggregation of the two saperate similarity values J1
(Jaccard similarity based on 1-gram) and J2 (Jaccard similarity based on 2-

gram).

properties of the traces [2, 11, 50]. This approach allows to combine different
types of feature, such as n-grams of different length, in order to consider struc-
tural trace similarities and differences in a more comprehensive way. A simple
example, for the aggregation of two similarity values based on l-grams (the
set of activities) and 2-grams (the set of directly-follows relations) as proposed
by Burattin et al. [11] is shown in Table 1. Other proposed aggregations in-
volve the combination of 1-grams and eventually-follows relations [2], and the
combination of different order relations between activities, i.e., directly-follows
relations, exclusiveness, and parallelism [50]. The separate values are thereby
either calculated based on Jaccard similarity [11, 50] or cosine distance [2].

The proposed aggregations, always involve the aggregation according to the
weighted sum of the considered similarity measures. This allows to weight fea-
ture types, according to the context in which the measurement is applied [2,
11, 50]. These weights can either by assigned randomly [50], according to some
heuristic [2], or by solving an optimization problem, e.g., to find an optimal
clustering of traces [11].

In Sect. 5, we extend existing aggregation approaches by combining trace
similarity measures that account for activities, directly-follows relations, and
high-level structural features. While context-specific weighting of these compo-
nents could potentially improve the accuracy of the aggregated measures, its
definition lies beyond the scope of this work. Accordingly, all distinct measures

are weighted equally.

19

8.2. Model-based Similarity Measures

The measures used for process comparison at model level commonly lever-
age structural features, which are explicit in the models (for an overview, see
[29, 43, 47]). These measures focus on the comparison of process model ele-
ments, such as node types and edges. Their outcome depends on the labeling of
the nodes and edges, as well as the applied modeling language. Other measures
focus only on the comparison of the graph structure, without considering spe-
cific process model elements (for an overview on graph similarity measures, see
Emmert-Streib et al. [53]). However, these measures do not reflect the higher-
level structural features (loops, skips, and choices), which are an important
aspect of process analysis.

Finally, some measures are based on the comparison of sets of traces which
can be derived from the execution of process models, such as trace align-
ments [6]. These measures are similar to those once proposed for trace com-
parison (Sect. 3.1), except that they focus on the comparison of sets that con-
tain multiple traces. These measures also fail to capture higher-level structural
features of the traces and therefore provide little explanation for the derived
similarity values.

Overall, it can be stated that the similarity measures developed for pro-
cess comparison at model level have several shortcomings when applied for the
comparison at trace level, i.e., the dependency on specific modeling languages,
the comparison between sets of traces rather than single traces, and the failure
to consider high-level structural features. To overcome these shortcomings, we
propose a similarity comparison based on trace graphs (cf. Sect. 2). Deriving
a respective trace graph for a trace requires some form of abstraction, which is

commonly achieved based on process discovery.

3.3. Process Discovery

Process discovery can be seen as a way to derive structural features from a
set of traces. There exist several process discovery algorithms that are capa-

ble of deriving sequential patterns [19, 17, 54] and non-sequential patterns [8],

20

which represent reoccurring structural properties within an event log. However,
these algorithms are based on the assumption that the process structure can be
abstracted from multiple distinct traces, that arise from multiple executions of
the same process. This generally involves a high level of abstraction in order
to generate comprehensible graphical process representations. Some of these
algorithms thereby focus only on the detection of frequently reoccurring pat-
terns and neglect non-frequent once [54, 8]. Thus, the detection of all process
patterns contained in a single trace is not guaranteed. Furthermore, some of the
discovery algorithms focus on the discovery of only a single type of pattern, such
as the parallel execution of activities, as in the case of instance graphs [17, 19],
and frequent episodes [54].

In particularly, parallelism requires a high level of abstraction, since the
number of possible orderings of activities increases exponentially with the num-
ber of activities that can be executed in parallel. This makes it difficult to detect
parallelism based on a single trace.

Furthermore, due to the abstraction, more fine-granular structural properties
are ignored. E.g., based on o4y = (A, B,C, D, A, C, B, D), a process discovery al-
gorithm, such as the local process model miner [8], would assume that activities
B and C can be executed in parallel, suggesting that the structure of oy equals
the structure of o9 = (A,C, B, D, A, B,C, D). However, this can be particularly
misleading for the comparison of traces describing user behavior [55, 56]. For ex-
ample, the particular order of clicks can be an indicator for different approaches
to process modeling [55], and the order of visual fixations on a screen can be an
indicator for exploratory or goal oriented behavior [56]. Different behaviors can
thereby be associated with different cognitive processes of a user [24, 25, 57],
which require different interpretations and potentially different user support.

Nevertheless, parallelism has been consistently considered as a relevant struc-
tural feature in the context of business processes [17, 36, 19, 17, 54, 8, 35, 58].
We therefore consider parallelism as an additional high-level feature for the
comparison of the structural similarity between traces in the context of busi-

ness processes. To discover parallelism within a single trace, we leverage a

21

discovery algorithm initially proposed by van Dongen and van der Aalst [17],
which explicitly focuses on the structural analysis of single traces. Furthermore,
the algorithm has been successfully applied in the context of business process
analysis [19]. An additional advantage of the algorithm is its assumption of a
strict total order of activities within a trace, which eliminates the need for par-
tial ordering, i.e., the documentation of overlapping time intervals, to identify
parallelism [58].

To better distinguish which similarity aspects are considered by different
similarity measures, especially with respect to structural trace features, we pro-
vide a formal comparison on the basis of several measurement properties in the

following section.

4. Formal Comparison of Trace Similarity Measures

For the formal comparison of trace similarity measures, we propose ten de-
sirable properties. These include the already introduced metric properties in
Sect. 2 (P1-P4), properties concerning the structural trace features (P5-P7), as
well as general similarity properties (P8-P10).

4.1. Properties Related to Structure and Similarity

Existing studies on trace similarity measures [14, 41, 28, 44] show that trace
similarity measures perform differently depending on the characteristics of an
event log, such as the number of activities, length of traces, and number of
trace classes. While this event log perspective provides some insights into the
applicability of similarity measures, it does not consider how these measures
reflect specific trace characteristics, such as structural features. To solve this
issue, we identify three desirable properties a similarity measure should have, in
order to reflect the traces’ structure. These properties build on the assumption
that a similarity measure should be monotonically increasing with respect to
the number of structural differences between traces. We consider three types of

structural differences based on (1) activities, (2) directly-follows relations, and

22

(3) high-level structural features (loops, skips, and choices). These three types
of structural features provide a comprehensive description of the trace structure
and are commonly deemed relevant in the literature [35, 20, 29, 43]. It is worth
noting that parallelism, which is also commonly deemed a relevant high-level
structural feature in the literature [17, 36, 19, 17, 54, 8, 35, 58] is implicitly
captured through differences based on directly-follows relations.

The first structural property refers to the differences among the activities.
A similarity measure should be strictly increasing with respect to differences in
the number of activities. This is based on the intuitive notion that the more
distinct the respective sets of activities, the greater the dissimilarity between
the traces. For comparison of the dissimilarity between two sets, we use their
symmetric difference F;AF; = (F; UF;\ F;NF;). The set of activities contained
within a trace can be derived according to the feature-extraction function based
on l-gram, i.e., hi(o;) = Fj 1.
Property P5. The similarity measure is strictly increasing with an increase
in the number of dissimilar activities between two traces, i.e.: s(F;1,F;1) <
s(Fiq, Fin) for all |[F; 1 AF; 1| < |Fj1AFq].
Looking at the traces g, o3 and o4 depicted in Fig. 3, according to Property
P5 we would expect s(0g,03) < s(0g,04) since the sets of activities contained

in 09 and o4 are more distinct than it is the case for oy and o3.

o0 =(4,B,C,D)

Ond0p 00

o3 =(C,D, A, B) o4 = (A, X,Y,D) o5 = (C, A, D, B)
OO0 0 OO0 O ONNO 020520,
=(A,B,B,C,C,D) =(A,B,C,D, A,D) =(A,B,D,A,C,D)

@»L'»o ép

Figure 3: Different traces and their representation as trace graph.

23

The second structural property refers to the differences among the directly-
follows relations. A similarity measure should be strictly increasing with respect
to the differences in the number of directly-follows relations. This is based
on the intuitive notion that the more distinct the ordering of activities, with
respect to their directly-follows relations, the greater the dissimilarity between
the traces. The set of directly-follows relations contained within a trace can
be derived according to the feature-extraction function based on 2-gram, i.e.,
ha(o;) = Fi 0.

Property P6. The similarity measure is strictly increasing with an increase
i the number of dissimilar directly-follows relations between two traces, i.e.:

$(F; 2, Fj2) < s(Fj 2, Fi2) for all |F; 2 AFj 2| < |F; 2AFy o]
Looking at the traces og, o3 and o5 depicted in Fig. 3, according to Property P6
we would expect s(09,03) < s(00,05), since the sets of directly-follows relations
contained in ¢ and o5 are more distinct than it is the case for g9 and o3.

In addition to the set of activities and their relative order, a similarity mea-
sure should also consider high-level structural features of the traces on the basis
of edge-types (cf., Def. 2.12). The set of edge-types contained within a trace

can be derived according to the feature-extraction function hei(o;) = Fj e

Property P7. The similarity measure is strictly increasing with an increase
in the number of dissimilar edge-types between two traces, i.e.: s(Fjet, Fjet) <
S(Fj ety Fet) for all |F; ot AFj | < |Fy et AFg et

Looking at the traces depicted in Fig. 3, according to Property P7 we would
expect s(0g,03) < s(0p,06) due to the loop in og. Similarly we would expect
s(09,03) < s(0g,07) due to the loop and skip in o7, and s(og, 03) < s(0g, 08)
due to the loop and choice in og.

