Journal of Intelligent Information Systems
https://doi.org/10.1007/s10844-025-00997-7

RESEARCH |

®)

Check for
updates

I-PALIA, An algorithm for discovering BPMN processes with
duplicated tasks

Carlos Fernandez-Llatas'3 - Andrea Burattin?

Received: 12 March 2024 / Revised: 2 October 2025 / Accepted: 3 October 2025
© The Author(s) 2025

Abstract

Process mining encompasses a range of methods designed to analyze event logs. Among
these methods, control-flow discovery algorithms are particularly significant, as they en-
able the identification of real-world process models, known as in-vivo processes, in con-
trast to anticipated models. An obstacle faced by control-flow discovery algorithms is their
limited ability to recognize duplicated activities, which are activities that occur in multiple
locations within a process. This issue is particularly relevant in the healthcare sector,
where numerous instances of duplicated activities exist in processes but remain undetected
by conventional algorithms. This article introduces a novel concept for a control-flow dis-
covery algorithm capable of effectively revealing duplicated activities. The effectiveness
of this technique is demonstrated through experimentation on a synthetic dataset. More-
over, the algorithm has been implemented and its source code is available as open-source
software, accessible both as a ProM plugin and a Java Maven dependency.

Keywords Process mining - Control-flow discovery - BPMN - Duplicated activities

Carlos Fernandez-Llatas and Andrea Burattin contributed equally to this work.

X Carlos Fernandez-Llatas
cfllatas@itaca.upv.es

Andrea Burattin

andbur@dtu.dk
I SABIEN-ITACA, Universitat Politécnica de Valéncia, Camino de Vera S/N, Valencia 46022,
Valencia, Spain
DTU Compute, Technical University of Denmark, Lyngby, Denmark

Department of Clinical Science, Intervention and Technology,, Karolinska Institutet,
Stockholm 17177, Sweden

Published online: 20 October 2025 @ Springer

https://doi.org/10.1007/s10844-025-00997-7
http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-025-00997-7&domain=pdf&date_stamp=2025-10-18

Journal of Intelligent Information Systems

1 Introduction

Process mining is the scientific discipline aiming at connecting process models and record-
ings of activity executions (Aalst, 2016). In particular, control-flow discovery techniques
pertain to the synthesis of models that are capable of explaining in a compact way all (or
most of) the executions reported in an event log.

The ultimate goal of process mining techniques is to improve processes and how these
are actually deployed in the real world. Since these models are supposed to improve actual
processes, it is essential that the models identified are as reliable and good as possible.

When considering the control-flow discovery techniques, the main challenge they need
to face consists of extracting a model that is the most suitable representation possible. Defin-
ing most suitable representation is a challenge in itself and, in the literature, numerical
approaches to quantify this dimension have been proposed, in particular fitness, precision,
generalisation and simplicity (Aalst, 2016). Fitness indicates that a model should be able to
replicate the log it has been generated from; precision quantifies how much more behavior
(w.r.t. the starting log) the mined model permits; generalization tries to capture to what
extent behavior not observed in the log is present in the model; and, finally, simplicity veri-
fies that the model should be as simple as possible, to foster understandability. All these
metrics should be maximized in order to obtain good results.

While many algorithms for control-flow discovery have put a lot of focus on optimiz-
ing fitness and precision (Leemans et al., 2014a; Aalst et al., 2006; Augusto et al., 2019),
less emphasis has been put on the simplicity dimension, in particular regarding the type of
supported behavior. Specifically, as mentioned in the Process Mining Manifesto (Daniel
et al., 2011) (as guiding principle GP3), control-flow discovery algorithms should be able
to identify basic control-flow constructs (Russell et al., 2006; Aalst et al., 2003), such as
concurrency and choice. In many situations, a limiting factor towards better simplicity is the
problem of duplicated activities. This problem stems from the fact that most control-flow
discovery algorithms are not able to produce process models where the same activity occurs
more than once.

In many scenarios, it is easy to find processes with duplicated tasks. For instance, within
the healthcare sector, it’s common to encounter activities that occur repeatedly. Instances
such as revisiting medical appointments, undergoing assessment procedures like laboratory
tests and medical imaging, or undergoing cyclic treatments like dialysis or chemotherapy
are recurrent events throughout a patient’s journey within the care process. These activities
carry significant importance in representing the overall process. To illustrate, the sequenc-
ing of treatments can vary significantly based on the timing of assessments. For instance, in
the context of cancer treatments, administering chemotherapy before and/or after surgery
can yield distinct results. The initial treatment aims to shrink the tumor size and streamline
the surgical procedure, while the subsequent treatment focuses on preventing the prolifera-
tion of harmful cells, introducing differing objectives and complexities that impact process
delineation. This problem can be found in many other process scenarios like manufacturing,
logistics, and auditing.

When applying conventional process discovery algorithms to these scenarios, the ability
to differentiate between these distinct behaviors becomes compromised. In this example, as
well as in numerous other cases within the healthcare sphere, the utilization of duplicated
nodes becomes imperative. Not only do they contribute to a lucid depiction of the process,

@ Springer

Journal of Intelligent Information Systems

but they also facilitate comprehension of the preparatory and follow-up stages surrounding
these recurrent activities.

As a simple example of a process that shows duplicated activities, consider the process
model reported in Fig. 1. In this normative process, you see that the activity of contacting a
potential customer takes place both at the beginning and at the end of the process. While the
two activities may involve slightly different tasks, for the sake of modelling it is legitimate
that they have the same label. As a consequence, event logs recording executions of this
process will show the presence of two activities called Contact potential customer which,
however, should not be collapsed into the same activity in the model: though these have the
same label, their mining is distinguishable based on the position where they occur; hence,
these should appear two times.

In this paper, we present a new discovery algorithm capable of extracting process mod-
els, represented as BPMN (OMG, 2009), which is based on the control of the generaliza-
tion in the process of log inference using Grammar Inference techniques. The algorithm
can identify all the basic workflow patterns (i.e., sequence, parallel split, synchronization,
exclusive choice, and simple merge) with the addition of duplicated activities. This algo-
rithm is inspired by the PALIA algorithm, which uses grammar inference approaches for
discovering processes taking the complete schedule of the log events for identifying paral-
lelism (Fernandez-Llatas et al., 2010; Rojas et al., 2017). This paper extends (Fernandez-
Llatas and Burattin, 2023) by:

Improving the state of the art with respect to duplicated task mining;
Extending the algorithm with different abstraction capabilities;
Extending the description of the algorithm and the data structure;
Presenting a new implementation of the approach in a real system.

The rest of the paper is structured as follows: Section 2 introduces the background and the
state of the art of the proposed technique; Section 3 states some preliminary concepts for the
definition of the algorithm; Section 4 presents the actual algorithm proposed in the paper;
Section 5 describes the implementation of the technique; Section 6 presents some perfor-
mance results of the algorithm against some extreme scenarios; Section 7 presents some
discussion points and best practices in the application of the algorithm; and finally Section 8
concludes the paper.

