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Abstract
Process mining encompasses a range of methods designed to analyze event logs. Among 
these methods, control-flow discovery algorithms are particularly significant, as they en-
able the identification of real-world process models, known as in-vivo processes, in con-
trast to anticipated models. An obstacle faced by control-flow discovery algorithms is their 
limited ability to recognize duplicated activities, which are activities that occur in multiple 
locations within a process. This issue is particularly relevant in the healthcare sector, 
where numerous instances of duplicated activities exist in processes but remain undetected 
by conventional algorithms. This article introduces a novel concept for a control-flow dis-
covery algorithm capable of effectively revealing duplicated activities. The effectiveness 
of this technique is demonstrated through experimentation on a synthetic dataset. More-
over, the algorithm has been implemented and its source code is available as open-source 
software, accessible both as a ProM plugin and a Java Maven dependency.
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1  Introduction

Process mining is the scientific discipline aiming at connecting process models and record-
ings of activity executions  (Aalst, 2016). In particular, control-flow discovery techniques 
pertain to the synthesis of models that are capable of explaining in a compact way all (or 
most of) the executions reported in an event log.

The ultimate goal of process mining techniques is to improve processes and how these 
are actually deployed in the real world. Since these models are supposed to improve actual 
processes, it is essential that the models identified are as reliable and good as possible.

When considering the control-flow discovery techniques, the main challenge they need 
to face consists of extracting a model that is the most suitable representation possible. Defin-
ing most suitable representation is a challenge in itself and, in the literature, numerical 
approaches to quantify this dimension have been proposed, in particular fitness, precision, 
generalisation and simplicity (Aalst, 2016). Fitness indicates that a model should be able to 
replicate the log it has been generated from; precision quantifies how much more behavior 
(w.r.t. the starting log) the mined model permits; generalization tries to capture to what 
extent behavior not observed in the log is present in the model; and, finally, simplicity veri-
fies that the model should be as simple as possible, to foster understandability. All these 
metrics should be maximized in order to obtain good results.

While many algorithms for control-flow discovery have put a lot of focus on optimiz-
ing fitness and precision (Leemans et al., 2014a; Aalst et al., 2006; Augusto et al., 2019), 
less emphasis has been put on the simplicity dimension, in particular regarding the type of 
supported behavior. Specifically, as mentioned in the Process Mining Manifesto  (Daniel 
et al., 2011) (as guiding principle GP3), control-flow discovery algorithms should be able 
to identify basic control-flow constructs (Russell et al., 2006; Aalst et al., 2003), such as 
concurrency and choice. In many situations, a limiting factor towards better simplicity is the 
problem of duplicated activities. This problem stems from the fact that most control-flow 
discovery algorithms are not able to produce process models where the same activity occurs 
more than once.

In many scenarios, it is easy to find processes with duplicated tasks. For instance, within 
the healthcare sector, it’s common to encounter activities that occur repeatedly. Instances 
such as revisiting medical appointments, undergoing assessment procedures like laboratory 
tests and medical imaging, or undergoing cyclic treatments like dialysis or chemotherapy 
are recurrent events throughout a patient’s journey within the care process. These activities 
carry significant importance in representing the overall process. To illustrate, the sequenc-
ing of treatments can vary significantly based on the timing of assessments. For instance, in 
the context of cancer treatments, administering chemotherapy before and/or after surgery 
can yield distinct results. The initial treatment aims to shrink the tumor size and streamline 
the surgical procedure, while the subsequent treatment focuses on preventing the prolifera-
tion of harmful cells, introducing differing objectives and complexities that impact process 
delineation. This problem can be found in many other process scenarios like manufacturing, 
logistics, and auditing.

When applying conventional process discovery algorithms to these scenarios, the ability 
to differentiate between these distinct behaviors becomes compromised. In this example, as 
well as in numerous other cases within the healthcare sphere, the utilization of duplicated 
nodes becomes imperative. Not only do they contribute to a lucid depiction of the process, 
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but they also facilitate comprehension of the preparatory and follow-up stages surrounding 
these recurrent activities.

As a simple example of a process that shows duplicated activities, consider the process 
model reported in Fig. 1. In this normative process, you see that the activity of contacting a 
potential customer takes place both at the beginning and at the end of the process. While the 
two activities may involve slightly different tasks, for the sake of modelling it is legitimate 
that they have the same label. As a consequence, event logs recording executions of this 
process will show the presence of two activities called Contact potential customer which, 
however, should not be collapsed into the same activity in the model: though these have the 
same label, their mining is distinguishable based on the position where they occur; hence, 
these should appear two times.