In addition to the structure-related properties P5-P7, we define three ad-
ditional properties related to general similarity considerations. A trace simi-
larity measure should also consider the overall size of the features contained
in the traces. For example, the similarity between o9 = (A, B,C,D) and

o9 = (A, B,C, D, X) should be considered to be greater than between o9 = (A)

24

and 019 = (A, X), although in both cases the traces differ only based on a single
activity. Thus, a new feature should contribute less to the dissimilarity between
two traces, the larger the overall set of features contained in both traces. This

property is also known as submodularity.

Property P8. For all (F; UF;) C (Fy U F}) and f ¢ Fi, F; we have that
s(Fy, F; U f) — s(Fy, Fy) > s(Fy, Fi U f) — s(Fg, F).

However, this property only considers the overall set of features contained
in the traces, but not the ratio between similar and dissimilar features. From
a process analysis perspective, Becker and Laue [29] argue that a similarity
measure should take into account commonalities, as well as differences between

the traces.

Property P9. A similarity measure should consider both commonalities F;NF}

and differences F; AF; between two traces.

Finally, we also consider the computational costs of the similarity measures
to ensure that they can be calculated for large event logs and in online settings
(cf. Sect. 1), which was also proposed by Becker and Laue [29] as a relevant
property for the comparison of similarity measures.

Property P10. The similarity measure can be calculated efficiently.
Table 2 provides an overview of all desirable properties for trace similarity

measures, including the metric properties defined in Sect. 2.

P1 non-negativity
P2 Symmetry
Metric
P3 Identity of indiscernibles

P4 Triangle-inequality

P5 Strict monotonicity with an increase in the number of dissimilar activities
Structure P6 Strict monotonicity with an increase in the number of dissimilar directly-follows relations

P7 Strict monotonicity with an increase in the number of dissimilar edge types

P8 Submodularity
Similarity P9 Consideration of commonalities and differences

P10 Computational efficiency

Table 2: Overview of the desirable properties for similarity measures.

25

4.2. Formal Comparison

Based on the defined properties in Table 2 we will now provide a comparison
of the trace similarity measures shown in Table 3. One main criterion for select-
ing these measures is their ability to represent structural features (cf. Sect. 3).
Furthermore, we consider similarity measures, which are commonly applied in
the literature (cf. Sect. 3) and can be computed with reasonable computational

effort in the context of both behavioral processes and business processes.

Type Measure Label

Syntactic Levenshtein distance LD
Normalized Levenshtein distance N-LD
Euclidean similarity based on MR EMR
Cosine similarity based on MR CMR
Jaccard similarity based on MR JMR
Eventually-Follows EF

Feature-based Euclidean similarity based on 1-gram | E1

Vector-space embedding | Euclidean similarity based on 2-gram | E2

Euclidean similarity based on 3-gram | E3

Cosine similarity based on 1-gram Cl1

Cosine similarity based on 2-gram C2

Cosine similarity based on 3-gram C3

Jaccard similarity based on 1-gram J1
Feature-based

Jaccard similarity based on 2-gram J2
Set comparison

Jaccard similarity based on 3-gram J3

Table 3: Selection of similarity measures.

To investigate whether the selected similarity measures reflect the structural
properties defined by P5-P7, we calculate the respective similarity values be-
tween oy and o3 — og that are shown in Fig. 3. The traces differ according to
the activities, the order of activities, and high-level structural features. For a
measure to accurately distinguish between traces based on the number of ac-
tivities (P5), it should satisfy the condition that s(og, 03) < s(09,04), since the
sets of activities that can be extracted from oy and o3 are more similar com-

pared to those derived from oy and o4. Similarly, for a measure to accurately

26

s(00,03) | s(o0,04) | s(00,05) | s(oo,06) s(co,07) s(o0,08)
LD 4.000 2.000 4.000 2.000 2.000 2.000
N-LD 1.000 0.500 1.000 0.333 0.333 0.333
EMR 0.000 0.000 0.000 1.414 1.414 1.414
CMR 0.000 0.000 0.000 0.000 0.000 0.000
JMR 0.000 0.000 0.000 0.000 0.000 0.000
EF 0.179 0.150 0.299 0.169 0.072 0.113
E1l 0.000 2.000 0.000 1.414 1.414 1.414
E2 2.449 2.449 3.162 1.414 1.414 2.000
E3 2.828 2.828 2.828 2.449 2.000 2.449
C1 0.000 0.500 0.000 0.051 0.051 0.051
C2 0.600 0.600 1.000 0.155 0.155 0.324
C3 1.000 1.000 1.000 0.592 0.388 0.592
J1 0.000 0.667 0.000 0.000 0.000 0.000
J2 0.750 0.750 1.000 0.286 0.286 0.500
J3 1.000 1.000 1.000 0.750 0.571 0.75

Table 4: Calculated similarity values for the pairwise comparison between oy
and o3 — 0g, where s(0y, 03) is considered as baseline. According to the defined
properties P5-P7, s(og, 04) should reflect an increase in the number of activities
(P5), s(00, 05) should reflect an increase in the number directly-follows relations
(P6), and s(og, 06—g) should reflect an increase in the number of edge-types (P7).
Values that are less than or equal to s(og, 03) indicate a violation of one of the

defined properties P5-P7 and are highlighted in gray.

distinguish between traces based on the number directly-follows relations (P6)
it should hold that s(og,03) < s(0g,05). Finally, for a measure to accurately
distinguish between traces based on the of number of edge-types it should hold
that s(cg,03) < s(00,06—g). Table 4 shows all calculated similarity values. All
similarity values that are less than or equal to s(og, 03) indicate a violation of
one of the defined properties P5-P7 and are highlighted in gray. The results of
the calculated similarity values are summarized in Table 5.

Table 5 provides an overview of the considered similarity measures with an

indication of whether they adhere to the defined properties P1-P10. Regarding

27

Metric Structure Similarity

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

LD yes yes yes yes |mno mno no |no mno O(loy]-|o2])
N-LD | yes yes yes mo |no no no |no mno O(loy|-|oz])
EMR | yes yes yes yes|no mno yes |mno yes O(FyrUFjmr|)
CMR | yes yes yes mo |no mno mno |no yes O(F;yrUZF;ug|)
JMR | yes yes yes yes | no mno mno |yes yes O(FyrUZF;ur|)

EF yes yes yes mo | no yes mno | no yes O(|F;2ULF;js|)
El yes yes yes yes |yes no yes |mno yes O(F;1UF;])
E2 yes yes yes yes | no yes no |no yes O(F U F] 2)
E3 yes yes yes yes |no mno mno |no yes O(|F;3UF;3|)
C1 yes yes yes mno | yes no yes |no yes O(|F;1UFji|)
C2 yes yes yes mno |no yes no |no yes O(F2U FJ 2])
C3 yes yes yes mo |no mno mno |no yes O(F;3UF;3|)
J1 yes yes yes yes|yes no mno |yes yes O(|F;;UFj)
J2 yes yes yes yes | mno yes no |yes yes O(|F;2UFj2l)
J3 yes yes yes yes | no mno mno |yes yes O(|F;3UFj3])

Table 5: Comparison between similarity measures based on the identified desir-

able properties P1 — P10.

the metric properties (P1-P4) it can be stated that the Levenshtein distance
(LD), as well as the measures based on Jaccard similarity (JMR, J1,J2, and
J3) and based on Euclidean similarity (EMR, E1, E2, and E3) adhere to the
four metric properties (cf. Yujian and Bo [59], Kosub [60]). The normalized
Levenshtein distance (N-LD) and the measures based on cosine similarity (CMR,
EF, C1, C2, and C3) cannot be considered a metric since they violate triangle-
inequality (cf. Yujian and Bo [59], Han et al. [34]).

Regarding the structure-related properties (P5-P7), it can be stated that
none of the measures adheres to all defined properties. Only the measures
based on 1-gram (E1, C1, and J1) correctly evaluate the dissimilarity between
the number of activities (P5). Furthermore, only the measures involving 2-gram
(EF, E2, C2, and J2) correctly evaluate the dissimilarity between the directly-
follows relations (P6). Additionally, the measures that also reflect the relative

frequencies of the activities within the traces (EMR, E1, C1) correctly evaluate

28

the dissimilarity between the edge-types (P6).

Regarding the general similarity properties (P8-P10) it can be stated that
only measures based on Jaccard similarity (JMR, J1, J2, and J3) satisfy sub-
modularity (P8), which is characterized by the diminishing returns condition:
for any sets A C B C V and element « € V'\ B, the marginal gain from adding x
to A is at least as large as adding it to B (for a formal proof see Kosub [60]). In
contrast, the remaining measures do not exhibit submodularity. Specifically, the
measures based on Levenshtein distance (LD and N-LD) fail to account for the
cardinality of the feature set, which is essential for satisfying the diminishing
returns property. Furthermore, measures based on cosine similarity and Eu-
clidean similarity are inherently geometric and depend on the relative positions
of feature vectors in a continuous space [61]. These measures do not define set
functions over discrete subsets and do not satisfy the submodularity condition,
as the returns are not guaranteed to decrease with increasing set size.