Offer

~
Contact

potential

customer

(&n

Prepare offer

ey -
Contact

potential
customer

Customer not interested

Fig. 1 Example of process with duplicated activities

@ Springer

Journal of Intelligent Information Systems

2 Background and state of the art

There were many attempts in the literature to create solutions that can deal with the prob-
lem of duplicated tasks (Duan & Wei, 2020). In the literature on control-flow discov-
ery (Augusto et al., 2019), many algorithms have been developed capable of identifying all
the basic workflow patterns. Among these, the Alpha miner is typically recalled as one of
the first algorithms explicitly tackling the control-flow discovery problem. More advanced
algorithms, such as the Heuristics Miner, the Fuzzy Miner, the Split Miner, and the Induc-
tive Miner, have gained much popularity due to the quality of the output they produce
and their performance. However, none of these is actually capable of producing duplicated
activities. The algorithms that are able to achieve this are very few, including the ax-algo-
rithm (Calders et al., 2009), which nonetheless has very restrictive assumptions on the event
log. Fodina (Calders et al., 2009) can discover duplicated activities by pre-processing the
event log only based on some heuristics. Genetic Process Mining (Medeiros, 2006), Evo-
Iutionary Tree Miner (ETM) (Buijs et al., 2014), AGNES (Goedertier et al., 2009) are evo-
lutionary algorithms that, in principle, can discover duplicated activities at the expense of
extreme computational complexity. Some techniques apply heuristic approaches for identi-
fying duplicated activities and provide relabelling (Lu et al., 2016) that could feed existing
Process Mining Discovery algorithms. SLAD (Vazquez-Barreiros et al., 2016) is another
approach that post-processes the mined model for duplicated activities. Also in this case,
however, the algorithm exploits some heuristics to simplify the model by duplicating some
behaviour.

There are works that generate stochastic process models based on grammatical inference,
such as those relying on the inference of stochastic deterministic finite automata (SDFA)
(Alkhammash et al., 2024). These approaches are capable of capturing the sequential struc-
ture and the probability of occurrence of observed traces, resulting in models that reflect
the statistical distribution of the data. However, an important limitation of these techniques
is that, due to the inherently sequential nature of automata, they are unable to identify
or represent complex behavioral patterns such as parallelism. As a result, the discovered
models typically only describe strict precedence relationships between activities, without
adequately capturing the existence of activities that can be performed in parallel or indepen-
dently within the process.

As a basis for the paper, we should provide some definitions. Classic PALIA algo-
rithm (Fernandez-Llatas et al., 2010; Rojas et al., 2017) uses as a representation model, a
Timed Parallel Automaton (Fernandez-Llatas et al., 2011). This model has an expressive-
ness equivalent to a safe Petri Net (Peterson, 1977) and has a Regular complexity (Fernan-
dez-Llatas et al., 2011) based on the concept of Parallel Finite Automaton (Stotts & Pugh,
1994). For this paper, a TPA is defined as follows:

Definition 1 (Timed Parallel Automaton (TPA)) A Timed Parallel Automaton (TPA) (Fer-
nandez-Llatas et al., 2011) is a tuple 7 ={N, Q, 7, ¢, S, F} where:

e Nis a finite set of Nodes, where a Node # is a graphical representation of the action a,

e (is a finite set of states where ¢ C N™Vq € Q,

® 7:NT — N7 is the Node Transition function, where v = ({nf, .., n}, {ng, .., n$}).
I is the set of y transitions;

@ Springer

Journal of Intelligent Information Systems

o §:(@Q — (@ is the State transition function where 0 = (¢°,¢¢). A is the set of § transi-
tions where (Vd € AJy e T |[{n],...,nf} =q¢°* A{n§,...,nf} = ¢°) where ~ is the
associated transition of §;

e S C N is the set of Starting Nodes;

e [C N is the set of Final Nodes.

A TPA has a double transition function, defining Nodes (V) and States (Q). N7 is the set
of all combinations of n € N with at least one . The transitions between nodes can be n to
n multiple for defining parallelism. For example, a transition v, = ({n1}, {na, n3}) repre-
sents a parallel split from the node n; to the nodes ny and n3. In the same way, a transition
va = ({n1,na}, {ns}) represent a parallel synchronization from the nodes n; and ns to the
node n3. Exclusive Choice can be represented using several y transitions. For example, hav-
ingv1 = ({n1},{n2}) andv2 = ({n1}, {ns}) we can represent that, from n, is possible to
g0 to ng or n3.

The States function (A) captures the regular language behavior underlying the interpre-
tation of the automaton. This means that, on its own, it can represent the sequential behav-
ior that occurs between the parallelisms described by the (I') function. In the (A set), the
parallelism is represented at the state level. A State ¢ is a set of Nodes that represents the
actions that are active in the state ¢ in an analogous way to a Petri-Net marking. A and I are
complementary. The state transitions (J) keep the regular complexity due to their simplic-
ity (N to N) where the Node Transitions (I') represent parallel situations (N* to NT). In
practice, there is only one state active in a moment in time, which supposes that it could be
several nodes active. Node transitions represent the single pass from one node to another.

A visual example of how the double transition function works for representing parallel
patterns can be shown in Fig. 2. The TPA can be formally described as can be seen at the
bottom of the Figure' In this example, N represents the set of nodes available in the automa-
ton, while Q represents the set of possible nodes that could be active at the same time, in
a similar way to Petri Nets marking. In this line, the function I' defines the possible transi-
tions between the nodes v1 = ({n1}, {n2,n3}) states the parallel split sequences headed
by nodes no and ng3. Analogously d; represents the transition in a single transition from the
state g1 to state go3 and 7 is the associated transition of J;. By continuing the sequence
using transition 79, the node nq finishes, and the node n,4 starts. Similarly, the transition
02 has the same execution information but keeping in mind that the node ng is still active.
Using this double transition function, it is possible to represent the many-to-many transition
information in the I" function, but having global control of the execution of parallel nodes
in A only with one-to-one transitions, keeping in A function a regular languages level
complexity.