In this paper, we present a new discovery algorithm capable of extracting process mod-
els, represented as BPMN (OMG, 2009), which is based on the control of the generaliza-
tion in the process of log inference using Grammar Inference techniques. The algorithm 
can identify all the basic workflow patterns (i.e., sequence, parallel split, synchronization, 
exclusive choice, and simple merge) with the addition of duplicated activities. This algo-
rithm is inspired by the PALIA algorithm, which uses grammar inference approaches for 
discovering processes taking the complete schedule of the log events for identifying paral-
lelism (Fernández-Llatas et al., 2010; Rojas et al., 2017). This paper extends (Fernandez-
Llatas and Burattin, 2023) by:

	● Improving the state of the art with respect to duplicated task mining;
	● Extending the algorithm with different abstraction capabilities;
	● Extending the description of the algorithm and the data structure;
	● Presenting a new implementation of the approach in a real system.

The rest of the paper is structured as follows: Section 2 introduces the background and the 
state of the art of the proposed technique; Section 3 states some preliminary concepts for the 
definition of the algorithm; Section 4 presents the actual algorithm proposed in the paper; 
Section 5 describes the implementation of the technique; Section 6 presents some perfor-
mance results of the algorithm against some extreme scenarios; Section 7 presents some 
discussion points and best practices in the application of the algorithm; and finally Section 8 
concludes the paper.

Fig. 1  Example of process with duplicated activities

 

1 3



Journal of Intelligent Information Systems

2  Background and state of the art

There were many attempts in the literature to create solutions that can deal with the prob-
lem of duplicated tasks  (Duan & Wei, 2020). In the literature on control-flow discov-
ery (Augusto et al., 2019), many algorithms have been developed capable of identifying all 
the basic workflow patterns. Among these, the Alpha miner is typically recalled as one of 
the first algorithms explicitly tackling the control-flow discovery problem. More advanced 
algorithms, such as the Heuristics Miner, the Fuzzy Miner, the Split Miner, and the Induc-
tive Miner, have gained much popularity due to the quality of the output they produce 
and their performance. However, none of these is actually capable of producing duplicated 
activities. The algorithms that are able to achieve this are very few, including the α∗-algo-
rithm (Calders et al., 2009), which nonetheless has very restrictive assumptions on the event 
log. Fodina (Calders et al., 2009) can discover duplicated activities by pre-processing the 
event log only based on some heuristics. Genetic Process Mining (Medeiros, 2006), Evo-
lutionary Tree Miner (ETM) (Buijs et al., 2014), AGNES (Goedertier et al., 2009) are evo-
lutionary algorithms that, in principle, can discover duplicated activities at the expense of 
extreme computational complexity. Some techniques apply heuristic approaches for identi-
fying duplicated activities and provide relabelling (Lu et al., 2016) that could feed existing 
Process Mining Discovery algorithms. SLAD (Vázquez-Barreiros et al., 2016) is another 
approach that post-processes the mined model for duplicated activities. Also in this case, 
however, the algorithm exploits some heuristics to simplify the model by duplicating some 
behaviour.

There are works that generate stochastic process models based on grammatical inference, 
such as those relying on the inference of stochastic deterministic finite automata (SDFA) 
(Alkhammash et al., 2024). These approaches are capable of capturing the sequential struc-
ture and the probability of occurrence of observed traces, resulting in models that reflect 
the statistical distribution of the data. However, an important limitation of these techniques 
is that, due to the inherently sequential nature of automata, they are unable to identify 
or represent complex behavioral patterns such as parallelism. As a result, the discovered 
models typically only describe strict precedence relationships between activities, without 
adequately capturing the existence of activities that can be performed in parallel or indepen-
dently within the process.

As a basis for the paper, we should provide some definitions. Classic PALIA algo-
rithm (Fernández-Llatas et al., 2010; Rojas et al., 2017) uses as a representation model, a 
Timed Parallel Automaton (Fernandez-Llatas et al., 2011). This model has an expressive-
ness equivalent to a safe Petri Net (Peterson, 1977) and has a Regular complexity (Fernan-
dez-Llatas et al., 2011) based on the concept of Parallel Finite Automaton (Stotts & Pugh, 
1994). For this paper, a TPA is defined as follows:

Definition 1  (Timed Parallel Automaton (TPA)) A Timed Parallel Automaton (TPA) (Fer-
nandez-Llatas et al., 2011) is a tuple T  ={N, Q, γ, δ, S, F} where:

	● N is a finite set of Nodes, where a Node n is a graphical representation of the action a,
	● Q is a finite set of states where q ⊆ N+∀q ∈ Q,
	● γ : N+ → N+ is the Node Transition function, where γ = ({ns

0, .., ns
i }, {ne

0, .., ne
j}). 