It can be further stated that all similarity measures, except those based on
Levenshtein distance (LD and N-LD), account for both commonalities and dif-

ferences between traces, as required by property (P9) [29]. In particular, the

|[ANB| _ |AAB|

A0B| = [4up] > Where

Jaccard similarity can be reformulated as J(A,B) =1 —

the numerator |[AAB| captures the symmetric difference, and the denomina-
tor |A U B| reflects the total number of distinct elements, encompassing both
shared and non-shared features [60]. Similarly, cosine similarity and Euclidean
distance are computed based on the relative positions of feature vectors in a
continuous space, where both shared and non-shared features influence the re-
sulting values [61]. These measures inherently incorporate both overlap and
divergence in feature representation. In contrast, LD and N-LD focus solely on
the edit operations required to transform one trace into another, without ex-
plicitly considering the set of shared features [15], and therefore do not satisfy
(P9).

Finally, it can be stated that all similarity measures can be calculated in
linear time (P10), depending on the length of the traces or the respective sets

of features.

29

In conclusion, only Jaccard similarity measures (J1 and J2) can be consid-
ered as a proper metric (P1-P4), satisfying submodularity (P8) and recognizing
dissimilarities and similarities between traces (P9). Furthermore, none of the
similarity measures considered correctly evaluates all structural dissimilarities
between the traces (P5-P7). In the following section, we propose a novel ap-
proach to solve this problem by incorporating different structural features into

the similarity evaluation.

5. Similarity Measures Based on Graph-based Features

To address the limitations of existing trace similarity measures identified in
the previous chapter, we propose the integration of high-level structural fea-
tures into the comparison of trace similarity. Specifically, we introduce a novel
feature extraction approach based on graph algorithms, which enables the iden-
tification of loops, skips, and choices within individual traces. In addition, we
leverage instance graphs [17, 19] to detect parallelism by analyzing directly-
follows relations across multiple traces. Building on the aggregation approach
identified in the literature (cf. Sect. 3.1.3), we further present four aggregated
similarity measures that incorporate at least two of the structural dimensions
considered in the previous chapter: activities, directly-follows relations, and
high-level structural features. A formal analysis of the introduced measures in
this section, shows that the high-level structural features and the aggregation

can indeed lead to a more complete comparison of the traces’ structure.

5.1. Identifying Parallelism within Traces

As discussed in Sect. 3.1.2, parallelism between activities is commonly re-
garded as a key structural feature in traces representing business processes. In
contrast, user behavior processes typically exhibit strictly sequential execution
and generally lack parallel activity patterns (cf. Sect. 1). Therefore, parallelism
is treated as an optional high-level feature and is only considered for traces that

represent business processes.

30

According to Definition 2.9, parallel relations between activities are derived
by identifying all directly-follows relations (i.e., 2-grams) within a trace o € L
and all causal relations within the event log L. Once parallel relations have been
established, sets of parallel activities (cf. Definition 2.10) can be derived, which

can then be used for the construction of trace graphs (cf. Definition 2.11).

5.2. Incorporating Graph-based Features into Similarity Measures

Identifying loops, skips, and choices within a trace requires the transforma-
tion of a trace into a trace graph G(A, D) (cf. Sect. 2). This can be achieved
by deriving an adjacency list from a trace. In an adjacency list, each vertex
a € A is linked to a list providing information of all neighboring vertices con-
nected by an edge d € D [37]. The transformation of a trace into an adjacency
list leads to some abstraction, e.g., even though loops might be repeated more
than once in a trace, based on the transformation, they are always considered to
have the same frequency. This abstraction allows for a direct comparison of the
trace structure in a computationally efficient manner, independent of process
performance aspects, such as the number of loop repetitions [62].

Based on the adjacency list, one can subsequently derive high-level structural
features, which are implicitly contained in the trace. This can be achieved by
identifying the graph’s edge-types (cf. Sect. 2). Two examples of trace graphs
with different edge-types are shown in Fig. 1. In order to identify the edge-types
and their respective lengths within a trace graph, we apply the following graph
algorithms: depth-first search (DFS), breadth-first search (BFS), and lowest-
common ancestor (LCA). Overall, the measurement approach consists of three

steps.

5.2.1. Step 1: Identifying Edge-types

The DF'S [37] is applied to detect the edge-type between the vertices of the
graph. The DFS starts at the first edge between two vertices according to the
adjacency list and then continues to look at all the other edges in the list. The

algorithm thus considers whether the edge was visited before and which other

31

edges have been already visited. The edge-types are assigned accordingly as

depicted in Algorithm 1.

Algorithm 1 DFS to detect graph-features including length

10:

12:
13:
14:
15:
16:
17:
18:
19:
20:

21:

Input: G(V, D) in the form of adjacency list AdjList
Output: List of tuples (W, N, e) with edge-type and length for all e € G(V, D)

: main() function

1140 > initialize counter
: numList(|v]) < 0 > initialize list with counters of vertex visits
: recList(|v]) «+ 0 > initialize list with vertices currently on recursion stack
: for all v € AdjList do

if numList(v) = 0 then dfs(v) > apply recursive DFS function

: dfs() function

: 14— 1+ 1, numList(v) < 4, recList(v) < 1

for all w € adj(v) do > adj(v) is the list for v € AdjList
if numList(w) = 0 then dfs(w) > (v, w) is a sequence edge
else if numList(w) > numList(v) then > (v, w) is a skip edge
call BFS(start = v, end = w) > derive length based on Algo. 2
return (type = forward, length, (v, w))
else if numList(w) < numList(v) then > (v, w) is a choice edge
call LCA(w,v) > derive length based on Algo. 3
return (type = cross, length, (v, w))
else > (v, w) is a loop edge
call BFS(start = w, end = v) > derive length based on Algo. 2

return (type = back, length, (v, w))

recList(v) < 0

5.2.2. Step 2: Identifying the Length of Edge-types

While sequences only indicate a directly-follows relation between two con-

secutive activities, loops, skips, and choices can span over multiple activities.

For example, the trace o1 = (A, B, D, A,C, D, A, D) depicted in Fig. 1 contains

a loop of length three, a skip of length one, and a choice of length one. These

32

Algorithm 2 BFS
Input: G(V, D) in the form of adjacency list AdjList, start vertex a, end vertex

b

Output: Minimum number of steps from a to b, list of all visited vertices

1: bfs() function

2: queueList < (a, steps = 0) > initialize queue
3: visitedList < 0 > initialize list of visited vertices
4: while queueList not empty do

5: currentVertex, steps < last entry queueList

6: if currentVertex not in visitedList then

T visitedList <— currentVertex

8: if currentVertex = b then

9: steps + sum(parallel activities in visitedList) > adjust length
10: return steps, visitedList

11: for all neighboringVertex of currentVertex € AdjList do

12: queueList + (neighboringVertex, steps + 1)
13: if neighboringVertex not in visitedList then
14: visitedList <— (neighboringVertex, steps)

Algorithm 3 LCA
Input: G(V, D) in the form of adjacency list AdjList, vertex a, vertex b

Output: Lowest-common ancestor of a and b, and the min number of steps
1: remove edge (a,b) from AdjList
2: AdjList’ < invert(AdjList)
3: LCA() function
4: v < startVertex(AdjList’)
5: 11 = BFS(v, a) > derive list of visited vertices with min. steps based on Algo.2
: 12 = BFS(v, b) > derive list of visited vertices with min. steps based on Algo.2

: x < firstCommonVertex(11,12)

[I e

: return min number of steps between a and x, b and x

lengths are derived based on the first occurrence of the respective edge-types

within the trace, i.e., the loop-edge between D and A first occurs after the

33

execution of (A, B, D), thus it is assigned a length of three.

Since the length of a structural construct can be an important aspect for
the comparison of traces, we combine the DFS with two other graph-algorithms
to derive this additional information. First, we use the BFS algorithm [37] to
identify the minimum number of steps required to get from one vertex a € A to
another vertex b € A following the edges in a graph. Starting from a selected
vertex a € A, BFS explores the neighbor vertices at the present depth before
moving on to the vertices at the next depth level. This process continues until
the target vertex b € A is found. The final depth indicates the minimum number
of steps to get from a to b. In our implementation, we use a queue data structure
to keep track of the vertices that remain to be explored (cf. Algorithm 2).

While the BFS can identify the length of loops and skips, for choices, it
is necessary to first identify the start vertex of an alternative path. This can
be solved based on the LCA algorithm [37]. As described by Algorithm 3,
before applying the LCA the trace graph needs to be inverted such that all
start vertices become the end vertices of the graph. The LCA algorithm is
subsequently applied to find the lowest-common ancestor of two given vertices
a,b € A. The lowest-common ancestor is defined as the lowest vertex that has

a and b as descendants.

5.2.8. Step 3: Aggregating the Features

To leverage the identified high-level features in trace comparison, we pro-
pose six measures, shown in Table 7. The measures are based on two distinct
measurement approaches: cosine similarity based on vector-space embedding,
and Jaccard similarity based on set comparison. To show that the structural
properties P5-P7 can be addressed by the aggregation of different structural
feature types, we consider the following combinations of feature types: (1) high-
level structural features, (2) l-grams and 2-grams, and (3) l-grams, 2-grams
and high-level structural features.

Graph-based cosine similarity (Cg) is calculated based on the identified edge-

types with their length and the identified parallelism between activities with

34

M. Transformation Calculation
(sequ.) 1 (sequ.) 1
Cg d1 = (parallel,3) |1| 02 = (parallel,3) |1 L=y {1””33” =1- %
(loop,4) |0 (loop,4) |1
Je F,, = {(sequ.), (parallel,{B,C,D})} - %)
F,, = {(sequ.), (parallel,{ B, C, D}), (loop, 4, (A, E))} T

Table 6: Example for calculating the similarity between oy = (A, B,C, D, E)
and 0o = (A,B,C,D,E, A B,C,D,E) with the parallel relations R =
{B||C,C||D} based on the two measures Cg and Jg.

the cardinality of the respective sets of parallel activities (cf. Definition 2.10).
Both types of features are encoded based on their frequency. Alternatively,
graph-based Jaccard similarity (Jg) is calculated based on the identified directly-
follows relations with the respective edge-type and length and the identified
sets of parallel activities. The number of edges of the type sequence are not
considered, as they do not indicate any high-level structural feature, and are
partially considered by the length of high-level structural features, as well as
the directly-follows relations of traces. Furthermore, considering the number of
sequences would bias the outcome towards the length of the traces. Nevertheless,
traces that are strictly sequential, i.e., only contain edges of type sequence,
should be considered as structurally similar. For this reason (sequ.) is added
as an edge type (without considering length or frequency) to any trace that
contains at least one edge of type sequence, i.e., an activity sequence longer
than one, which is not a loop. An example for the calculation of Jg and Cg is
provided in Table 6 based on the two traces depicted in Fig. 2.