This double transition function allows representing complex workflow patterns (Fernan-
dez-Llatas et al., 2011). For instance, Fig. 3 represents an example of an interleaved paral-
lel routine. In this pattern, some parallel sequences are executed, but some actions are not
allowed to be executed simultaneously. For example, the dashed rectangles in the figure
represent sequences of protected actions. In this line, nodes C, and D, can’t be executed at
the same time. This pattern could be represented formally as a TPA as defined at the bottom
of the Figure. As can be seen in the formal representation, the I' Function reflects all the

'The notation has been simplified and only the states required for the understandability of the example have
been represented

@ Springer

Journal of Intelligent Information Systems

N ={n1,n2,n3,n4,ns5,...}
Q ={q1,923,q43...}
' ={({n1}, {n2,n3}), {n2}, {na}), {ns}, {ns})...}

A ={(q1,923), (q23,943), ---}

Fig.2 Example of visual representation of I' and A functions

N ={S,A,B,C,D,E,F,Z}
Q ={45,94B,90B+9EB,9AD, IAF, IEF, 42 }
I ={({S}, {4, B}, {4} {C}), {C}H{E}H, (B} {D}), (D} {F}), {E, F},{Z}H}
A ={(¢s,94B); (4aB,9cB), (9cB,9EB), (4cB,4EB); (4EB, 4ED):
(4eD+4EF), (44B,94D): (4ADs9AF): (9AF, 4CF), (dcF, 4EF), (AEF, 42)}

Fig. 3 Interleaved parallel routine represented with TPA

transitions described on the graphical TPA. However, A function skips the prohibited transi-
tions like (gap, gcp) or (qeB,qcD)-

In a TPA, A orchestrates the actions from a high level, and I" defines all the possible
many-to-many transitions at a low level. Both are complementary, on one hand, without A,
T is unable to know globally the allowed transitions, and on the other hand, without ", A
can’t be safe in identifying the next node to activate. This is clear in self-loops. For example,

@ Springer

Journal of Intelligent Information Systems

in a Self Loop (¢aB, qaB), without the I" associated transition, A is unable to know if there
is a self-loop in node 4 or in node B.

3 Preliminary concepts

The main objective of this paper is to build a discovery algorithm that can infer TPAs from
log events. This requires the ability infer the double transition function. However, it is pos-
sible to build an algorithm that, given a I" set, it constructs a basic A set of states with some
limitations. This will allow the discovery algorithm to be focused on the inference of I"
transitions, assuming that A can be extracted afterwards.

In this section, we will present the algorithm that we have devised to infer the A func-
tion from I' and some preliminary definitions such as, domains, ranges or event logs for the
formalization of the algorithm.

Definition2 The Domain of a functiony = ({ng, .., n{ }, {ng, ..,n$}) € I'is the set starting
nodes of the function.

Domain(y) = {ng,...,n; }

Definition 3 The Range ofa function v = ({n§, ..,nj}, {nf,..,n5}) € I'is the set of ending
nodes of the function.

Range(y) = {ng, .., nj}

Require: N,I"

Ensure: O,A

1: Qny < InitialStates(N)

2: while O,y # ¥ do

3 q < Onl0]

4 Onv < O[]

5 for all y € T'|Domain(y) € g do
6: q' < q — Domain(y) + Range(y)
7 if ¢/ € O then

8 Onv < Onv Ug")

9 end if

10: 8<—(q,q/,y)

11: A <~ AU{s}

12: end for

13: end while

Algorithm 1 A State transitions inference.

The “A State Transitions Inference Algorithm” is presented in Algorithm 1. This algo-
rithm traverses the nodes from the initial nodes through the ~y transitions that are the origin
(Domain). In each iteration, the algorithm creates the possible states (¢') possible at any
moment by analyzing all the possible paths in the TPA. When a not visited state is reached,
this is annotated in the set of not visited states (@,). The algorithm stops when all the states

@ Springer

Journal of Intelligent Information Systems

are visited and analysed. As a result, the Algorithm returns in Q all the possible states and in
A all the possible one-to-one state transitions.

In case of no parallelism, " and A are equivalent; all the states have a single node. The
difference resides when I' has parallel nodes. In that case, A can be seen as the explosion
of T transitions derivations defining the Q as all the possible active nodes in parallel in a
moment in time and A equivalent to I" representing the transitions between the node sets.

This algorithm is simple but also limited. This algorithm is not able to deal with more
complex representations like Interleaved Parallel Routines or milestones. This is because
it only captures strict sequential relationships between activities and lacks mechanisms to
explicitly represent concurrency or conditional dependencies. As a result, patterns involv-
ing parallelism, interleaving, or milestone constraints cannot be properly distinguished or
modeled, and are instead flattened into purely sequential or alternative paths. On the one
hand, as it is not expected that the discovery algorithm could discover this kind of structure,
we consider this algorithm enough to represent the final model. On the other hand, the sim-
plicity of this algorithm allows a simple graphical TPA representation that defines parallel
gateways in many-to-many I transitions and assumes that all single arrows are exclusive Or
(XOR) gateways. Due to that, it is easy to translate from a TPA under these conditions to a
BPMN model. Figure 4 presents an example of how a TPA can be translated to a BPM nota-
tion format. In the example, the parallel sequences have the same notation, and the single
arrows are decorated with XOR gateways.

In the following, we present the definitions of Event and Event Log:

Definition 4 An Event is a tuple e = (a, 7) where a € A is the set of possible actions in a
process, 7 is the timestamp execution of the action.

Definition 5 An Event Log (£) is a set of traces L={ty, ..., t;} , where a trace is a sequence
of events t=[eg, . . ., ;]

An Event is the digital representation of an action at a moment in time. A set of events ref-
erenced to the same user or the same execution instance is called Trace.

(2>()
240 AT

&Y% od @ s

e§e O %7 ©

(a) TPA (b) BPMN

Fig. 4 Correspondence between TPA and BPMN

@ Springer

Journal of Intelligent Information Systems

4 Inductive PALIA (I-PALIA): the algorithm

Within this paper, we introduce an upgraded iteration of the PALIA algorithm, specifically
devised to uncover activity logs through the application of Grammar Inference methods.
Subsequently, the algorithm undertakes the task of detecting parallel configurations within
the inferred model.

To facilitate this process, we have established certain foundational definitions:

Definition 6 (Directly followed) Let 7 = (IV,) be a TPA, where N is the set of nodes and
v C N x N is the node transition relation. For ng,ny € N, we say that ng is directly fol-
lowed by n; (denoted ng — nq) if and only if

(no,n1) € 7.

Similarly, for node traces o, 1, we say that g is directly followed by v, (denoted vo — 1)
if and only if there exist (n9,11) € o and (ng, n}) € v1 such that ny — ng.

Definition 7 (Eventually followed) Let 7 = (IV, d) be a TPA, where N is the set of nodes
and § C N X N is the node transition relation. For ng,n1 € N, we say that ng is eventu-
ally followed by n; (denoted ng = n,) if and only if there exists a finite sequence of nodes
no, Nh, Ny, ..., nj_q,nq such that

(nOan/l) €9, (n/1>n/2) €94, ..., (n;c—lanl) €4,

that is, there exists a path from ng to n; in the transition relation .

Similarly, for node traces v, v1, we say that vy is eventually followed by v; (denoted
70 = 1) if and only if there exist (ng,n1) € 7o and (ng, n}) € 71 such that nq = ny.
These definitions describe that two node transitions are directly followed (—) when the sec-
ond transition can be immediately accessed from the first one and eventually followed (=)
when the second transition can be eventually accessed from the first one.

Definition 8 (Compatibility) Let ¢ = (a, 7) be an event, where a € A is the activity label
and 7 is the timestamp. Let lab : N — A denote the function that maps each node to its
activity label.

