
PN2CCS: A Tool to Encode Petri Nets into Calculus of

Communicating Systems

Benjamin Bogøa,b,∗, Andrea Burattina, Alceste Scalasa

aDTU Compute, Technical University of Denmark, Denmark
bDepartment of Computer Science, University of Copenhagen, Denmark

Abstract

PN2CCS is a software tool to encode Petri nets (PN) into the Calculus of
Communication Systems (CCS). Its purpose is to allow Petri nets generated
by most process mining algorithms (for instance, the α-miner) to be en-
coded into CCS, with the longer term goal of enabling the application tools
and techniques developed for process calculi to the realm of process mining.
PN2CCS is written in JavaScript and runs in modern web browsers with
an interactive graphical user interface. The interface allows users to input
a Petri net either by drawing it in the tool or importing a Petri net from a
common file format for Petri nets. The tool then classifies the input Petri net
and encodes it into CCS. The tool allows to encode a slight generalization of
free-choice (workflow) nets as well as Petri nets directly expressible in CCS.

Keywords: Petri nets, Calculus of Communicating Systems, Encoding,
Bisimulation, Free-choice workflow nets, Graphical user interface

∗Corresponding author
Email addresses: bebo@di.ku.dk (Benjamin Bogø), andbur@dtu.dk (Andrea

Burattin), alcsc@dtu.dk (Alceste Scalas)

Preprint submitted to Science of Computer Programming July 1, 2025



Metadata

Nr. Code metadata description Please fill in this column
C1 Current code version v1.2
C2 Permanent link to code/repository

used for this code version
https://github.com/bogoe/

pn2ccs

C3 Permanent link to Reproducible
Capsule

https://doi.org/10.5281/

zenodo.15700968

C4 Legal Code License GNU General Public License (GPL),
version 3+

C5 Code versioning system used git
C6 Software code languages, tools, and

services used
HTML, CSS and JavaScript

C7 Compilation requirements, operat-
ing environments and dependencies

Modern web browser (like Google
Chrome and Mozilla Firefox)

C8 If available, link to developer docu-
mentation/manual

https://github.com/Bogoe/

pn2ccs/blob/main/README.md

C9 Support email for questions bebo@di.ku.dk

Table 1: Code metadata

1. Motivation and Significance

Petri nets and process calculi are among the most successful tools for the
modelling and verification of concurrent systems. They have significantly
different approaches and application fields: in particular, Petri nets are used
to describe business workflow processes in process mining, whereas process
calculi are used for static verification of behavioural properties (e.g. via type
checking or (bi)simulations), often connected to programming languages.
Most existing literature focus on encodings from process calculi to Petri nets
while the other direction is less studied. [1]

In our theoretical paper [1], we present various encodings from different
classes of place/transition Petri nets into the Calculus of Communication
Systems [2], with focus on classes of Petri nets obtained via process mining
algorithms. The purpose of such encodings is to establish a foundation that
enables usage of analysis and verification techniques from the realm of pro-
cess calculi in the realm of process mining. Having a tool that implements
such encodings will help users to make experiments and give them a better
understanding of the encodings. It will also be a stepping stone towards new
applications for analysing mined processes with process calculi tools.

2

https://github.com/bogoe/pn2ccs
https://github.com/bogoe/pn2ccs
https://doi.org/10.5281/zenodo.15700968
https://doi.org/10.5281/zenodo.15700968
https://github.com/Bogoe/pn2ccs/blob/main/README.md
https://github.com/Bogoe/pn2ccs/blob/main/README.md
mailto:bebo@di.ku.dk


Group-choice nets Petri nets CCS

Free-choice nets Free-choice workflow nets Workflow nets

CCS nets

2-τ -synchronisation nets

Finite-Net
CCS [4]

Figure 1: Modified version of Figure 1 in [1] that shows the relation between Petri net
classes and the CCS fragment supported by PN2CCS. The arrows show which classes can
be converted into which other classes. Only the solid arrows are supported by PN2CCS.

PN2CCS [3] is a tool that implements the encodings from Petri nets
into CCS and closely follows the theoretical encoding framework developed
in [1]. It supports its users through a graphical user interface (GUI). The
initial version was published as companion artefact of the paper [1] for CO-
ORDINATION 2024. Figure 1 shows the Petri net classes that PN2CCS
recognizes, and the arrows correspond to the encodings presented in [1]. At
its core, PN2CCS implements the theory of [1] via (1) a transformation of
group-choice nets into 2-τ -synchronisation nets (Algorithm 6 in [1]), and (2)
an encoding from 2-τ -synchronisation nets into CCS (Algorithm 3 in [1]).
This corresponds to the solid arrows in Figure 1, which are sufficient to en-
code all the encodable classes of Petri nets covered in [1].