The aggregated measures, denoted by Agg(), are computed as the sum of
individual similarity measures with uniform weighting applied. For example,
Agg(C1,02) = C1 + C2 represents the aggregation of Cosine similarity values
derived from 1-gram and 2-gram representations, as introduced in Sect. 4.2.
This aggregation approach has already been applied in related studies (cf.
Sect. 3.1.3).

35

Type Measure Label

Graph-based cosine similarity Cg
Vector-space emb. | Aggregated cosine similarity Agg(C1,C2)
Aggreagted graph-based cosine similarity Agg(C1,C2,Cg)
Graph-based Jaccard similarity Jg
Set comparison Aggregated Jaccard similarity Agg(J1,J2)

Aggreagted graph-based Jaccard similarity | Agg(J1,J2,Jg)

Table 7: Set of proposed trace similarity measures.

In the following subsection, we show that the proposed measures better
reflect similarities and differences between traces based on structural features

(P5-P7) than previous measures.

5.83. Formal Comparison

To evaluate the identified similarity measures (cf. Table 7) with respect
to their ability to consider structural features (P5-P7), we first calculate the
respective similarity values between o and o5 — og (cf. Fig. 1). The calculated
similarity values are shown in Table 8. The results show that the novel measures
better reflect structural similarities and differences between the traces than the
measures from the literature (cf. Sect. 4.2).

Table 9 provides an overview of the proposed similarity measures with an in-
dication of whether they adhere to the defined properties (P1-P10). With regard
to the metric properties (P1-P4) it can be stated that the measures based on
cosine similarity generally do not adhere to triangle-inequality (P4) [34]. Mea-
sures based on Jaccard similarity, on the other hand, generally satisfy triangle-
inequality (P4) even in their aggregated form [50].

Regarding the structure-related properties (P5-P7), it can be stated that
Cg, Jg, and Agg(J1,J2,Jg) correctly reflect the high-level structural features
(P7), which is a clear improvement compared to the measures in the previ-
ous Sect. 4.2. Furthermore, the proposed aggregations of feature types (i.e.,
Agg(C1,C2), Agg(C1,C2,Cg), Agg(J1,J2), and Agg(J1,J2,Jg)) successfully re-
flect multiple defined structural properties. Agg(J1,J2,Jg) in fact reflects all

36

defined structural properties (P5-P7).

Regarding the general similarity properties (P8-P10) it can be stated that
only measures based on Jaccard similarity can be considered as submodular
functions (P8), while both measures based on Jaccard similarity and cosine
similarity consider similarities as well as dissimilarities between the traces (P9).
Regarding computational efficiency (P10), it can be stated that the additional
calculations of the graph-features based on Algorithm 1 do not add to the
time complexity compared to the similarity measures considered in the pre-
vious Sect. 4. Both DFS and BFS have a time complexity of O(|A|+|D|), while
LCA can be computed in O(h), where h represents the length of the longest
distinct path between two vertices in G(A, D).

s(oo,03) s(oo,04) s(00.05) s(oo,06) s(oo,07) s(00,08)

Cg 0.000 0.000 0.000 0.553 0.423 0.423
Agg(C1,C2) 0.600 1.100 1.000 0.206 0.206 0.375
Agg(C1,C2,Cg) 2.449 2.949 3.162 2.018 1.888 2474
g 0.000 0.000 0.000 0.667 0.667 0.667
Agg(J1,J2) 0.750 1.417 1.000 0.286 0.286 0.500
Agg(J1,J2,Jg) 0.750 1.417 1.000 0.952 0.952 1.167

Table 8: Calculated similarity values for the pairwise comparison between oy
and o3 — 0y, where s(0g, 03) is considered as baseline. According to the defined
properties P5-P7, s(0g, 04) should reflect an increase in the number of activities
(P5), s(00,05) should reflect an increase in the number directly-follows relations
(P6), and s(og, 06—g) should reflect an increase in the number of edge-types (P7).
Values that are less than or equal to s(og, 03) indicate a violation of one of the

defined properties P5-P7 and are highlighted in gray.

6. Evaluation

To evaluate the performance of the measures proposed in the previous section
compared to the measures considered in Sect. 4 we perform an evaluation based
on four synthetic event logs and four real-life event logs. The performance is

evaluated in terms of the accuracy with which the measures assess the structural

37

Metric Structure Similarity

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Cg yes yes yes mno |mno no yes no yes O(|F;2UPF]sl

Agg(C1,C2) yes yes yes mno |yes yes mo no yes O(|F;2UPF],|

Q

Jg yes yes yes yes | no no yes | yes yes

(

(

Agg(C1,02,Cg) | yes yes yes mno | yes yes nO 1O yes O(|F,2UFJZ\

(

Agg(J1,J2) yes yes yes yes | yes yes mno |yes yes O zzUsz\
O(

)
)
)
[Fi2 U Fa)
)
)

Agg(J1,J2,Jg) yes yes yes yes | yes yes yes |yes yes |Fi2 U Fjol

Table 9: Comparison between similarity measures based on the identified desir-

able properties P1 — P10.

similarity between traces in the respective event logs. Each trace thereby belongs
to a unique class, with traces in the same class being more structurally similar
to each other than to traces in a different class. To quantify the accuracy of the
similarity measures, we apply three different evaluation measures. Overall, the
evaluation seeks to answer two main questions: (1) can the proposed measures
outperform alternative measures in terms of accuracy, and (2) can the considered
high-level structural features (i.e., edge-types and parallelism) generally improve
the accuracy of similarity measures.

The event logs and a Python implementation of the similarity measures and
evaluation measures are available at:

https://bwsyncandshare.kit.edu/s/bNrqiXMkSebag6Q.

6.1. Evaluation Measures

Our evaluation of the similarity measures is based on three evaluation mea-
sures proposed by Back and Simonsen [14]: Nearest Neighbor, Precision@k, and
Triplet. These measures are well established in the literature on similarity met-
ric learning [63, 64]. Furthermore, Back and Simonsen [14] present a validation
of these measures based on an extensive comparison of trace similarity mea-
sures. The proposed evaluation measures are deliberately selected to minimize
confounding factors from downstream tasks such as process discovery [28], and
trace clustering [1, 41, 2, 44]. As discussed in Sect. 3, this enables a more direct

evaluation of the validity of the similarity measures with regard to content va-

38

https://bwsyncandshare.kit.edu/s/bNrqiXMkSebag6Q

lidity (i.e., the extent to which the measures capture a broad range of structural
features) and criterion validity (i.e., the degree to which the measures align with
predefined trace classifications).

To evaluate the accuracy of the similarity measures, the evaluation measures
compare the derived similarity values of the in-class data points with the sim-
ilarity values of the out-of-class data points. A similarity measure receives a
positive evaluation if the similarity values between data points within a class
are high and the similarity values between data points belonging to different
classes are low.

Based on this idea the Nearest Neighbor measure calculates the ratio of data
points whose nearest neighbor, i.e., the data point which is nearest based on
some similarity measure, belongs to the same class and the data points whose
nearest neighbor does not belong to the same class.

The Precision@k measure further extends this evaluation by calculating the
ratio of in-class and out-of-class data points for the k-nearest data points. In
accordance with [14], for this study we set k = 10.

The Triplet measure provides an even more precise evaluation of similarity
by considering for each data point all the distances between in-class and out-of-
class data points. Given an anchor data point z, the measure calculates for each
in-class data point y the ratio of out-of-class data points z with d(z,y) < d(z, 2)

to out-of-class data points z with d(z,y) > d(z, 2).

6.2. Datasets

For the empirical evaluation of the similarity measures introduced in Sect. 4
and Sect. 5, seven different event logs are considered. Table 10 provides an
overview of these logs, including three synthetic event logs (SynL1, SynlL2,
SynL3) and four real-world event logs (WABO, PO, EyeT1, EyeT2).

These event logs are selected according to two main criteria. First, for
the evaluation it is essential that the traces in the event logs can be classified
according to some trace attribute. Furthermore, the traces should be equally

distributed among the classes to increase the validity of the evaluation, i.e.,

39

Activity Trace Min Max Class T./C. Class Type Origin

SynL1 16 300 8 194 3 100 edge-type Simulation
SynL2 16 300 8 202 6 50 edge-type and length Simulation
SynL3 16 300 8 179 6 50 edge-type and activity =~ Simulation
SynL4 16 320 8 202 4 80 edge-type and activity ~Simulation
WABO 465 350 1 110 5 70 process type Administration
PO 42 300 8 324 3 100 process type Administration
EyeT1 1194 349 27 1152 8 43-44 task type Eye tracking
EyeT2 1194 349 27 1152 2 174-175 task complexity Eye tracking

Table 10: Overview of the event logs including the number of activities, num-
ber of traces, the minimum and maximum length of traces, number of classes,

number of traces per class, class type and their origin.

if all traces belong to the same class, the evaluation measures would yield a
value of one for every similarity measure. Secondly, trace classes should be
distinguishable based on their structural characteristics, i.e. activities, directly-
follows relations, and edge-types, as defined by the properties P5-P7 in Sect. 4.
Especially, the ability to distinguish trace classes based on edge-types (P7) is
important to evaluate whether the proposed graph-based approach introduced
in Sect. 5.2 can improve the performance of similarity measures. For this reason,
we first look at three simulated event logs containing the desired properties, and

then continue with real-world datasets.