Event—event: ey = e iff a(eg) = a(eq).

Event-node: e = n iff a(e) = lab(n).

Node-node: ng = ny iff lab(ng) = lab(nq).

Set—set: For finite sets Ny, N1 C N, we write Ny = Ny iff | Ng| = | V1| and there exists
a bijection f : Ng — INj such that

Vn € Ny, lab(n) =lab(f(n)).

Colloquially, Nodes and Events are compatible when they refer to the same action, and two
sets of nodes are compatible if each one of the nodes of each set is compatible to a node of
the other set.

@ Springer

Journal of Intelligent Information Systems

Definition 9 (Transitions compatibility) Given two node transi-
tions v ={Do,Ro}, 71 ={D1,R1}, they are compatible (yo=v) if
(Domain(vyo) = Domain(y1) A Range(yo) = Range(v1))

Analogously, two node transitions are compatible (y; = 72) if their domains and ranges are
compatible. We also define different modes of compatibility

Definition 10 (Transitions Strict compatibility) Given two node transi-
tions o= {Do,Ro}, 71 ={Di1,Ri}, they are strictly compatible (=') if
Domain(vyy) = Domain(v,) A Range(yo) = Range(v1)

In other words, two node transitions are strictly compatible (71 =' 72) if their domains are
compatible, and their range nodes are exactly the same.

Definition 11 (Transitions Inline compatibility) Given two node transitions o = {Do, Ro},
~v1 = {D1, R1}, they are inline compatible (=) if vo =v1 A (Yo = 71 V71 = Y0)

That means, two node transitions are inlinely compatible (7; == ~2) when these are com-
patible, and in addition, one is eventually followed by the other. In other words, both are
located in the same process branch.

Definition 12 (Prefix Acceptor Tree (PAT)) A Prefix Acceptor Tree (PAT) is a tree-like TPA
built from the learning log by taking all the prefixes in the sample as states and constructing
the smallest TPA which is a tree, strongly consistent with the Log.

The Prefix Acceptor Tree creates a TPA that represents a tree from left to right with the
events of the samples. The head of the tree is formed by the nodes representing the starting
events of the traces, and the leaves represent the last events of the traces. Figure 5 shows
an example of how this tree is created. It should be noticed that although TPA is able to
represent parallel situations, the Prefix Acceptor Tree creates only non-parallel ¢ functions,
so this algorithm is not able to represent parallelism.

Require: L, EquivalentMode(E?)

Ensure: 7

1: T <« PrefixAceptorTree(L) > Prefix Acceptor Tree Stage
2: forally : (n®,n°) €T')do > Consecutive Merge Stage
3: if n¥ = n® then Merge(n®, n®)

4: endif

5: end for

6: for all ny,ny € Flng =ny do > Onward Merge Stage
7: Merge(ng,ny)

8: end for

9: while 7 has changes do

10: for all yx =? Yylvx, vy €T do

11: Merge(Domain(yx), Domain(yy))

12: Merge(Range(yx), Range(yy))

13: end for

14: end while

15: T <« ParallelMerge(T) > Parallel Merge Stage. See Algorithm 3

Algorithm 2 Inductive PALIA algorithm.

@ Springer

Journal of Intelligent Information Systems

start % ‘

Fig.5 Prefix Acceptor Tree of Log ={ABC,ABD,AEF}

Algorithm 2 shows the pseudocode of the presented algorithm. We can split the algo-
rithm into four main stages. The first stage is to compute the Prefix Acceptor Tree that
represents the log. Using the Prefix Acceptor Tree as a basis, Inductive PALIA will per-
form some generalizations over the algorithm using Grammar Inference techniques into
two more stages. In the second stage, Consecutive Merge, the algorithm merges compat-
ible consecutive nodes, generalizing all the transitions from one node to itself. In the third
stage, Onward Merge, the algorithm merges all the final nodes that are compatible and,
the algorithm Merge the domains and ranges of each couple of v in I" that are compatible
according to one of the compatible modes defined, Strict (=), Inline (=), or Compatible
(=). The mode of compatibility selected affects the generalization of the algorithm. The
Strict Compatibility is the more restrictive because it only generalizes the transitions shar-
ing the ranges, producing more duplicated tasks. The Inline Compatibility generalizes the
transitions located in the same domain of action (same branch), which means that they can
be referenced to the same trace. Finally, the simple Compatibility maximizes the generaliza-
tion, merging all the compatible transitions in the model independently of their position.
This is the one that generates fewer duplicated tasks. The Onward Merge stage is performed
until the TPA T has no new merges. This algorithm allows an ordered merging of the nodes
that prevents their massive merging like in other basic algorithms such as Directly Follows
Graphs (DFG) depending on the selected merging schema. The effects of the application of
these generalizations schema will be analyzed in more detail in the following section with
some examples.

Until this moment, the algorithm has discovered a process structure with sequences,
splits, and loops, assuming no parallelism, but differentiating repeated non-consecutive

@ Springer

Journal of Intelligent Information Systems

nodes. The next step is to identify the parallel sequences with the Algorithm 3 in the Paral-
lel Merge Stage. In this algorithm, the parallelism has been defined as:

Definition 13 (Parallelism) Given ng, n1 € N, ng and n; are parallel (ng||n1) where:

ng = N1 Any = no (D

!TLQ <~ nl/\!nl < Ng (2)

Intuitively, two nodes are parallel (ng||n1) if both are eventually followed by each other and
these nodes are not acting as a loop, that means, there is no same path of transitions that
contains ng = n; and n; = ng, and vice-versa (ng < n1). With that definition, the Paral-
lel Merge (Algorithm 3) defines the Parallel Regions for discovering the parallel situations:

Definition 14 (Parallel region) Given a TPA T and node ngpi:, A Parallel Region is a set
of nodes R where ngpiiz = ng A Iny : ng||ny|¥ng, ny € R.

A Parallel Region is a set of nodes that occurs after a split node n.s,;;: and have parallelisms
between themselves.

Definition 15 (Synchronization node) Given a TPA T, a node ngpi:, and a Parallel
Region R, a Syncronization Node is a node ngyncro Where n; = ngynero|Vn; € R and
vnz|n.5'pliif = Ng A Ng = nSyncro|nz € R.

A Synchronization Node n.5yncro is a node that occurs immediately after the Parallel region.
Nsplit and Nsynero delimit the Parallel Region and are the nodes that will define the start
and the end of parallelism. According to that, the Algorithm 3 Discover and create the Paral-
lel structures.

For example, in Fig. 8c, we can see that there is a node 4 located just before an isolated
region of nodes such that everyone passing through A4 eventually passes through D. In this
way, A would be the Split Node, D the Synchronization Node, and the intermediate nodes
would constitute the parallel region.