Since its first public release, PN2CCS has been extended to also gen-
erate a viewable version of the intermediate Petri net (technically, a 2-τ -
synchronisation net) that PN2CCS generates during its encoding operation.
It also features improvements to its GUI and better support for touch devices.

2. Software Description

PN2CCS is written in JavaScript and runs in modern web browsers with an
interactive graphical user interface. Further details on how to run and use
the tool is available in the file README.md in the artefact [3].

2.1. Software Architecture

PN2CCS is divided into three main components: the Petri net module, the
CCS module and the graphical user interface (GUI). The Petri net module
maintains a dynamic graph representation of Petri nets. It contains methods
for updating, classifying and encoding Petri nets. The CCS module has an
abstract syntax tree representation of the CCS and methods for converting
it into a string. Finally, the GUI is responsible for the visual presentation of
the Petri nets and for handling user inputs for manipulation of the Petri nets.

3



Figure 2: The graphical user interface in PN2CCS.

The GUI is responsive and the view for large screens is shown in Figure 2. For
smaller screens, the elements are stacked and the screen becomes scrollable.
The numbers in Figure 2 denote:

1. Area for drawing the input Petri net (the one that should be encoded).

2. Place/transition, draggable onto Area 1 when drawing a Petri net.

3. Classification of the Petri net in Area 1.

4. Area with the intermediate representation (IR) generated during the
encoding of the Petri net in Area 1.

5. CCS obtained by encoding the Petri net in Area 1.

6. Button to reset the tool (clears the Petri net in Area 1).

7. Button to import Petri net from a PNML file [5].

8. Button to export the Petri net in Area 1 to a PNML file.

9. Button to export the CCS in Area 5 as a text file.

10. Button to get detailed help about the tool.

11. List that briefly describes how to draw/edit the Petri net in Area 1.

12. Buttons that can be used to show/hide parts of the tool.

2.2. Software Functionalities

PN2CCS takes a Petri net as input and produces a CCS process as output.
The input Petri net can either be imported from a PNML file by using
the import functionality (Button 7 in Figure 2) or drawn manually in the

4



GUI. Petri nets can be drawn in PN2CCS by drag-and-dropping places and
transitions from Area 2 in Figure 2 onto the drawing Area 1. Edges can
be added by left-clicking on a place and then on a transition, or vice versa.
Places and transitions can be moved by selecting them (left-click) and then
dragging them to their new location (left-click again to deselect). The number
of tokens in a place or the action of a transition can be changed by right-
clicking on the place or transition. Places, transitions and edges can be
deleted by right-clicking on them and then select the delete button in the
dialog. Please consult the help screen in the tool (Button 10 in Figure 2) for
more details and instructions for touch devices.

Whenever the input Petri net is updated, it is classified in terms of the
classes in Figure 1. The matching classes are coloured in Area 3 in Figure 2.
The definitions of the classes and how they are detected are described below:

• CCS net (Definition 12 in [1]): All transitions must have 1 or 2 ingoing
edges and every transition with 2 ingoing edges must have label τ .

• 2-τ-synchronisation net (Definition 13 in [1]): Same as CCS net,
except that transitions with zero ingoing edges are also allowed.

• Free-choice net (Definition 10 in [1]): All places with multiple out-
going edges must only have edges to transitions with one ingoing edge.

• Workflow net (Definition 9 in [1]): There must be exactly one source
place i with no ingoing edges and exactly one sink place o with no
outgoing edges. In addition, every place/transition must be on a di-
rected path from i to o. PN2CCS checks this by running a breadth-first
search (BFS) in forward direction from i and backwards from o, and
then check that all nodes were reached in both runs.

• Free-choice workflow net (Definition 11 in [1]): Both checks for
free-choice net and workflow net must pass.

• Group-choice net (Definition 15 in [1]): All places with an edge to a
same transition, all have edges to the exact same transitions.

If the input Petri net is classified as a group-choice net but not a 2-τ -
synchronisation net, it is transformed into a 2-τ -synchronisation net (the
IR), and shown in Area 4 on Figure 2. Internally, PN2CCS performs this
transformation as follows: (1) select a transition t that violates the 2-τ -
synchronisation net constraints; (2) remove all outgoing edges from all places
with an edge to t; (3) synchronise these places two places at a time until only
one place remains; (4) and connect the last place to all transitions that had
edges removed. The pairwise-synchronisation is achieved by connecting two
places at a time to a new transition t′ with label τ leading to a new place p′.

5



Figure 3:
Group-choice
net.

Figure 4: Sequential synchronisation
pattern of Figure 3 that synchronises
one original place at a time.