6.2.1. SynL1, SynL2, SynL3, and SynL4.

These synthetic event logs are generated with the PLG tool [65]. The traces
in the event logs can be clearly distinguished based on (a) edge types (loops,
skips, or choice), (b) length of the edge types (short, or long) and (c) the set
of activities (41 = {A,..., H}, or Ay = {K, ..., R}). To test different scenarios
for the application of similarity measures, we apply four different classifications
of the traces, resulting in four different event logs. In SynL1 the traces are
classified only according to the edge types, leading to three classes: loops, skips,
and choices. In each class the traces additionally differ in terms of (b) the length
of the edge types and (c) the set of activities involved. This scenario is closely

related to the example provided in Fig. 1, since in some cases the affiliation of

40

the traces with one class can only be detected based on the edge types.

In SynL2, the trace classes are additionally separated by the edge type
length, leading to six classes (loops-short, loops-long, skips-short, skips-long,
choices-short, choices-long). In each class the traces additionally differ in terms
of (c) the set of activities involved. In this way, the similarity measures are
additionally evaluated on the basis of their ability to distinguish between the
length of the edge types.

In SynL3, the trace classes are separated by the edge types and the set of
activities, also leading to six classes (loops-Aj, loops-As, skips-A;, skips-As,
choices-Ay, choices-As). In each class the traces additionally differ in terms of
(b) length of the edge types. In this scenario, the effectiveness of the similarity
measures is evaluated according to their ability to differentiate between edge
types and distinct sets of activities.

In SynL4, an additional trace class is added to SynL1. This new class com-
prises traces that exhibit combinations of multiple edge types, resulting in four
distinct classes: loops, skips, choices, and mixed. In each class the traces addi-
tionally differ in terms of (b) length of the edge types and (c¢) the set of activ-
ities involved. Compared to SynL1, Synl4 presents a more realistic scenario,
enabling the evaluation of whether similarity measures can effectively identify

traces that incorporate heterogeneous edge types.

6.2.2. WABO and PO.

These event logs were originally published for BPT Challenges 2015 [66] and
2019 [67]. Both data sets are derived from real-world business processes. WABO
consists of five sublogs coming from five separate municipalities in the Nether-
lands, documenting their administration process for providing environmental
permissions. PO documents a purchase order handling process of a large multi-
national company in the Netherlands, which can be classified into four types
of flows. The classification of the traces in both cases is based on their pro-
cess structure, making them suitable for our evaluation and allowing us to test

whether graph-based features can also improve the similarity measurement of

41

traces in the context of business processes.

6.2.3. EyeT1 and EyT2.

The two event logs EyeT1 and EyeT2 contain eye tracking data, collected
during an experiment on process model comprehension [23, 24] using the eye-
tracking data collection tool EyeMind [68]. The data allows to analyze at which
point in time during the experiment a person was looking at a specific process
model element on a computer screen. This results in an event log, where each
trace reflects the number and order of elements that a person looked at during
a given comprehension task. Hence, the traces contain structural patterns,
such as loops, skips, and choices, depending on the order in which a person
looked at the different elements. 349 such traces could be recorded from 44
participants. The experiment is designed in such a way that each participant
has to answer eight different comprehension tasks that can be divided into two
complexity classes (low and high task complexity). In Schreiber et al. [24], the
authors showed that the participants exhibit different information search and
integration behaviors depending on the given tasks and its complexity, which
is also reflected in the recorded traces. We therefore create the two trace logs
EyeT1 and EyeT?2 to evaluate how well the similarity measures can differentiate
(a) between traces belonging to the eight different task types (EyeT1) and (b)

between traces belonging to the two different task complexity classes (EyeT?2).

6.3. Sampling Strategy

Due to the computational complexity of the evaluation measures, specifically
the Triplet evaluation measure with O(|L|?), we restrict the number of traces
per event log. This is in line with the comparative study on traces similarity
measures by Back and Simonson [14]. While the eye tracking event logs (EyeT1,
EyeT?2) are sufficiently small for the evaluation, the synthetic event logs (SynL1,
SynL2, SynL3, SynL4) and the event logs derived from real-world business pro-
cesses (WABO, PO) require some additional sampling. To prevent a sampling

bias, traces are sampled randomly. Furthermore, they are sampled in such a

42

way that they are equally distributed among the classes, in order to ensure the

effectiveness of the evaluation measures (cf. Sect. 6.2).

6.4. Results

Fig. 4 provides an overview of the three calculated evaluation measures for
the similarity measures in Sect. 4.2 and the novel similarity measures proposed
in Sect. 5. Additionally, three similarity measures are included in the evaluation,
each computed as the cosine similarity between vector representations learned
using Trace2Vec [41] (as described in Sect. 3.1.2). These representations differ
in dimensionality, comprising vectors with 32 (T2V-32), 64 (T2V-64), and 128
(T2V-128) features, respectively.

Looking at the Triplet, which is the most elaborate evaluation measure in-
cluded in the evaluation (cf. Sect. 6.1), it can be stated that the novel distance
measures, marked in gray, consistently outperform the other similarity mea-
sures, except for the event log EyeT1. This observation is partially confirmed
by Nearest Neighbour and Precision@10.

It should be noted that, in particular, the commonly applied LD and N-LD
(cf. Sect. 3) are consistently outperformed by the other measures. The same
holds true for the measures based on Trace2Vec (T2V-32, T2V-64, and T2V-
128). It is also worth mentioning that the similarity measures based on 2-gram
(C2 and J2) consistently perform well across the evaluation measures, especially
for Precision@10.

It can also be stated that the aggregation of separate similarity measures
leads in several cases to an improvement of the similarity evaluation (indicated
by the underlined values in Fig. 4). This is particularly true for Agg(C1,C2) in
the case of the two administrative processes (WABO and PO). Again looking
at the Triplet, the similarity measures involving edge-type features perform in
particular well with respect to the synthetic event logs (SynL1, SynL2, SynL3,
Synl4) and EyeT2. This is also partially confirmed by Nearest Neighbour.

Regarding evaluation question 1, it can be stated that in terms of accuracy,

the proposed measures (Cg, Agg(Cl, C2), Agg(C1,C2,Cg), Jg, Agg(Jl, J2),

43

Figure 4: The tables show the calculated evaluation measures for the similarity
measures on the basis of eight different event logs. The proposed similarity mea-
sures based on the formal comparison in Sect. 5 are marked in gray. Values that

indicate best-performing similarity evaluations are marked in bold, performance

improvement due to aggregations are underlined.