Require: 7

Ensure: 7

1: for all ngy,;;; € N do

2: R < GetParallelRegions(T , nspjit)

3 for all p € R do

4 nSyncro < GetSyncroNode(T , ngpjiz, R)

5 seq <IdentifyParallelSequences(7 , R) > See Algorithm 4
6: T <«CreateParallelTransitions(7 , nspjir, " Syncro» R, seq)

7 end for

8: end for

Algorithm 3 Parallel merge.

The Parallel Merge Algorithm discovers parallel regions after each node on the TPA.
The algorithm GetParallelRegions(T,ngpiit) searches for all possible regions in the
model by traversing all the nodes and checking if there exists a synchronization node that
defines a parallel region. Once a Parallel Region is detected, the subsequent task involves

@ Springer

Journal of Intelligent Information Systems

pinpointing the synchronization node that marks the boundaries of said Parallel Region.
Subsequently, the algorithm proceeds to determine the parallel sequences within the identi-
fied Parallel Region. This specific process is detailed in Algorithm 4.

Require: 7, R

Ensure: SeqMap

1: for all ¥ € R do

2: SeqMap(r) < (r,S) where S C R As; ffr|Vs; € S
3: end for

Algorithm 4 Identify parallel sequences.

The algorithm 4: Identify Parallel Sequences segregates the nodes within the Parallel
Region into distinct groups, classifying those that do not exhibit parallelism with the rest.
This methodology serves to discern the parallel sequences contained within the defined
Parallel Region.

The algorithm identifies parallel nodes (n1|/n2) that have a common previous transi-
tion (n — n1 and n — ny) to a node that is called ngplit. Once the sequence groups are
identified, the algorithm identifies the ng, . node, which is the first common node after the
parallel sequence that marks the end of the sequence. With the ngp;; and the ngypnc, we
can identify the region of parallelism between them. Each node is assigned to one of the
sequences, that is the one that is not parallel with the starting parallel node and is parallel
with the rest. After this assignation, the parallel sequences are isolated removing all the
leftover transitions.

For example, in Fig. 8c, within the identified parallel region, there are two possible start-
ing nodes, B and C, and one secondary node, B1. Analyzing the sequences, we observe that
B1 satisfies the parallelism condition with C (it can occur both before and after C), but not
with B (it always occurs after B), so node B1 is assigned to the sequence of B. By separating
the branches, we see that there are two branches: one with C, and another with B followed
by B1.

Upon successful identification of the parallel sequences, the Parallel Merge Algorithm
(Algorithm 3) allows the creation of the ascertained parallel structure. This involves estab-
lishing connections between each parallel sequence and the Split node at the beginning, as
well as the Synchronization node at the conclusion of the respective sequences.

We can see an example of the Parallel Merge Algorithm with the Fig. 8.

5 Implementation

I-PALIA has been implemented in Java and as a Maven project as well as a ProM plu-
gin.? Having the code available as a stand-alone Java project simplifies its embedding into
new projects (the code can easily be imported into any Maven/Gradle/Ivy project®). The
PaliaProM package, which imports the Maven dependency, allows us to easily benefit from
the algorithm leveraging the infrastructure made available by ProM. The package contains
two plugins, one called “Palia Miner” which takes an XES log object as input and produces
a standard BPMN object as a result. The second plugin made available in the PaliaProM

2The Maven project is available at https:/github.com/dtu-pa/palia. The ProM package, called PaliaProM, is
available at https://github.com/dtu-pa/PaliaProM.

3See https://jitpack.io/#dtu-pa/palia.

@ Springer

https://github.com/dtu-pa/palia
https://github.com/dtu-pa/PaliaProM
https://jitpack.io/#dtu-pa/palia

Journal of Intelligent Information Systems

12 ProM UlTopia - o x ‘

ProlM
Mined BPMN

Ver.310233 @ — O X

HEAT MAP
Nodes Map: Duration Median

0% [100 %
Transitions Map: TraceProportion

0% (T 100 %

A\
7 \
¢ B e’ =Y

N /

RN

Fig.7 PMApp application showing I-PALIA functionality

package is a visualizer for BPMN called “Graphviz BPMN visualisation” which exploits
Graphviz to display any BPMN process model. A graphical representation of the latter is
reported in Fig. 6.

Also, I-PALIA has been implemented in the PMApp tool (Ibanez-Sanchez et al., 2023)
as a selectable Discovery algorithm. As PMApp accepts the TPA natively, the connectivity
with the Experiment viewer was immediate. Figure 7 shows a TPA within PMApp after a
Discovery.

Figure 8 shows a full example of the different stages of I-PALIA algorithm implemented
in Java. For this example we have used the log £ = { ADHDDHDHA, ACBB,DDH A,
ABB,CDHDDHA }.

“https://github.com/dtu-pa/palia

@ Springer

https://github.com/dtu-pa/palia

Journal of Intelligent Information Systems

@6 60660 ee

(a) Prefix Acceptor Tree

(d) Parallel Merge

Fig. 8 I-PALIA Discovery Stages with log L ={4DHDDHDHA, ACBB1DDHA,
ABB\CDHDDHA}

Figure 8.a shows the result of applying the Prefix Acceptor Tree algorithm. As can be
seen, the process shows a tree that represents the three traces of the log generalized by the
prefix. In this case, the three traces share the same prefix 4 that becomes the first trace node,
and then each trace is represented in a different branch.

The Consecutive Merge Stage is illustrated in Fig. 8.b. Here, it is possible to see the
generalization of consecutive nodes. In this case, the three traces have the double repetition
of the D action in the middle of the trace. [-PALIA generalise this, defining a self-loop in
the three traces.

In Fig. 8.b we can detect some ~y that can be compatible. For example, the end of the three
traces is reached by three nodes with the same action 4. This is a clear Strict Compatible
pattern; in the first trace, the subsequence DH is an Inline Compatible Pattern, and the same
pattern can be applied in the different traces as a Simple Compatible Pattern. Figure 8.c is
the result of applying the Onward Merge stage with an Inline Compatible transition merge
mode, until no more Inline compatibilities are available on the flow.

The last step is the Parallel Merge Stage that aims to identify parallelism in the flow. In
Fig. 8.c we can see a parallel region identifiable by [-PALIA. The region between the first
A (nspiitr) and D (ngync) represents a region suitable to be parallelized. I-PALIA detects B,
and C as the head of parallel sequences and identifies BB; as a sequence according to the

@ Springer

Journal of Intelligent Information Systems

definition of parallelism. Figure 8.d presents the result of Parallel Merge and, consequently
the final result of I-PALIA.

The selection of an adequate Transition Merging mode is key to success in hav-
ing a good ratio between generalization and identification of duplicated tasks. Fig-
ure 9 shows an example applying the implemented version of I-PALIA over the log
L={ABCDEF,ACBDEG,ADCBEG,ADCBADEG} using the different three
Transition Merging Models. As can be seen in this example the results can vary signifi-
cantly. As expected, the Strict Compatible transition model (a) is the one that produces more
duplicated tasks, that suppose less generalization. On the other side, the Simple Compatible
Transition Mode is the one that performs a greater generalization reducing at the maximum
the number of duplicated tasks.