Γ is the set of γ transitions;
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	● δ : Q → Q is the State transition function where δ = (qs, qe). ∆ is the set of δ transi-
tions where (∀δ ∈ ∆ ∃ γ ∈ Γ | {ns

0, . . . , ns
i } = qs ∧ {ne

0, . . . , ne
i } = qe) where γ is the 

associated transition of δ;
	● S ⊆ N  is the set of Starting Nodes;
	● F ⊆ N  is the set of Final Nodes.

A TPA has a double transition function, defining Nodes (N) and States (Q). N+ is the set 
of all combinations of n ∈ N  with at least one n. The transitions between nodes can be n to 
n multiple for defining parallelism. For example, a transition γ1 = ({n1}, {n2, n3}) repre-
sents a parallel split from the node n1 to the nodes n2 and n3. In the same way, a transition 
γ2 = ({n1, n2}, {n3}) represent a parallel synchronization from the nodes n1 and n2 to the 
node n3. Exclusive Choice can be represented using several γ transitions. For example, hav-
ing γ1 = ({n1}, {n2}) and γ2 = ({n1}, {n3}) we can represent that, from n1 is possible to 
go to n2 or n3.

The States function (∆) captures the regular language behavior underlying the interpre-
tation of the automaton. This means that, on its own, it can represent the sequential behav-
ior that occurs between the parallelisms described by the (Γ) function. In the (∆ set), the 
parallelism is represented at the state level. A State q is a set of Nodes that represents the 
actions that are active in the state q in an analogous way to a Petri-Net marking. ∆ and Γ are 
complementary. The state transitions (δ) keep the regular complexity due to their simplic-
ity (N to N) where the Node Transitions (Γ) represent parallel situations (N+ to N+). In 
practice, there is only one state active in a moment in time, which supposes that it could be 
several nodes active. Node transitions represent the single pass from one node to another.

A visual example of how the double transition function works for representing parallel 
patterns can be shown in Fig. 2. The TPA can be formally described as can be seen at the 
bottom of the Figure1 In this example, N represents the set of nodes available in the automa-
ton, while Q represents the set of possible nodes that could be active at the same time, in 
a similar way to Petri Nets marking. In this line, the function Γ defines the possible transi-
tions between the nodes γ1 = ({n1}, {n2, n3}) states the parallel split sequences headed 
by nodes n2 and n3. Analogously δ1 represents the transition in a single transition from the 
state q1 to state q23 and γ1 is the associated transition of δ1. By continuing the sequence 
using transition γ2, the node n2 finishes, and the node n4 starts. Similarly, the transition 
δ2 has the same execution information but keeping in mind that the node n3 is still active. 
Using this double transition function, it is possible to represent the many-to-many transition 
information in the Γ function, but having global control of the execution of parallel nodes 
in ∆ only with one-to-one transitions, keeping in ∆ function a regular languages level 
complexity.

This double transition function allows representing complex workflow patterns (Fernan-
dez-Llatas et al., 2011). For instance, Fig. 3 represents an example of an interleaved paral-
lel routine. In this pattern, some parallel sequences are executed, but some actions are not 
allowed to be executed simultaneously. For example, the dashed rectangles in the figure 
represent sequences of protected actions. In this line, nodes C, and D, can’t be executed at 
the same time. This pattern could be represented formally as a TPA as defined at the bottom 
of the Figure. As can be seen in the formal representation, the Γ Function reflects all the 

1 The notation has been simplified and only the states required for the understandability of the example have 
been represented
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transitions described on the graphical TPA. However, ∆ function skips the prohibited transi-
tions like (qAD, qCD) or (qCB , qCD).

In a TPA, ∆ orchestrates the actions from a high level, and Γ defines all the possible 
many-to-many transitions at a low level. Both are complementary, on one hand, without ∆, 
Γ is unable to know globally the allowed transitions, and on the other hand, without Γ, ∆ 
can’t be safe in identifying the next node to activate. This is clear in self-loops. For example, 

Fig. 3  Interleaved parallel routine represented with TPA

 

Fig. 2  Example of visual representation of Γ and ∆ functions
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in a Self Loop (qAB , qAB), without the Γ associated transition, ∆ is unable to know if there 
is a self-loop in node A or in node B.

3  Preliminary concepts

The main objective of this paper is to build a discovery algorithm that can infer TPAs from 
log events. This requires the ability infer the double transition function. However, it is pos-
sible to build an algorithm that, given a Γ set, it constructs a basic ∆ set of states with some 
limitations. This will allow the discovery algorithm to be focused on the inference of Γ 
transitions, assuming that ∆ can be extracted afterwards.

In this section, we will present the algorithm that we have devised to infer the ∆ func-
tion from Γ and some preliminary definitions such as, domains, ranges or event logs for the 
formalization of the algorithm.