44

Nearest Neighbour Precision@10
SynLl | Synl2 | Synl3 | Synld | WABO | PO | EyeTl | EyeT2 SynLl | Synl2 | Synl3 | Synld | WABO | PO | EyeTl | EyeT2
LD 0.970 | 0.940 | 0.967 | 0.950 | 0.603 | 0.873 | 0.897 | 0.940 0.863 | 0.758 | 0.874 | 0.836 | 0.398 | 0.832 | 0.762 | 0.851
N-LD[0.970 | 0.933 | 0.967 | 0.953 | 0.600 | 0.910 | 0.937 | 0.971 0.875 | 0.800 | 0.892 | 0.861 | 0.400 | 0.850 | 0.865 | 0.917
EMR(0.963 | 0.917 | 0.927 | 0.965 | 0.200 | 0.710 | 0.785 | 0.871 0.871 | 0.782 | 0.831 | 0.853 | 0.200 | 0.757 | 0.621 | 0.736
CMR| 0.977 | 0.957 | 0.987 | 0.978 | 0.203 | 0.333 | 0.957 | 0.971 0.941 | 0.884 | 0.926 | 0.932 | 0.199 | 0.299 | 0.903 | 0.937
JMR| 0.977 | 0.957 | 0.983 | 0.978 | 0.194 | 0.730 | 0.954 | 0.971 0.946 | 0.878 | 0.931 | 0,930 | 0.198 | 0.790 | 0.901 | 0.937
EF[1.000 | 1.000 | 0.990 | 1.000 | 0.457 | 0.900 | 0.461 | 0.662 0.991 | 0.974 | 0.988 | 0.990 | 0.359 | 0.854 | 0.455 | 0.706
T2v-32(0.333 | 0.167 | 0.000 | 0.250 | 0.183 | 0.397 | 0.000 | 0.507 0.336 | 0.171 | 0.000 | 0.250 | 0.185 | 0.296 | 0.000 | 0.483
T2v-64(0.333 | 0.167 | 0.000 | 0.250 | 0.197 | 0.413 | 0.000 | 0.477 0.333 | 0.168 | 0.000 | 0.250 | 0.186 | 0.328 | 0.001 | 0.477
T2v-128| 0.333 | 0.167 | 0.000 | 0.250 | 0.200 | 0.380 | 0.000 | 0.471 0.334 | 0.167 | 0.000 | 0.250 | 0.193 | 0.317 | 0.001 | 0.471
E1| 0.930 | 0.900 | 0.913 | 0.941 | 0.629 | 0.860 | 0.954 | 0.974 0.808 | 0.730 | 0.830 | 0.824 | 0.433 | 0.857 | 0.862 | 0.916
E2| 0.997 | 0.973 | 0.990 | 0.981 | 0.466 | 0.910 | 0.885 | 0.946 0.917 | 0.858 | 0.931 | 0.927 | 0.307 | 0.859 | 0.708 | 0.801
E3| 0.997 | 0.970 | 0.987 | 0.988 | 0.366 | 0.890 | 0.676 | 0.811 0.924 | 0.874 | 0.937 | 0.938 | 0.251 | 0.848 | 0.524 | 0.673
€1) 0.990 | 0.980 | 0.987 | 0.988 | 0.643 | 0.890 | 0.977 | 0.980 0.933 | 0.891 | 0.919 | 0.932 | 0.439 | 0.875 | 0.924 | 0.957
€2| 1.000 | 0.990 | 0.997 | 0.997 | 0.611 | 0.917 | 0.952 | 0.966 0.962 | 0.938 | 0.962 | 0.967 | 0.393 | 0.876 | 0.842 | 0.900
€3| 1.000 | 0.980 | 0.990 | 1.000 | 0.609 | 0.900 | 0.868 | 0.917 0.960 | 0.936 | 0.953 | 0.963 | 0.386 | 0.877 | 0.753 | 0.835
Cg*(1.000 | 1.000 | 0.493 | 1.000 | 0.226 | 0.577 | 0.172 | 0.653 0.993 | 0.986 | 0.482 | 0.980 | 0.245 | 0.643 | 0.157 | 0.622
Agg(ca,c2)| 1.000 | 0.993 | 0.997 | 1.000 | 0.643 | 0.917 | 0.971 | 0.977 0.962 | 0.938 | 0.964 | 0.969 | 0.424 | 0.881 | 0.895 | 0.938
Agg(C1,€2,cg*)| 1.000 | 0.997 | 1.000 | 1.000 | 0.563 | 0.900 | 0.957 | 0.971 0.995 | 0.986 | 0.993 | 0.992 | 0.360 | 0.879 | 0.898 | 0.942
J1{ 0.403 | 0.290 | 0.333 | 0.316 | 0.646 | 0.863 | 0.966 | 0.980 0.367 | 0.222 | 0.333 | 0.379 | 0.437 | 0.864 | 0.905 | 0.952
J2| 1.000 | 0.997 | 1.000 | 0.997 | 0.611 | 0.910 | 0.983 | 0.991 0.996 | 0.986 | 0.990 | 0.995 | 0.387 | 0.875 | 0.958 | 0.982
J3(1.000 | 0.993 | 1.000 | 1.000 | 0.606 | 0.920 | 0.986 | 0.994 0.987 | 0.968 | 0.982 | 0.991 | 0.379 | 0.880 | 0.966 | 0.987
Jg*| 0.997 | 0.993 | 1.000 | 0.994 | 0.471 | 0.883 | 0.960 | 0.980 0.964 | 0953 | 0.963 | 0.943 | 0.327 | 0.845 | 0.924 | 0.962
Aggl)1,J2)| 1.000 | 0.997 | 1.000 | 0.997 | 0.683 | 0.933 | 0.989 | 0.997 0.996 | 0.986 | 0.990 | 0.967 | 0.444 | 0.880 | 0.936 | 0.968
Agg(J1,J2,)g*)| 1.000 | 0.997 | 1.000 | 1.000 | 0.563 | 0.923 | 0.957 | 0.971 0.995 | 0.986 | 0.993 | 0.992 | 0.360 | 0.896 | 0.898 | 0.942
Triplet

Synll | Synl2 | Synl3 | Synld |WABO| PO | EyeT1 | EyeT2

LD| 0.523 | 0.545 0.803 | 0.530|0.504 | 0.728 | 0.669 | 0.584

N-LD| 0.418 | 0.432 0.864 | 0.431|0.515| 0.825 | 0.873 | 0.613

EMR| 0.537 | 0.585 | 0.719 | 0.564 | 0.019 | 0.654 | 0.662 | 0.524

CMR| 0.428 | 0.450 0.863 | 0.439|0.149 | 0.584 | 0.891 | 0.598

JVMR| 0.428 | 0.450 0.864 | 0.439|0.133 | 0.581 | 0.885 | 0.617

EF| 0.435 | 0.469 0.886 | 0.451|0.525| 0.776 | 0.829 | 0.610

T2v-32| 0.461 | 0.460 0.153 | 0.462 | 0.469 | 0.292 | 0.065 | 0.375

T2v-64| 0.462 | 0.460 0.160 | 0.461|0.469 | 0.311 | 0.067 | 0.354

T2v-128| 0.462 | 0.464 0.162 | 0.466 | 0.473 | 0.309 | 0.071 | 0.350

E1 0.547 | 0.573 0.806 | 0.559 | 0.512 | 0.747 | 0.765 | 0.580

E2| 0.563 | 0.598 0.818 | 0.586 | 0.504 | 0.712 | 0.680 | 0.540

E3| 0.574 | 0.616 0.808 | 0.602 | 0.496 | 0.666 | 0.614 | 0.513

€1/ 0.422 | 0.456 0.870 | 0.445|0.524 | 0.853 | 0.890 | 0.565

€2/ 0.438 | 0.462 0.891 | 0.458 | 0.526 | 0.837 | 0.822 | 0.556

€3/ 0.439 | 0.461 0.890 | 0.457|0.407 | 0.636 | 0.762 | 0.533

Cg*| 0.816 | 0.917 | 0.724 | 0.814 | 0.500 | 0.573 | 0.533 | 0.577

Aggl€1,C2) 0.434 | 0.462 0.886 | 0.456 | 0.529 | 0.857 | 0.862 | 0.561

Agg(C1,c2,cg*)[0.653 | 0.700 | 0.910 | 0.666 | 0.526 | 0.817 | 0.863 | 0.582

1) 0.278 | 0.282 0.631 | 0.311|0.524 | 0.799 | 0.847 | 0.607

J2/ 0.419 | 0.469 0.854 | 0.437|0.526 | 0.827 | 0.915 | 0.627

13/ 0.428 | 0.468 0.873 | 0.445|0.407 | 0.635 | 0.919 | 0.629

Jg*| 0.618 | 0.637 0.782 | 0.623 | 0.468 | 0.692 | 0.903 | 0.663

Agg(J1,)2)| 0.416 | 0.463 0.849 | 0.429 | 0.529 | 0.839 | 0.878 | 0.619

Agg()1,)2,)g*)| 0.653 | 0.700 | 0.910 | 0.666 | 0.526 | 0.840 | 0.863 | 0.582

Agg(J1,J2,Jg)) outperform the other trace similarity measures with respect to
the synthetic event logs (SynL1, SynL2, SynL3, and SynL4) based on all three
evaluation measures, except for Synl.4 based on Precision@10. Furthermore, the
aggregation of l-gram and 2-gram (Agg(C1,C2) and Agg(J1,J2)) consistently
outperform the other trace similarity measures on the business process event
logs (WABO and PO) across all four evaluation measures, except for PO based
on Precision@10.. For the user behavior processes (EyeT1l and EyeT2) the
measures J3 and Jg (excluding parallelism) achieved the best performance with
respect to the Triplet evaluation measure.

Regarding evaluation question 2, it can be stated that the high-level features
(edge-types and parallelism) lead to improvements in the similarity evaluation
in several cases. For the synthetic event logs (SynL1, SynL.2, SynL3, and SynL4)
this is especially true with regard to Agg(J1,J2,Jg) when considering Triplet.
Furthermore, for the business process PO the additional consideration of high-
level features (including parallelism) could even improve similarity evaluation
when calculating Agg(J1,J2,Jg). Only for the user behavior processes (EyeT1
and EyeT2) no improvement could be observed, even though Jg (excluding par-
allelism) yielded the highest performance with respect to the Triplet evaluation

measure for EyeT2.

7. Discussion

The results confirm the comparative analyses in Sect. 4.2 and Sect. 5.3. The
evaluation across all event logs shows that the aggregation of distinct similarity
measures can substantially improve the similarity evaluation between the traces.
The evaluation further shows that the consideration of high-level structural
features can substantially improve the similarity evaluation between traces in
several cases, and therefore provides a validation of the measurement approach
proposed in Sect. 5.

Furthermore, the identified properties P1-P10 (cf. Table 3) help to better

evaluate trace similarity measures. More specifically, P5-P7 provide insights

45

on the content validity of similarity measures, i.e., to which extent they reflect
different structural features. This aspect has been largely neglected by existing
studies on trace similarity measures.

The empirical evaluation in Sect. 6 shows that the structural distinction be-
tween traces on the basis of activities (P5), directly-follows relations (P6), and
high-level structural features (P7) appears to be particularly valuable for (un-
structured) behavioral processes, as well as (structured) business processes. In
practice the proposed similarity measures could help to differentiate more nu-
anced structural similarities and differences between traces, which, subsequently
might improve the performance of downstream tasks, such as anomaly detection
and trace clustering. Moreover, the proposed aggregated measures potentially
provide more transparency, as similarities and differences can be attributed to
specific structural features. However, it should be noted that the aspect of
transparency has not been empirically examined within the scope of this study.

From a research perspective, our study suggests that an assessment of trace
similarity measures should not merely rely on empirical comparison, but should
also consider formal properties of these measures to gain a better understanding
of what trace features are respectively considered.

Integrating high-level structural features into the similarity comparison be-
tween traces opens up a variety of new opportunities for future research. It
allows investigating the role of structural features in more detail and could
therefore potentially improve a variety of process mining techniques, such as
trace clustering, conformance checking, event abstraction, event log sampling,
change point detection, and variety analysis (cf. Sect. 1).