6 Performance evaluation

In order to evaluate the effectiveness of the algorithm, we decided to compare the models
resulting from the mining of the process using the state of the art algorithms and tools for
control-flow discovery. We designed a process (available in Fig. 10) specifically expressing
the challenges of duplicated activities; in the case of the process, it is activity A.

In addition to that, we incorporated behavior coming from the most common workflow
patterns (Aalst et al., 2003): sequences, parallel split, synchronization, exclusive choice, and
simple merge.

(c) Simple Compatible Transition Mode

Fig. 9 PALIA Discovery results with different Transition Merging modes with log
L ={ABCDEF, ACBDEG,ADCBEG,ADCBADEG}

@ Springer

Journal of Intelligent Information Systems

(c) Model discovered with Inductive Miner (d) Model discovered with Apromore

(e) Model discovered with I-PALIA

Fig. 11 Results of the mining of the log using different techniques

We simulated the process using the tool Purple (Burattin et al., 2022)°, configuring the
tool for the rediscoverability purpose, which led to an event log with 990 traces and 8415
events.

We mined this log with I-PALIA as well as with Fluxicon Disco®, Celonis’, Apromore
and the Inductive Miner (Leemans et al., 2014a). The results are available in Fig. 11. While
the model mined with I-PALIA matches perfectly the expected one, all other mining tools

8

3 See http://pros.unicam.it:4300/.
6See https:/fluxicon.com/disco/.
7See https://www.celonis.com/.

8See https:/apromore.com/.

@ Springer

http://pros.unicam.it:4300/
https://fluxicon.com/disco/
https://www.celonis.com/
https://apromore.com/

Journal of Intelligent Information Systems

Fig. 12 Random model generated for the stress test

70000 8000

58713

60000 7000

50000 6000
5000
40000
4000
30000
3000

20000 2000

Number of events of the log
Execution time of I-PALIA (ms)

10000 2995 5941

1000
575/ 69 106 228

100 500 1000 2000 5000 10000

Number of traces of each log

N Events ==Time (ms)

Fig. 13 Stress test on the algorithm against log with different sizes

and algorithms fail at extracting a model that resembles the original one. The main issue, as
expected, is the duplication of activity A which is observed at the beginning, in the middle,
and at the end of the process. This causes all models to show unstructured behavior, quite
similar for each mining algorithm: the process can start with activity A and finish immedi-
ately, or can have repetitions of the combinations of the other activities (the part before and
after the A in the middle).

In another battery of tests, we aimed to learn something about the computational per-
formance of the I-PALIA implementation. For this purpose, we generated a random pro-
cess model using PLG2 (Burattin, 2016) (cf. Fig. 12). With this model, we generated 6
event logs with 100, 500, 1000, 2000, 5000, and 10000 traces. These logs were mined with
I-PALIA and we monitored the execution time. The tests were performed on a standard
laptop, equipped with Java 1.15(TM) SE Runtime Environment on Windows 10 Enterprise
64bit, an Intel Core i7-7500U 2.70GHz CPU and 16GB of RAM. Results are reported in
Fig. 13. As the plot shows, the time required to process is not negligible and could grow
quite quickly. Considering the biggest log, we had 10000 traces and 58713 events, and our
implementation of I-PALIA took almost 7 seconds for the actual mining.

For the final test, we decided to use I-PALIA to analyze a real-world event log. Specifi-
cally, we considered the SEPSIS event log (Mannhardt & Blinde, 2017).° This log contains
events referring to sepsis cases from a Dutch hospital, where one case refers to the pathway

The event log is publicly available at https://doi.org/10.4121/uuid:915d2bfb-7¢84-49ad-a286-dc35f063a4
60.

@ Springer

https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

Journal of Intelligent Information Systems

through the hospital of one patient. The events have been recorded via the ERP system of
the hospital, and the log contains 1050 cases with 15214 total events, where each event
refers to one of the possible 16 different activities. For our tests, we decided to mine this
log using Celonis, Fluxicon Disco, I-PALIA (with the Strict Compatible Transition Mode),
and Inductive Miner. We set the parameters of the commercial tools and Inductive Miner to
show all the possible behaviors (similarly to what I-PALIA does). The processing time for
the log, in the case of I-PALIA, was about 5 seconds. All the results are reported in Fig. 14.
As typical for the healthcare domain (Munoz-Gama et al., 2022), the resulting models show
spaghetti-like behavior; however, it is interesting to note that in the case of I-PALIA, the
algorithm manages, by duplicating activities, to provide a structured model in the beginning
(cf. Fig. 14c), while towards the end of the process, the behavior becomes fundamentally
challenging to tackle even for I-PALIA. In the Inductive Miner case, the situation is slightly
different: the model looks very compact and, in principle, easier to understand, but a deeper
analysis reveals that the model starts with a parallel split followed by optionality for each
activity, which can also be repeated infinitely many times. From a quantitative point of
view, comparing fitness (Berti & Aalst, 2019) and precision (Berti & Aalst, 2019) reveals
the issue: as Table 1 shows, Inductive Miner achieves perfect fitness, but its precision is very
low. On the other hand, I-PALIA manages to get a fairly good fitness and an almost-perfect
precision. Combining these two aspects into the F-score (i.e., harmonic mean) shows that
I-PALIA outperforms Inductive Miner in this case.

Finally, it is worth noting that while the models mined with Celonis, Disco, and Inductive
Miner have 16 event nodes (as expected), the [-PALIA model has 62. This duplication of
activities, while increasing the absolute model size, is what helps to deliver a more struc-
tured — at least in the first half — and more precise model.

7 Discussion

Despite significant progress in process discovery, certain challenges remain unresolved. In
particular, the accurate identification and representation of duplicated activities continues to
be a limitation for most existing algorithms. These open issues highlight the need for novel
methods that can address such complexities while maintaining model precision and inter-
pretability. In this paper, we propose an algorithm capable of identifying activity duplica-
tion, thereby improving the understanding of the model under certain circumstances.

There are algorithms available in literature that presents similarities to our proposal.
State-based synthesis approaches such as the one presented in Aalst et al. (2006) utilize
a two-step method: first, constructing a transition system from the event log, and subse-
quently applying region theory to synthesize the corresponding process model. While these
approaches share similarities with our method in terms of employing an intermediate repre-
sentation, our grammar inference-based approach offers explicit support for handling dupli-
cated activities in BPMN models, which represents a distinctive contribution compared to
region-based synthesis techniques.