Definition 2  The Domain of a function γ = ({ns
0, .., ns

i }, {ne
0, .., ne

j}) ∈ Γ is the set starting 
nodes of the function.

	 Domain(γ) = {ns
0, .., ns

i }

Definition 3  The Range of a function γ = ({ns
0, .., ns

i }, {ne
0, .., ne

j}) ∈ Γ is the set of ending 
nodes of the function.

	 Range(γ) = {ne
0, .., ne

j}

Algorithm 1  ∆ State transitions inference.

The “∆ State Transitions Inference Algorithm” is presented in Algorithm 1. This algo-
rithm traverses the nodes from the initial nodes through the γ transitions that are the origin 
(Domain). In each iteration, the algorithm creates the possible states (q′) possible at any 
moment by analyzing all the possible paths in the TPA. When a not visited state is reached, 
this is annotated in the set of not visited states (Qnv). The algorithm stops when all the states 
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are visited and analysed. As a result, the Algorithm returns in Q all the possible states and in 
∆ all the possible one-to-one state transitions.

In case of no parallelism, Γ and ∆ are equivalent; all the states have a single node. The 
difference resides when Γ has parallel nodes. In that case, ∆ can be seen as the explosion 
of Γ transitions derivations defining the Q as all the possible active nodes in parallel in a 
moment in time and ∆ equivalent to Γ representing the transitions between the node sets.

This algorithm is simple but also limited. This algorithm is not able to deal with more 
complex representations like Interleaved Parallel Routines or milestones. This is because 
it only captures strict sequential relationships between activities and lacks mechanisms to 
explicitly represent concurrency or conditional dependencies. As a result, patterns involv-
ing parallelism, interleaving, or milestone constraints cannot be properly distinguished or 
modeled, and are instead flattened into purely sequential or alternative paths. On the one 
hand, as it is not expected that the discovery algorithm could discover this kind of structure, 
we consider this algorithm enough to represent the final model. On the other hand, the sim-
plicity of this algorithm allows a simple graphical TPA representation that defines parallel 
gateways in many-to-many Γ transitions and assumes that all single arrows are exclusive Or 
(XOR) gateways. Due to that, it is easy to translate from a TPA under these conditions to a 
BPMN model. Figure 4 presents an example of how a TPA can be translated to a BPM nota-
tion format. In the example, the parallel sequences have the same notation, and the single 
arrows are decorated with XOR gateways.

In the following, we present the definitions of Event and Event Log:

Definition 4  An Event is a tuple e = (a, π) where a ∈ A is the set of possible actions in a 
process, π is the timestamp execution of the action.

Definition 5  An Event Log (L) is a set of traces L={t0, . . . , ti} , where a trace is a sequence 
of events t=[e0, . . . , ej]

An Event is the digital representation of an action at a moment in time. A set of events ref-
erenced to the same user or the same execution instance is called Trace.

Fig. 4  Correspondence between TPA and BPMN
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4  Inductive PALIA (I-PALIA): the algorithm

Within this paper, we introduce an upgraded iteration of the PALIA algorithm, specifically 
devised to uncover activity logs through the application of Grammar Inference methods. 
Subsequently, the algorithm undertakes the task of detecting parallel configurations within 
the inferred model.

To facilitate this process, we have established certain foundational definitions:

Definition 6  (Directly followed) Let T = (N, γ) be a TPA, where N is the set of nodes and 
γ ⊆ N × N  is the node transition relation. For n0, n1 ∈ N , we say that n0 is directly fol-
lowed by n1 (denoted n0 → n1) if and only if

	 (n0, n1) ∈ γ.

Similarly, for node traces γ0, γ1, we say that γ0 is directly followed by γ1 (denoted γ0 → γ1) 
if and only if there exist (n0, n1) ∈ γ0 and (n′

0, n′
1) ∈ γ1 such that n1 → n′

0.

Definition 7  (Eventually followed) Let T = (N, δ) be a TPA, where N is the set of nodes 
and δ ⊆ N × N  is the node transition relation. For n0, n1 ∈ N , we say that n0 is eventu-
ally followed by n1 (denoted n0 ⇒ n1) if and only if there exists a finite sequence of nodes 
n0, n′

1, n′
2, . . . , n′

k−1, n1 such that

	 (n0, n′
1) ∈ δ, (n′

1, n′
2) ∈ δ, . . . , (n′

k−1, n1) ∈ δ,

that is, there exists a path from n0 to n1 in the transition relation δ.
Similarly, for node traces γ0, γ1, we say that γ0 is eventually followed by γ1 (denoted 

γ0 ⇒ γ1) if and only if there exist (n0, n1) ∈ γ0 and (n′
0, n′

1) ∈ γ1 such that n1 ⇒ n′
0.