The empirical evaluation further shows that there is not a single similarity
measure dominating the others. Rather, it is the case that event logs require
different similarity measures according to their structural features. One way to
solve this issue is to apply aggregation and assign different weights to the distinct
measures, focusing on different features. This can, for example, be solved by
using domain knowledge to assign appropriate weights. Another approach would

be to automatically assign weights based on feature learning [63, 41, 64].

46

When analyzing user behavior through data, e.g., based on eye-tracking,
edge types can provide better differentiation between traces that exhibit vari-
ous behavioral patterns, such as repetitive actions, skipping, or choices. This
differentiation can, for example, be useful in identifying whether a user is search-

ing for information or integrating it [23, 24].

7.1. Limitations

The evaluation stresses some limitations of the applied evaluation measures.
Nearest Neighbour and Precision@10 only consider a small number (respectively
two and ten) of the most similar data points within a class, thereby ignoring
the similarity between the rest of the class’s data points. This also explains the
relative similarity of the outcomes in comparison to Triplet, which offers greater
distinction among the considered similarity measures (cf. Fig. 4).

Moreover, due to the computational complexity of the evaluation measure
Triplet (with O(]L|?)) the evaluation contains only event logs with a relatively
small number of traces. This introduces some limitation regarding the gener-
alizability of the results. However, this concern is partially mitigated by the
diversity of event logs included in the evaluation, spanning a wide range of
structural trace characteristics based on synthetic processes, eye-tracking, and
real-world business processes.

Additionally, there exist some validity risk from the applied sampling of the
synthetic event logs (SynL1, SynL2, SynL3) and the event logs derived from real-
world business processes (WABO, PO). This risk is mitigated by the employed
sampling strategy, i.e., traces were randomly sampled in such a way that they
are equally distributed among the trace classes.

A further potential limitation arises from the extraction of the edge types
based on the transformation of the traces into a graph representation, which
inevitably leads to some abstraction of the process behavior. So far we have,
for example, not considered relative frequencies of the occurring sequences in
the traces, which could lead to some bias in the pairwise trace comparison. In

future work, graph-based features could be weighted according to their relative

47

frequency, thereby emphasizing the stochastic properties of the traces [6].

Similarly, aggregating activities into sets of parallel activities based on causal
relations (cf. Definition 2.10) introduces an abstraction of the trace struc-
ture. For example, when considering the trace o1 = (A4, B,C,D, E) with
R = {B||C,C||D} (as shown in Fig. 2), {B,C, D} is defined as a set of par-
allel activities within o7, even though no direct parallel relation exists be-
tween B and D, i.e., the information regarding the causality between B and
D is lost. Similarly, the causality between B and D is ignored for the traces
o9 =(A,C,B,D,E) and 03 = (A, B, D,C, E). Addressing this limitation would
require refining the notion of a vertex in the trace graph (cf. Definition 2.11) to
represent more complex parallel structures than simple sets of activities. Nev-
ertheless, this abstraction is arguably reasonable, in order to detect additional
high-level structural features, such as loops, skips, and choices, which is for
example not possible based on instance graphs [17, 19].

Furthermore, deriving parallelism from causal relations between activities
is sensitive to noise in the event log, which may introduce incorrect directly-
follows relations. A common mitigation strategy is to apply data pre-processing
techniques to filter out noisy traces before deriving parallelism between activities
[17, 19]. An alternative approach would be to consider partially ordered traces,
assuming correctly recorded timestamps [58].

Finally, certain similarity measures proposed in the literature, specifically
optimal alignments [14] and generic edit distance [44], were excluded from the
comparison due to their computational infeasibility when applied to the eye-
tracking data. This limitation arises from the considerable length of these traces

and the increased number of distinct activities involved.

8. Conclusion and Future Work

In this paper, we show the relevance of different structural features for the
measurement of the similarity between two traces. We propose a novel ap-

proach to extract additional high-level structural features from the traces, re-

48

flecting loops, skips, choices, and parallelism. We further propose a set of novel
similarity measures, which incorporate these structural features. The formal
comparison in Sect. 5.3 and the evaluation in Sect. 6 show that these features
can improve the similarity measurement, without an increase in computational
time complexity.

As future work, we plan to further extend the proposed similarity measures,
such that they can incorporate additional process perspectives, such as resources
or data. For this purpose, the suggested graph-based approach could be em-
ployed on event knowledge graphs as detailed in [69], which encompass different
process perspectives beyond their structural properties.

Furthermore, it would be interesting to investigate how the identified struc-
tural trace features can improve the training of neural networks and thus im-

prove subsequent tasks, such as similarity measurement [41].

Declaration of Generative AI and Al-assisted technologies in the writ-
ing process. During the preparation of this work, the authors used ChatGPT
40 mini in order to polish sentences and ensure correct spelling. After using
this service, the authors reviewed and edited the content as needed and take

full responsibility for the content of the publication.

References

[1] M. Song, C. W. Giinther, W. M. P. van der Aalst, Trace clustering in
process mining, in: Business Process Management Workshops: BPM 2008
International Workshops, Milano, Italy, September 1-4, 2008. Revised Pa-
pers 6, Springer, 2009, pp. 109-120.

[2] P. Delias, M. Doumpos, E. Grigoroudis, P. Manolitzas, N. Matsatsinis,
Supporting healthcare management decisions via robust clustering of event

logs, Knowledge-Based Systems 84 (2015) 203-213.

[3] M. Boltenhagen, T. Chatain, J. Carmona, Generalized alignment-based

trace clustering of process behavior, in: International Conference on Ap-

49

[10]

plications and Theory of Petri Nets and Concurrency, Springer, 2019, pp.
237-257.

F. Zandkarimi, J.-R. Rehse, P. Soudmand, H. Hoehle, A generic framework
for trace clustering in process mining, in: 2020 2nd International Confer-

ence on Process Mining (ICPM), IEEE, 2020, pp. 177-184.

A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen, W. M.
van der Aalst, Alignment based precision checking, in: International con-

ference on business process management, Springer, 2012, pp. 137-149.

S. J. Leemans, W. M. P. van der Aalst, T. Brockhoff, A. Polyvyanyy,
Stochastic process mining: Earth movers’ stochastic conformance, IS 102

(2021) 101724.

R. J. C. Bose, W. M. P. van der Aalst, Abstractions in process mining:
A taxonomy of patterns, in: International Conference on Business Process

Management, Springer, 2009, pp. 159-175.

N. Tax, N. Sidorova, R. Haakma, W. M. P. van der Aalst, Mining local
process models, Journal of Innovation in Digital Ecosystems 3 (2) (2016)

183-196.

C. Diamantini, L. Genga, D. Potena, W. van der Aalst, Building instance
graphs for highly variable processes, Expert Systems with Applications 59
(2016) 101-118.

M. Kabierski, H. L. Nguyen, L. Grunske, M. Weidlich, Sampling what
matters: relevance-guided sampling of event logs, in: 2021 3rd International

Conference on Process Mining (ICPM), IEEE, 2021, pp. 64-71.

A. Burattin, H. A. Lépez, L. Starklit, Uncovering change: A streaming
approach for declarative processes, in: International Conference on Process

Mining, Springer, 2022, pp. 158-170.

50

[12]

[15]

[17]

[18]

[19]

C. O. Back, S. Debois, T. Slaats, Entropy as a measure of log variability,
Journal on Data Semantics 8 (2019) 129-156.

C. Schreiber, A. Abbad-Andaloussi, Structural process variety and stan-
dardization, in: 2024 6th International Conference on Process Mining

(ICPM), IEEE, 2024, pp. 153-160.

C. O. Back, J. G. Simonsen, Comparing trace similarity metrics across
logs and evaluation measures, in: International Conference on Advanced

Information Systems Engineering, Springer, 2023, pp. 226-242.

V. I. Levenshtein, Binary codes capable of correcting deletions, insertions,
and reversals, in: Soviet physics doklady, Vol. 10, Soviet Union, 1966, pp.
707-710.

S. B. Needleman, C. D. Wunsch, A general method applicable to the search
for similarities in the amino acid sequence of two proteins, Journal of molec-

ular biology 48 (3) (1970) 443-453.

B. F. Van Dongen, W. M. P. van der Aalst, Multi-phase process mining:
Building instance graphs, in: Conceptual Modeling—ER. 2004: 23rd Inter-
national Conference on Conceptual Modeling, Shanghai, China, November

8-12, 2004. Proceedings 23, Springer, 2004, pp. 362-376.

F. Zerbato, R. Seiger, G. Di Federico, A. Burattin, B. Weber, Granularity
in process mining: Can we fix it?, in: International Workshop on BPM

Problems to Solve Before We Die, CEUR-WS, 2021, pp. 40-44.

C. Diamantini, L. Genga, D. Potena, Behavioral process mining for un-
structured processes, Journal of Intelligent Information Systems 47 (2016)

5-32.

F. Taymouri, M. La Rosa, M. Dumas, F. M. Maggi, Business process variant
analysis: Survey and classification, Knowledge-Based Systems 211 (2021)
106557.

o1

[21]

[23]

[24]

[29]

K. Holmqvist, M. Nystrom, R. Andersson, R. Dewhurst, H. Jarodzka,
J. Van de Weijer, Eye tracking: A comprehensive guide to methods and

measures, oup Oxford, 2011.

P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, R. Thomas, A
survey of sequential pattern mining, Data Science and Pattern Recognition

1 (1) (2017) 54-77.

C. Schreiber, A. Abbad-Andaloussi, B. Weber, On the cognitive effects of
abstraction and fragmentation in modularized process models, in: Inter-
national Conference on Business Process Management, Springer, 2023, pp.

359-376.

C. Schreiber, A. Abbad-Andaloussi, B. Weber, On the cognitive and be-
havioral effects of abstraction and fragmentation in modularized process

models, Information Systems 125 (2024) 102424.