Regarding the discovery of nested patterns, it is important to clarify the current capabili-
ties and limitations of our algorithm. Our approach analyzes all transitions in the process
model and is able to identify a wide range of structures, including large loops and nested
choices. Notably, loops and choices nested within parallel blocks can often be detected suc-

@ Springer

Journal of Intelligent Information Systems

(d) Model discovered with Inductive Miner

Fig. 14 The SEPSIS log mined using Celonis, Fluxicon Disco, I-PALIA, and Inductive Miner

@ Springer

Journal of Intelligent Information Systems

Table 1 Fitness, precision, and Fitness Precision F-score

F-score for I-PALIA and Induc-

tive Miner on the SEPSIS log I_PALI.A) 0.53 0.99 0.69
Inductive Miner 1 0.25 0.40

Fig. 15 Over-generalization in onward merge stage with simple compatible transition merge mode with
the experiment of the Fig. 8

cessfully under certain circumstances. However, the detection of parallelism is performed
specifically between the corresponding split and join nodes. As a consequence, the current
implementation is not able to discover nested parallelisms, which may limit the expressive-
ness of the resulting model in scenarios involving complex parallel constructs. Addressing
this limitation and improving the detection of nested parallel structures will be an important
avenue for future research.

According to the selection of the best Transition Merge mode, in general, it depends

totally on the task to be performed. However, based on our experience some best practices
should be taken into account:

The Simple Compatible Transition Mode is the one that has a greater maximization and,
for that, is the one that usually better reduces the “spaghetti effect”. On the other hand,
the Strict Mode has the most limited generalization and, for that, creates bigger models.
So, in general, in high variability problems is better to start with a Simple Compatible
Mode to allow a better understanding of the model

The Simple Compatible Mode can produce an over-generalization problem that can
prevent the identification of parallel regions in [-PALIA Algorithm. See an example of
this problem in Fig. 8. The Onward Merge Stage with Inline Transition Merge produces
a flow (c) where the Parallel Merge algorithm can detect the parallel region. However, if
instead of the Inline Transition Merge Mode, we would have applied the Simple Com-
patible Transition Merge Mode, the transitions B — B; have also been merged, mak-
ing the identification of the parallel region more difficult. Figure 15 shows the resultant
workflow after applying Onward Merge with Simple Compatible Transition merge mode
with this example. The result is less understandable than the one with Inline Mode. A
solution to this problem is to perform a first run of the Onward Merge algorithm with an
Inline Transition Mode and, after the Parallel Merge, perform a second run of Onward
Merge with an Simple Compatible Transition Merge Mode.

In terms of performance, the Strict Mode is the most efficient because the merge pivots
on the incoming transitions of the nodes, and each merge pass can done simply by run-
ning through the nodes. On the other hand, the Inline Mode is the one that requires more
computation because, in addition to running through the ~y transitions, it is required to
state that the transitions are in the same branch, and this is relatively hard to compute.

According to computational performance, While the algorithm shows very promising
results, it still suffers from important issues. The most important ones are the current lack

@ Springer

Journal of Intelligent Information Systems

of robustness to noise and its computational complexity. Regarding the lack of robustness
to noise, this is certainly a problem that makes the algorithm not mature enough for many
industrial settings, however, we believe this is an issue that can easily be addressed by con-
sidering frequencies of the direct following relations and applying some threshold on those
before applying the rest of the computation. A more fundamental challenge regards the
complexity of the algorithm. Right now, several steps and needed in order to reach the goal,
and each of these contributes substantially to the complexity. For small logs the mining time
is acceptable, but it grows quickly as the numbers of traces and events grow. Optimizations
can be employed also in this case, both in terms of implementation (e.g., multi-threading)
as well as more conceptual ones.

8 Conclusion and future work

In this paper, we presented I-PALIA, a process mining algorithm for control-flow discovery.
The algorithm is capable of synthesising BPMN process models containing all basic work-
flow patterns (i.e., sequence, parallel split, synchronization, exclusive choice, and simple
merge) as well as duplicated activities. The algorithm, which has a publicly available imple-
mentation as both ProM package as well as a Java Maven dependency has been tested and
evaluated both qualitatively (against state-of-the-art tools) as well as quantitatively on logs
of different sizes. The algorithm is also implemented in the research platform PMApp.

I-PALIA algorithm generates TPAs with a limited representativity, an interesting exten-
sion of the algorithm is to incorporate new stages, or incorporate some heuristics for rela-
beling that can identify more complex workflow patterns such as Milestones or Interleaved
Parallel Routines. Also, the first stages of -PALIA (except Parallel Merge) can be used as an
entry point for other process mining discovery techniques to enhance his capability making
them able to identify duplicated tasks. For example, the result of the Onward Merge can be
used as an entry point for the Inductive Miner Algorithm (Leemans et al., 2014b) instead of
the use of DFG, that are not able to identify duplicated tasks.

Other future work for I-PALIA certainly includes the extension of the algorithm to
become noise tolerant, for example employing frequencies. Additionally improving the per-
formance and the computational complexity of the approach certainly represents a funda-
mental step towards wider adoption.

Acknowledgements This research has been supported through projects MINE-GUIDE(PID2020-113723RB-
C21) funded by MCIN/AEI/10.13039/501100011033 and LIFECHAMPS(Grant Agreement No 875329)
under European Union’s Horizon 2020 research and innovation program.

Author Contributions These authors contributed equally to this work

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This
research has been partially funded by projects MINE-GUIDE(PID2020-113723RB-C21) funded by MCIN/
AEI/10.13039/501100011033 and LIFECHAMPS(Grant Agreement No 875329) under European Union’s
Horizon 2020 research and innovation program. Funding for open access charge: CRUE-Universitat Politéc-
nica de Valéncia

Data Availability No datasets were generated or analysed during the current study.

@ Springer

Journal of Intelligent Information Systems

Declarations
Ethical Approval Not Applicable.
Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aalst, W. M. P. (2016). Process mining (2nd ed.). Springer. https://doi.org/10.1007/978-3-662-49851-4

Aalst, W. M., Rubin, V., Dongen, B. F., Kindler, E., & Gunther, C. W. (2006). Process mining: A two-step
approach using transition systems and regions. BPM Center Report BPM-06-30, BPMcenter. org. 6.

Aalst, W. M. P., Weijters, T. A. J. M. M., & Medeiros, A. K. A. (2006). Process mining with the heuris-
tics miner-algorithm. BETA Working Paper Series, WP 166, Eindhoven University of Technology,
Eindhoven.

Aalst, W. M. P, Hofstede, A. H. M., Kiepuszewski, B., & Barros, A. P. (2003). Workflow patterns. Distrib-
uted and Parallel Databases, 14(1), 5-51. https://doi.org/10.1023/A:1022883727209

Alkhammash, H., Polyvyanyy, A., & Moffat, A. (2024). Stochastic directly-follows process discovery using
grammatical inference. In International conference on advanced information systems engineering (pp.
87-103). Springer

Augusto, A., Conforti, R., Dumas, M., Rosa, M., Maggi, F. M., Marrella, A., Mecella, M., & Soo, A. (2019).
Automated discovery of process models from event logs: Review and benchmark. /EEE Transactions
on Knowledge and Data Engineering, 31(4), 686—705. https://doi.org/10.1109/TKDE.2018.2841877

Berti, A., & Aalst, W. M. P. (2019). Reviving token-based replay: Increasing speed while improving diagnos-
tics. In Proceedings of ATAED@Petri Nets/ACSD 2019 (pp. 87-103). CEUR Workshop Proceedings.