These definitions describe that two node transitions are directly followed (→) when the sec-
ond transition can be immediately accessed from the first one and eventually followed (⇒) 
when the second transition can be eventually accessed from the first one.

Definition 8  (Compatibility) Let e = (a, π) be an event, where a ∈ A is the activity label 
and π is the timestamp. Let lab : N → A denote the function that maps each node to its 
activity label.

	● Event–event: e0 ≡ e1 iff a(e0) = a(e1).
	● Event–node: e ≡ n iff a(e) = lab(n).
	● Node–node: n0 ≡ n1 iff lab(n0) = lab(n1).
	● Set–set: For finite sets N0, N1 ⊆ N , we write N0 ≡ N1 iff |N0| = |N1| and there exists 
a bijection f : N0 → N1 such that 

	 ∀n ∈ N0, lab(n) = lab
(
f(n)

)
.

Colloquially, Nodes and Events are compatible when they refer to the same action, and two 
sets of nodes are compatible if each one of the nodes of each set is compatible to a node of 
the other set.
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Definition 9  (Transitions compatibility) Given two node transi-
tions γ0 = {D0, R0}, γ1 = {D1, R1}, they are compatible (γ0 ≡ γ1) if 
(Domain(γ0) ≡ Domain(γ1) ∧ Range(γ0) ≡ Range(γ1))

Analogously, two node transitions are compatible (γ1 ≡ γ2) if their domains and ranges are 
compatible. We also define different modes of compatibility

Definition 10  (Transitions Strict compatibility) Given two node transi-
tions γ0 = {D0, R0}, γ1 = {D1, R1}, they are strictly compatible (≡!) if 
Domain(γ0) ≡ Domain(γ1) ∧ Range(γ0) = Range(γ1)

In other words, two node transitions are strictly compatible (γ1 ≡! γ2) if their domains are 
compatible, and their range nodes are exactly the same.

Definition 11  (Transitions Inline compatibility) Given two node transitions γ0 = {D0, R0}, 
γ1 = {D1, R1}, they are inline compatible (≡⇒) if γ0 ≡ γ1 ∧ (γ0 ⇒ γ1 ∨ γ1 ⇒ γ0)

That means, two node transitions are inlinely compatible (γ1 ≡⇒ γ2) when these are com-
patible, and in addition, one is eventually followed by the other. In other words, both are 
located in the same process branch.

Definition 12  (Prefix Acceptor Tree (PAT)) A Prefix Acceptor Tree (PAT) is a tree-like TPA 
built from the learning log by taking all the prefixes in the sample as states and constructing 
the smallest TPA which is a tree, strongly consistent with the Log.

The Prefix Acceptor Tree creates a TPA that represents a tree from left to right with the 
events of the samples. The head of the tree is formed by the nodes representing the starting 
events of the traces, and the leaves represent the last events of the traces. Figure 5 shows 
an example of how this tree is created. It should be noticed that although TPA is able to 
represent parallel situations, the Prefix Acceptor Tree creates only non-parallel δ functions, 
so this algorithm is not able to represent parallelism.

Algorithm 2  Inductive PALIA algorithm.
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Algorithm 2 shows the pseudocode of the presented algorithm. We can split the algo-
rithm into four main stages. The first stage is to compute the Prefix Acceptor Tree that 
represents the log. Using the Prefix Acceptor Tree as a basis, Inductive PALIA will per-
form some generalizations over the algorithm using Grammar Inference techniques into 
two more stages. In the second stage, Consecutive Merge, the algorithm merges compat-
ible consecutive nodes, generalizing all the transitions from one node to itself. In the third 
stage, Onward Merge, the algorithm merges all the final nodes that are compatible and, 
the algorithm Merge the domains and ranges of each couple of γ in Γ that are compatible 
according to one of the compatible modes defined, Strict (≡!), Inline (≡⇒), or Compatible 
(≡). The mode of compatibility selected affects the generalization of the algorithm. The 
Strict Compatibility is the more restrictive because it only generalizes the transitions shar-
ing the ranges, producing more duplicated tasks. The Inline Compatibility generalizes the 
transitions located in the same domain of action (same branch), which means that they can 
be referenced to the same trace. Finally, the simple Compatibility maximizes the generaliza-
tion, merging all the compatible transitions in the model independently of their position. 
This is the one that generates fewer duplicated tasks. The Onward Merge stage is performed 
until the TPA T  has no new merges. This algorithm allows an ordered merging of the nodes 
that prevents their massive merging like in other basic algorithms such as Directly Follows 
Graphs (DFG) depending on the selected merging schema. The effects of the application of 
these generalizations schema will be analyzed in more detail in the following section with 
some examples.