M. Franceschetti, A. Abbad-Andaloussi, C. Schreiber, H. A. Lépez, B. We-
ber, Exploring the cognitive effects of ambiguity in process models, in: In-
ternational Conference on Business Process Management, Springer, 2024,

pp- 493-510.

W. Van der Aalst, Process Mining: Data Science in Action, Springer,
Berlin, Heidelberg., 2016.

B. Pentland, L. Ping, W. Kremser, T. Herem, The dynamics of drift in

digitized processes, MIS quarterly.

R. J. C. Bose, W. M. P. van der Aalst, Trace clustering based on conserved
patterns: Towards achieving better process models, in: Business Process
Management Workshops: BPM 2009 International Workshops, Ulm, Ger-
many, September 7, 2009. Revised Papers 7, Springer, 2010, pp. 170-181.

M. Becker, R. Laue, A comparative survey of business process similarity

measures, Computers in Industry 63 (2) (2012) 148-167.

92

[30]

[31]

[32]

[33]

R. Dijkman, M. Dumas, L. Garcia-Banuelos, Graph matching algorithms
for business process model similarity search, in: Business Process Manage-
ment: 7th International Conference, BPM 2009, Ulm, Germany, September
8-10, 2009. Proceedings 7, Springer, 2009, pp. 48—63.

A. Burattin, Streaming process mining, in: Process Mining Handbook, Vol.

349, Springer Cham, 2022.

W. M. P. van der Aalst, Object-centric process mining: dealing with di-
vergence and convergence in event data, in: Software Engineering and For-
mal Methods: 17th International Conference, SEFM 2019, Oslo, Norway,
September 18-20, 2019, Proceedings 17, Springer, 2019, pp. 3-25.

J. N. van Detten, P. Schumacher, S. J. Leemans, A framework for advanced
case notions in object-centric process mining, in: International Conference

on Process Mining, Springer, 2024, pp. 402-414.

J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, Mor-
gan Kaufmann Publishers, 2012.

W. M. P. van der Aalst, Process mining: a 360 degree overview, in: Process

Mining Handbook, Springer, 2022, pp. 3-34.

W. Van der Aalst, T. Weijters, L. Maruster, Workflow mining: Discovering
process models from event logs, IEEE transactions on knowledge and data

engineering 16 (9) (2004) 1128-1142.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
algorithms, MIT press, 2022.

D. Krantz, D. Luce, P. Suppes, A. Tversky, Foundations of measurement,
Vol. I: Additive and polynomial representations, New York Academic Press,

1971.

J. Mendling, Metrics for process models: empirical foundations of verifi-
cation, error prediction, and guidelines for correctness, Vol. 6, Springer

Science & Business Media, 2008.

93

[40]

[41]

[44]

[45]

G. R. Marczyk, D. DeMatteo, D. Festinger, Essentials of research design
and methodology, Vol. 1, John Wiley & Sons, 2005.

P. De Koninck, S. vanden Broucke, J. De Weerdt, act2vec, trace2vec,
log2vec, and model2vec: Representation learning for business processes, in:
Business Process Management: 16th International Conference, BPM 2018,
Sydney, NSW Australia, September 9-14, 2018, Proceedings 16, Springer,
2018, pp. 305-321.

G. Wang, X. Zhang, S. Tang, H. Zheng, B. Y. Zhao, Unsupervised click-
stream clustering for user behavior analysis, in: Proceedings of the 2016

CHI conference on human factors in computing systems, 2016, pp. 225-236.

R. Dijkman, M. Dumas, B. Van Dongen, R. K&arik, J. Mendling, Similarity
of business process models: Metrics and evaluation, Information Systems

36 (2) (2011) 498-516.

R. J. C. Bose, W. M. P. van der Aalst, Context aware trace clustering:
Towards improving process mining results, in: proceedings of the 2009

SIAM International Conference on Data Mining, STAM, 2009, pp. 401-412.

R. Dewhurst, M. Nystrom, H. Jarodzka, T. Foulsham, R. Johansson,
K. Holmqvist, It depends on how you look at it: Scanpath comparison in

multiple dimensions with multimatch, a vector-based approach, Behavior

research methods 44 (2012) 1079-1100.

N. C. Anderson, F. Anderson, A. Kingstone, W. F. Bischof, A comparison
of scanpath comparison methods, Behavior research methods 47 (2015)

1377-1392.

A. Schoknecht, T. Thaler, P. Fettke, A. Oberweis, R. Laue, Similarity of
business process models—a state-of-the-art analysis, ACM CSUR 50 (4)
(2017) 1-33.

N. Tax, N. Sidorova, R. Haakma, W. M. P. van der Aalst, Event abstraction

for process mining using supervised learning techniques, in: Proceedings of

o4

[51]

[53]

[54]

SAI Intelligent Systems Conference (IntelliSys) 2016: Volume 1, Springer,
2018, pp. 251-269.

P. H. Sellers, On the theory and computation of evolutionary distances,

SIAM Journal on Applied Mathematics 26 (4) (1974) 787-793.

M. Kunze, M. Weidlich, M. Weske, Behavioral similarity—a proper met-
ric, in: Business Process Management: 9th International Conference, BPM
2011, Clermont-Ferrand, France, August 30-September 2, 2011. Proceed-
ings 9, Springer, 2011, pp. 166-181.

G. M. Tavares, R. S. Oyamada, S. B. Junior, P. Ceravolo, Trace encoding
in process mining: A survey and benchmarking, Engineering Applications

of Artificial Intelligence 126 (2023) 107028.

J. Pflug, S. Rinderle-Ma, Process instance similarity: Potentials, metrics,
applications, in: On the Move to Meaningful Internet Systems: OTM 2016
Conferences, Springer, 2016, pp. 136-154.

F. Emmert-Streib, M. Dehmer, Y. Shi, Fifty years of graph matching, net-
work alignment and network comparison, Information sciences 346 (2016)

180-197.

M. Leemans, W. M. P. van der Aalst, Discovery of frequent episodes in
event logs, in: International symposium on data-driven process discovery

and analysis, Springer, 2014, pp. 1-31.

A. Abbad Andaloussi, J. Buch-Lorentsen, H. A. Lépez, T. Slaats, B. Weber,
Exploring the modeling of declarative processes using a hybrid approach,
in: International conference on conceptual modeling, Springer, 2019, pp.

162-170.

A. Abbad Andaloussi, F. Zerbato, A. Burattin, T. Slaats, T. T. Hilde-
brandt, B. Weber, Exploring how users engage with hybrid process arti-

facts based on declarative process models: a behavioral analysis based on

99

[63]

[64]

eye-tracking and think-aloud, Software and Systems Modeling 20 (2021)
1437-1464.

P. Bera, P. Soffer, J. Parsons, Using eye tracking to expose cognitive pro-
cesses in understanding conceptual models, MIS quarterly 43 (4) (2019)
1105-1126.

S. J. Leemans, S. J. van Zelst, X. Lu, Partial-order-based process mining:
a survey and outlook, Knowledge and Information Systems 65 (1) (2023)
1-29.

L. Yujian, L. Bo, A normalized levenshtein distance metric, IEEE transac-

tions on pattern analysis and machine intelligence 29 (6) (2007) 1091-1095.

S. Kosub, A note on the triangle inequality for the jaccard distance, Pattern

Recognition Letters 120 (2019) 36-38.

A. Levy, B. R. Shalom, M. Chalamish, A guide to similarity measures and
their data science applications, Journal of Big Data 12 (1) (2025) 188.

H. Zha, J. Wang, L. Wen, C. Wang, J. Sun, A workflow net similarity
measure based on transition adjacency relations, in: Computers in Industry,

Vol. 61, Elsevier, 2010.

A. Bellet, A. Habrard, M. Sebban, A survey on metric learning for feature
vectors and structured data, in: arXiv preprint arXiv:1306.6709, 2013.

M. Kaya, H. S. Bilge, Deep metric learning: A survey, in: Symmetry,
Vol. 11, MDPI, 2019.

A. Burattin, Plg2: Multiperspective process randomization with online and

offline simulations., in: BPM (Demos), Citeseer, 2016, pp. 1-6.

B. F. van Dongen, Bpi challenge 2015, in: 4TU.ResearchData. dataset,
2015.

96

[67] B. F. van Dongen, Bpi challenge 2019, in: 4TU.ResearchData. dataset,
2019.

[68] A. Abbad-Andaloussi, D. Liibke, B. Weber, Conducting eye-tracking stud-
ies on large and interactive process models using eyemind, SoftwareX 24

(2023) 101564.

[69] D. Fahland, Process mining over multiple behavioral dimensions with event
knowledge graphs, in: Process Mining Handbook, Springer, 2022, pp. 274—
319.

o7

	Introduction
	Preliminaries
	Related Work
	Trace Comparison
	Syntactic Similarity Measures
	Feature-based Similarity Measures
	Aggregation of Trace Similarity Values

	Model-based Similarity Measures
	Process Discovery

	Formal Comparison of Trace Similarity Measures
	Properties Related to Structure and Similarity
	Formal Comparison

	Similarity Measures Based on Graph-based Features
	Identifying Parallelism within Traces
	Incorporating Graph-based Features into Similarity Measures
	Step 1: Identifying Edge-types
	Step 2: Identifying the Length of Edge-types
	Step 3: Aggregating the Features

	Formal Comparison

	Evaluation
	Evaluation Measures
	Datasets
	SynL1, SynL2, SynL3, and SynL4.
	WABO and PO.
	EyeT1 and EyT2.

	Sampling Strategy
	Results

	Discussion
	Limitations

	Conclusion and Future Work