Buijs, J. C. A. M., Dongen, B. F., & Aalst, W. M. P. (2014). Quality dimensions in process discovery: The
importance of fitness, precision, generalization and simplicity. International Journal of Cooperative
Information Systems, 23(01), 1440001. https://doi.org/10.1142/S0218843014400012

Burattin, A. (2016). PLG2 : Multiperspective process randomization with online and offline simulations. In
Online Proceedings of the BPM Demo Track 2016. CEUR-WS.org.

Burattin, A., Re, B., Rossi, L., & Tiezzi, F. (2022). A purpose-guided log generation framework. In Proceed-
ings of BPM 2022.

Calders, T., Gunther, C. W., Pechenizkiy, M., & Rozinat, A. (2009). Using minimum description length for
process mining. In Proceedings of the 2009 ACM Symposium on Applied Computing - SAC "09 (pp.
1451-1455). ACM Press, New York, New York, USA. https://doi.org/10.1145/1529282.1529606. http:
//portal.acm.org/citation.cfm?doid=1529282.1529606

Daniel, F.,Barkaoui, K., & Dustdar, S. (2011). IEEE task force on process mining: Process mining manifesto.
Business Process Management Workshops (pp. 169-194). Springer,

Duan, C., & Wei, Q. (2020). Process mining of duplicate tasks: A systematic literature review. In 2020
IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) (pp.
778-784). IEEE.

Fernandez-Llatas, C., & Burattin, A. (2023). I-PALIA: Discovering BPMN processes with duplicated activi-
ties for healthcare domains. In Proceedings of the International workshop on process-oriented data
science for healthcare (PODS4H23).

Fernandez-Llatas, C., Meneu, T., Benedi, J. M., & Traver, V. (2010). Activity-based process mining for clini-
cal pathways computer aided design. In 2010 Annual International Conference of the IEEE Engineering
in Medicine and Biology (pp. 6178—6181). https://doi.org/10.1109/IEMBS.2010.5627760

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1023/A:1022883727209
https://doi.org/10.1109/TKDE.2018.2841877
https://doi.org/10.1142/S0218843014400012
https://doi.org/10.1145/1529282.1529606
http://portal.acm.org/citation.cfm?doid=1529282.1529606
http://portal.acm.org/citation.cfm?doid=1529282.1529606
https://doi.org/10.1109/IEMBS.2010.5627760

Journal of Intelligent Information Systems

Fernandez-Llatas, C., Pileggi, S. F., Traver, V., & Benedi, J. M. (2011). Timed parallel automaton: A math-
ematical tool for defining highly expressive formal workflows. In 2011 Fifth asia modelling symposium
(pp. 56-61). https://doi.org/10.1109/AMS.2011.22

Goedertier, S., Martens, D., Vanthienen, J., & Baesens, B. (2009). Robust process discovery with artificial
negative events. The Journal of Machine Learning Research, 10, 1305-1340.

Ibanez-Sanchez, G., Fernandez-Llatas, C., Valero-Ramon, Z., & Bayo-Monton, J. L. (2023). Pmapp: An
interactive process mining toolkit for building healthcare dashboards. In Explainable artificial intel-
ligence and process mining applications for healthcare (pp. 75-86). Springer.

Leemans, S. J. J., Fahland, D., & Aalst, W. M. P. (2014a). Discovering block-structured process models from
event logs containing infrequent behaviour. In Business process management workshops (pp 66—78).

Leemans, S. J., Fahland, D., & Van Der Aalst, W. M. (2014b). Process and deviation exploration with induc-
tive visual miner. In /2th International Conference on Business Process Management, BPM 2014 (pp.
46-50). CEUR-WS. org.

Lu, X., Fahland, D., Biggelaar, F. J., & Aalst, W. M. (2016). Handling duplicated tasks in process discovery
by refining event labels. In Business Process Management: 14th International Conference, BPM 2016,
Rio de Janeiro, Brazil, September 18-22, 2016 (Proceedings 14, pp. 90-107). Springer.

Mannhardt, F., & Blinde, D. (2017). Analyzing the trajectories of patients with sepsis using process mining.
In RADAR+ EMISA 2017 (pp. 72-80). CEUR-ws.org.

Medeiros, A. K. A. (2006). Genetic process mining. PhD thesis, Technische Universiteit Eindhoven.

Munoz-Gama, J., Martin, N., Fernandez-Llatas, C., Johnson, O.A., Septlveda, M., Helm, E., Galvez-Yanjari,
V., Rojas, E., Martinez-Millana, A., Aloini, D., Amantea, I.A., Andrews, R., Arias, M., Beerepoot, 1.,
Benevento, E., Burattin, A., Capurro, D., Carmona, J., Comuzzi, M., . . . Zerbato, F. (2022). Process
mining for healthcare: Characteristics and challenges. Journal of Biomedical Informatics, 127, 103994.
https://doi.org/10.1016/1.jbi.2022.103994

OMG (2009). Business Process Model and Notation (BPMN) - Version 2.0, Beta 1.

Peterson, J. L. (1977). Petri nets. ACM Computing Surveys (CSUR), 9(3), 223-252. https://doi.org/10.1145
/356698.356702

Rojas, E., Fernandez-Llatas, C., Traver, V., Munoz-Gama, J., Sepulveda, M., Herskovic, V., & Capurro, D.
(2017). Palia-er: Bringing question-driven process mining closer to the emergency room. In 15th Inter-
national Conference on Business Process Management (BPM 2017).

Russell, N., Hofstede, A. H. M., Aalst, W. M. P., & Mulyar, N. (2006). Workflow control-flow patterns: A
revised view. BPM Center Report BPM-06-22, BPMcenter. org.

Stotts, P. D., & Pugh, W. (1994). Parallel finite automata for modeling concurrent software systems. Journal
of Systems and Software, 27(1), 27-43.

Vazquez-Barreiros, B., Mucientes, M., & Lama, M. (2016). Enhancing discovered processes with duplicate
tasks. Information Sciences, 373, 369-387. https://doi.org/10.1016/j.ins.2016.09.008

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.1109/AMS.2011.22
https://doi.org/10.1016/j.jbi.2022.103994
https://doi.org/10.1145/356698.356702
https://doi.org/10.1145/356698.356702
https://doi.org/10.1016/j.ins.2016.09.008

	﻿I-PALIA, An algorithm for discovering BPMN processes with duplicated tasks
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Background and state of the art
	﻿﻿3﻿ ﻿Preliminary concepts
	﻿﻿4﻿ ﻿Inductive PALIA (I-PALIA): the algorithm
	﻿﻿5﻿ ﻿Implementation
	﻿﻿6﻿ ﻿Performance evaluation
	﻿﻿7﻿ ﻿Discussion
	﻿﻿8﻿ ﻿Conclusion and future work
	﻿References