Until this moment, the algorithm has discovered a process structure with sequences, 
splits, and loops, assuming no parallelism, but differentiating repeated non-consecutive 

Fig. 5  Prefix Acceptor Tree of Log ={ABC,ABD,AEF}
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nodes. The next step is to identify the parallel sequences with the Algorithm 3 in the Paral-
lel Merge Stage. In this algorithm, the parallelism has been defined as:

Definition 13  (Parallelism) Given n0, n1 ∈ N , n0 and n1 are parallel (n0∥n1) where:

	 n0 ⇒ n1 ∧ n1 ⇒ n0� (1)

	 !n0 ⇔ n1∧!n1 ⇔ n0� (2)

Intuitively, two nodes are parallel (n0∥n1) if both are eventually followed by each other and 
these nodes are not acting as a loop, that means, there is no same path of transitions that 
contains n0 ⇒ n1 and n1 ⇒ n0, and vice-versa (n0 ⇔ n1). With that definition, the Paral-
lel Merge (Algorithm 3) defines the Parallel Regions for discovering the parallel situations:

Definition 14  (Parallel region) Given a TPA T  and node nSplit, A Parallel Region is a set 
of nodes R where nSplit ⇒ nx ∧ ∃ny : nx∥ny|∀nx, ny ∈ R.

A Parallel Region is a set of nodes that occurs after a split node nSplit and have parallelisms 
between themselves.

Definition 15  (Synchronization node) Given a TPA T , a node nSplit, and a Parallel 
Region R, a Syncronization Node is a node nSyncro where ni ⇒ nSyncro|∀ni ∈ R and 
∀nx|nSplit ⇒ nx ∧ nx ⇒ nSyncro|nx ∈ R.

A Synchronization Node nSyncro is a node that occurs immediately after the Parallel region. 
nSplit and nSyncro delimit the Parallel Region and are the nodes that will define the start 
and the end of parallelism. According to that, the Algorithm 3 Discover and create the Paral-
lel structures.

For example, in Fig. 8c, we can see that there is a node A located just before an isolated 
region of nodes such that everyone passing through A eventually passes through D. In this 
way, A would be the Split Node, D the Synchronization Node, and the intermediate nodes 
would constitute the parallel region.

Algorithm 3  Parallel merge.

The Parallel Merge Algorithm discovers parallel regions after each node on the TPA. 
The algorithm GetParallelRegions(T , nSplit) searches for all possible regions in the 
model by traversing all the nodes and checking if there exists a synchronization node that 
defines a parallel region. Once a Parallel Region is detected, the subsequent task involves 
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pinpointing the synchronization node that marks the boundaries of said Parallel Region. 
Subsequently, the algorithm proceeds to determine the parallel sequences within the identi-
fied Parallel Region. This specific process is detailed in Algorithm 4.

Algorithm 4  Identify parallel sequences.
The algorithm 4: Identify Parallel Sequences segregates the nodes within the Parallel 

Region into distinct groups, classifying those that do not exhibit parallelism with the rest. 
This methodology serves to discern the parallel sequences contained within the defined 
Parallel Region.

The algorithm identifies parallel nodes (n1∥n2) that have a common previous transi-
tion (n → n1 and n → n2) to a node that is called nSplit. Once the sequence groups are 
identified, the algorithm identifies the nSync node, which is the first common node after the 
parallel sequence that marks the end of the sequence. With the nSplit and the nSync, we 
can identify the region of parallelism between them. Each node is assigned to one of the 
sequences, that is the one that is not parallel with the starting parallel node and is parallel 
with the rest. After this assignation, the parallel sequences are isolated removing all the 
leftover transitions.

For example, in Fig. 8c, within the identified parallel region, there are two possible start-
ing nodes, B and C, and one secondary node, B1. Analyzing the sequences, we observe that 
B1 satisfies the parallelism condition with C (it can occur both before and after C), but not 
with B (it always occurs after B), so node B1 is assigned to the sequence of B. By separating 
the branches, we see that there are two branches: one with C, and another with B followed 
by B1.

Upon successful identification of the parallel sequences, the Parallel Merge Algorithm 
(Algorithm 3) allows the creation of the ascertained parallel structure. This involves estab-
lishing connections between each parallel sequence and the Split node at the beginning, as 
well as the Synchronization node at the conclusion of the respective sequences.

We can see an example of the Parallel Merge Algorithm with the Fig. 8.