Figure 5: Parallel synchronisation
pattern of Figure 3 that synchronises
the original places in pairs.

For instance, when Figure 3 (examples/pnml/s03-sync-patterns.pnml in
the artefact [3]) is imported into PN2CCS, it may randomly produce either
sequential synchronisation patterns as in Figure 4, or more parallel patterns
like in Figure 5 when transforming it. This transformation is trivial in the
Petri net model but it is more involved for the GUI, as it also has to assign a
position to the new places and transitions. PN2CCS handles this by pushing
selected places and transitions to the right.

When the input Petri net has been transformed into a 2-τ -synchronisation
net, the latter is encoded into CCS as described for the example in Section 3.

3. Illustrative Examples

The artefact [3] contains several Petri nets (directory examples/pnml) that
one can import and modify in PN2CCS – including examples covering all
the classes in Figure 1, and some Petri nets from process mining literature.
Details are provided in the file README.md.

In this section we use the order-to-cash Petri net in Figure 6 (based on
Fig. 3.6 in [6]) to show how PN2CCS works. The Petri net describes how
an order for a product is processed. It starts by checking if the products are
in stock (t1) and if not, the order is rejected (t9). Otherwise, the product

Figure 6: Free-choice workflow net that describes an order-to-cash process.

6



is fetched from the warehouse (t2) and the order is confirmed (t3). After-
wards, the shipping address is fetched (t4) and the product is shipped to
that address (t6). Meanwhile, an invoice is sent (t5) and the payment is re-
ceived (t7). When both the product is shipped and the payment is received,
then the order is archived (t8).

The Petri net in Figure 6 is available as a PNML file in the artefact [3]
(examples/pnml/s06-order-to-cash-process.pnml) and can be imported
in PN2CCS by using the import functionality (Button 7 in Figure 2). The
Petri net can also be drawn manually by following the step-by-step instruc-
tions in the file README.md [3].

When the complete order-to-cash Petri net has been drawn or imported,
PN2CCS classifies it as a free-choice workflow net (and therefore, also a
group-choice net, by Figure 1), but not a 2-τ -synchronisation net (and there-
fore, also not a CCS-net, by Figure 1). In fact, Figure 6 is not a 2-τ -
synchronisation net because t8 has two ingoing edges but its label is not
τ . All places in Figure 6 pass the group-choice net check: in fact, they only
have edges to transitions with one ingoing edge — except p8 and p9 that both
only have an edge to t8.

To continue the encoding, PN2CCS transforms the Petri net in Figure 6
into a (weakly bisimilar [1]) 2-τ -synchronisation net by removing the outgoing
edges from p8 and p9, and connecting them to a new τ -transition t10 that is
connected to the original transition t8 via a new place p11. The result is
shown in Figure 7.

Finally, the Petri net in Figure 7 is encoded into the CCS process in
Figure 8. Every place is encoded as a choice between its transitions, for
instance p2 is encoded into the process Xp2 with the choice between t2 with
action getprod followed by a token to p3 (Xp3) and t9 with action reject

followed by a token to p10 (Xp10). The place p3 only has one option, namely
t3, which produces tokens to both p4 and p5: this is encoded as the parallel
composition (Xp4 |Xp5). Place p10 has no options, so the choice collapses to
inaction (0). Transitions with two ingoing edges require a τ -synchronisation,

Figure 7: The 2-τ -synchronisation net (IR) obtained by transforming Figure 6.

7



Figure 8: CCS obtained by encoding the 2-τ -synchronisation net in Figure 7.

so p8 and p9 with an edge to t10 has a new action st10 and its co-action
st10; the new action is restricted (νst10) in the initial process at the bottom.
The initial process is the parallel composition of each place repeated once
per token: in Figure 7, only p1 has a token so it simply becomes Xp1 . If
more tokens are added to the place p1, then the process Xp1 is replicated
accordingly, for instance 3 tokens yields X3

p1
.

4. Impact

PN2CCS is part of a larger line of research which aims at studying the ap-
plication of techniques from the realm of process calculi (e.g. behavioural
equivalences and preorders, model checking) to the analysis and verification
of Petri nets obtained via process mining. PN2CCS implements the first step-
ping stone for this line of research, i.e., the translation of mined Petri nets
into behaviourally-equivalent CCS processes (using the encodings introduced
in [1]). Crucially, PN2CCS supports PNML files generated by standard pro-
cess mining tools in literature, such as the α-miner [7] — and several such
example nets are included in the artefact.