5  Implementation

I-PALIA has been implemented in Java and as a Maven project as well as a ProM plu-
gin.2 Having the code available as a stand-alone Java project simplifies its embedding into 
new projects (the code can easily be imported into any Maven/Gradle/Ivy project3). The 
PaliaProM package, which imports the Maven dependency, allows us to easily benefit from 
the algorithm leveraging the infrastructure made available by ProM. The package contains 
two plugins, one called “Palia Miner” which takes an XES log object as input and produces 
a standard BPMN object as a result. The second plugin made available in the PaliaProM 

2 The Maven project is available at https://github.com/dtu-pa/palia. The ProM package, called PaliaProM, is 
available at https://github.com/dtu-pa/PaliaProM.
3 See https://jitpack.io/#dtu-pa/palia.
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package is a visualizer for BPMN called “Graphviz BPMN visualisation” which exploits 
Graphviz to display any BPMN process model. A graphical representation of the latter is 
reported in Fig. 6.

Also, I-PALIA has been implemented in the PMApp tool (Ibanez-Sanchez et al., 2023) 
as a selectable Discovery algorithm. As PMApp accepts the TPA natively, the connectivity 
with the Experiment viewer was immediate. Figure 7 shows a TPA within PMApp after a 
Discovery.

Figure 8 shows a full example of the different stages of I-PALIA algorithm implemented 
in Java.4 For this example we have used the log L = { ADHDDHDHA, ACBB1DDHA, 
ABB1CDHDDHA }.

4 https://github.com/dtu-pa/palia

Fig. 7  PMApp application showing I-PALIA functionality

 

Fig. 6  The PaliaProM plugin showing the result of a mining session
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Figure 8.a shows the result of applying the Prefix Acceptor Tree algorithm. As can be 
seen, the process shows a tree that represents the three traces of the log generalized by the 
prefix. In this case, the three traces share the same prefix A that becomes the first trace node, 
and then each trace is represented in a different branch.

The Consecutive Merge Stage is illustrated in Fig. 8.b. Here, it is possible to see the 
generalization of consecutive nodes. In this case, the three traces have the double repetition 
of the D action in the middle of the trace. I-PALIA generalise this, defining a self-loop in 
the three traces.

In Fig. 8.b we can detect some γ that can be compatible. For example, the end of the three 
traces is reached by three nodes with the same action A. This is a clear Strict Compatible 
pattern; in the first trace, the subsequence DH is an Inline Compatible Pattern, and the same 
pattern can be applied in the different traces as a Simple Compatible Pattern. Figure 8.c is 
the result of applying the Onward Merge stage with an Inline Compatible transition merge 
mode, until no more Inline compatibilities are available on the flow.

The last step is the Parallel Merge Stage that aims to identify parallelism in the flow. In 
Fig. 8.c we can see a parallel region identifiable by I-PALIA. The region between the first 
A (nSplit) and D (nsync) represents a region suitable to be parallelized. I-PALIA detects B, 
and C as the head of parallel sequences and identifies BB1 as a sequence according to the 

Fig. 8  I-PALIA Discovery Stages with log L ={ADHDDHDHA, ACBB1DDHA, 
ABB1CDHDDHA}
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definition of parallelism. Figure 8.d presents the result of Parallel Merge and, consequently 
the final result of I-PALIA.

The selection of an adequate Transition Merging mode is key to success in hav-
ing a good ratio between generalization and identification of duplicated tasks. Fig-
ure  9 shows an example applying the implemented version of I-PALIA over the log 
L = {ABCDEF, ACBDEG, ADCBEG, ADCBADEG} using the different three 
Transition Merging Models. As can be seen in this example the results can vary signifi-
cantly. As expected, the Strict Compatible transition model (a) is the one that produces more 
duplicated tasks, that suppose less generalization. On the other side, the Simple Compatible 
Transition Mode is the one that performs a greater generalization reducing at the maximum 
the number of duplicated tasks.

6  Performance evaluation

In order to evaluate the effectiveness of the algorithm, we decided to compare the models 
resulting from the mining of the process using the state of the art algorithms and tools for 
control-flow discovery. We designed a process (available in Fig. 10) specifically expressing 
the challenges of duplicated activities; in the case of the process, it is activity A.

In addition to that, we incorporated behavior coming from the most common workflow 
patterns (Aalst et al., 2003): sequences, parallel split, synchronization, exclusive choice, and 
simple merge.

Fig. 9  PALIA Discovery results with different Transition Merging modes with log 
L = {ABCDEF, ACBDEG, ADCBEG, ADCBADEG}
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We simulated the process using the tool Purple (Burattin et al., 2022)5, configuring the 
tool for the rediscoverability purpose, which led to an event log with 990 traces and 8415 
events.

We mined this log with I-PALIA as well as with Fluxicon Disco6, Celonis7, Apromore8 
and the Inductive Miner (Leemans et al., 2014a). The results are available in Fig. 11. While 
the model mined with I-PALIA matches perfectly the expected one, all other mining tools 

5 See http://pros.unicam.it:4300/.
6 See https://fluxicon.com/disco/.
7 See https://www.celonis.com/.
8 See https://apromore.com/.
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Fig. 10  The reference process we used for our simulation
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and algorithms fail at extracting a model that resembles the original one. The main issue, as 
expected, is the duplication of activity A which is observed at the beginning, in the middle, 
and at the end of the process. This causes all models to show unstructured behavior, quite 
similar for each mining algorithm: the process can start with activity A and finish immedi-
ately, or can have repetitions of the combinations of the other activities (the part before and 
after the A in the middle).