While many behavioural properties such as deadlock-freeness or reach-
ability can also be analyzed directly on Petri nets, encoding the result of
process mining into CCS enables the reuse of a rich ecosystem of tools,
specifically developed for process calculi. For example, after encoding the
order-to-cash process from Figure 6, an organization may verify its weak
bisimilarity against a reference process that they are planning to implement.
Tools like the mCRL2 model checker [8] can also allow querying the process
for properties that are not naturally supported in Petri nets e.g., “on all
paths, a payment is eventually received before archiving the order”.

8



5. Future Plans

We plan to use PN2CCS with mined nets from larger case studies and explore
how analysis techniques from the realm of process calculi can be applied and
adapted for process mining purposes. To this end, it could be useful to
let the user choose the synchronisation pattern when generating the 2-τ -
synchronisation net. PN2CCS could also be extended with export options
to other tools: e.g., it could be easily adapted to produce its output in the
process calculus of the mCRL2 model checker [8].

References

[1] B. Bogø, A. Burattin, A. Scalas, Encoding petri nets into ccs, in:
I. Castellani, F. Tiezzi (Eds.), Coordination Models and Languages,
Springer Nature Switzerland, Cham, 2024, pp. 38–55. doi:10.1007/

978-3-031-62697-5_3.
URL https://doi.org/10.1007/978-3-031-62697-5_3

[2] R. Milner, A Calculus of Communicating Systems, Vol. 92 of Lec-
ture Notes in Computer Science, Springer, 1980. doi:10.1007/

3-540-10235-3.
URL https://doi.org/10.1007/3-540-10235-3

[3] B. Bogø, Encoding petri nets into ccs (Dec. 2024). doi:10.5281/zenodo.
15700968.
URL https://dtu.bogoe.eu/tools/pn2ccs/

[4] R. Gorrieri, C. Versari, Introduction to Concurrency Theory - Transition
Systems and CCS, Texts in Theoretical Computer Science. An EATCS
Series, Springer, 2015. doi:10.1007/978-3-319-21491-7.
URL https://doi.org/10.1007/978-3-319-21491-7

[5] J. B. et al., Pnml grammar, version 2009 (2009).
URL https://www.pnml.org/version-2009/version-2009.php

[6] M. Dumas, M. La Rosa, J. Mendling, H. A. Reijers, Essential Process
Modeling, Springer Berlin Heidelberg, Berlin, Heidelberg, 2018, pp. 75–
115. doi:10.1007/978-3-662-56509-4_3.
URL https://doi.org/10.1007/978-3-662-56509-4_3

[7] W. M. P. van der Aalst, T. Weijters, L. Maruster, Workflow mining:
Discovering process models from event logs, IEEE Trans. Knowl. Data
Eng. 16 (9) (2004) 1128–1142. doi:10.1109/TKDE.2004.47.

9

https://doi.org/10.1007/978-3-031-62697-5_3
https://doi.org/10.1007/978-3-031-62697-5_3
https://doi.org/10.1007/978-3-031-62697-5_3
https://doi.org/10.1007/978-3-031-62697-5_3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
https://dtu.bogoe.eu/tools/pn2ccs/
https://doi.org/10.5281/zenodo.15700968
https://doi.org/10.5281/zenodo.15700968
https://dtu.bogoe.eu/tools/pn2ccs/
https://doi.org/10.1007/978-3-319-21491-7
https://doi.org/10.1007/978-3-319-21491-7
https://doi.org/10.1007/978-3-319-21491-7
https://doi.org/10.1007/978-3-319-21491-7
https://www.pnml.org/version-2009/version-2009.php
https://www.pnml.org/version-2009/version-2009.php
https://doi.org/10.1007/978-3-662-56509-4_3
https://doi.org/10.1007/978-3-662-56509-4_3
https://doi.org/10.1007/978-3-662-56509-4_3
https://doi.org/10.1007/978-3-662-56509-4_3
https://doi.org/10.1109/TKDE.2004.47


[8] O. Bunte, J. F. Groote, J. J. A. Keiren, M. Laveaux, T. Neele, E. P.
de Vink, W. Wesselink, A. Wijs, T. A. C. Willemse, The mcrl2 toolset
for analysing concurrent systems - improvements in expressivity and us-
ability, in: T. Vojnar, L. Zhang (Eds.), Tools and Algorithms for the
Construction and Analysis of Systems - 25th International Conference,
TACAS 2019, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-
11, 2019, Proceedings, Part II, Vol. 11428 of Lecture Notes in Computer
Science, Springer, 2019, pp. 21–39. doi:10.1007/978-3-030-17465-1\
_2.
URL https://doi.org/10.1007/978-3-030-17465-1_2

10

https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2

	Motivation and Significance
	Software Description
	Software Architecture
	Software Functionalities

	Illustrative Examples
	Impact
	Future Plans