In another battery of tests, we aimed to learn something about the computational per-
formance of the I-PALIA implementation. For this purpose, we generated a random pro-
cess model using PLG2  (Burattin, 2016) (cf. Fig.  12). With this model, we generated 6 
event logs with 100, 500, 1000, 2000, 5000, and 10000 traces. These logs were mined with 
I-PALIA and we monitored the execution time. The tests were performed on a standard 
laptop, equipped with Java 1.15(TM) SE Runtime Environment on Windows 10 Enterprise 
64bit, an Intel Core i7-7500U 2.70GHz CPU and 16GB of RAM. Results are reported in 
Fig. 13. As the plot shows, the time required to process is not negligible and could grow 
quite quickly. Considering the biggest log, we had 10000 traces and 58713 events, and our 
implementation of I-PALIA took almost 7 seconds for the actual mining.

For the final test, we decided to use I-PALIA to analyze a real-world event log. Specifi-
cally, we considered the SEPSIS event log (Mannhardt & Blinde, 2017).9 This log contains 
events referring to sepsis cases from a Dutch hospital, where one case refers to the pathway 

9 The event log is publicly available at ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​r​​g​/​​1​0​.​​4​1​​2​1​/​​u​​u​i​d​:​​9​1​5​d​2​​​b​f​b​-​​​7​e​8​4​-​​4​9​a​d​​-​a​2​8​6​-​d​c​3​5​f​0​6​3​a​4​
6​0.

Fig. 13  Stress test on the algorithm against log with different sizes

 

Fig. 12  Random model generated for the stress test
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through the hospital of one patient. The events have been recorded via the ERP system of 
the hospital, and the log contains 1050 cases with 15214 total events, where each event 
refers to one of the possible 16 different activities. For our tests, we decided to mine this 
log using Celonis, Fluxicon Disco, I-PALIA (with the Strict Compatible Transition Mode), 
and Inductive Miner. We set the parameters of the commercial tools and Inductive Miner to 
show all the possible behaviors (similarly to what I-PALIA does). The processing time for 
the log, in the case of I-PALIA, was about 5 seconds. All the results are reported in Fig. 14. 
As typical for the healthcare domain (Munoz-Gama et al., 2022), the resulting models show 
spaghetti-like behavior; however, it is interesting to note that in the case of I-PALIA, the 
algorithm manages, by duplicating activities, to provide a structured model in the beginning 
(cf. Fig. 14c), while towards the end of the process, the behavior becomes fundamentally 
challenging to tackle even for I-PALIA. In the Inductive Miner case, the situation is slightly 
different: the model looks very compact and, in principle, easier to understand, but a deeper 
analysis reveals that the model starts with a parallel split followed by optionality for each 
activity, which can also be repeated infinitely many times. From a quantitative point of 
view, comparing fitness (Berti & Aalst, 2019) and precision (Berti & Aalst, 2019) reveals 
the issue: as Table 1 shows, Inductive Miner achieves perfect fitness, but its precision is very 
low. On the other hand, I-PALIA manages to get a fairly good fitness and an almost-perfect 
precision. Combining these two aspects into the F-score (i.e., harmonic mean) shows that 
I-PALIA outperforms Inductive Miner in this case.

Finally, it is worth noting that while the models mined with Celonis, Disco, and Inductive 
Miner have 16 event nodes (as expected), the I-PALIA model has 62. This duplication of 
activities, while increasing the absolute model size, is what helps to deliver a more struc-
tured – at least in the first half – and more precise model.

7  Discussion

Despite significant progress in process discovery, certain challenges remain unresolved. In 
particular, the accurate identification and representation of duplicated activities continues to 
be a limitation for most existing algorithms. These open issues highlight the need for novel 
methods that can address such complexities while maintaining model precision and inter-
pretability. In this paper, we propose an algorithm capable of identifying activity duplica-
tion, thereby improving the understanding of the model under certain circumstances.

There are algorithms available in literature that presents similarities to our proposal. 
State-based synthesis approaches such as the one presented in Aalst et  al. (2006) utilize 
a two-step method: first, constructing a transition system from the event log, and subse-
quently applying region theory to synthesize the corresponding process model. While these 
approaches share similarities with our method in terms of employing an intermediate repre-
sentation, our grammar inference-based approach offers explicit support for handling dupli-
cated activities in BPMN models, which represents a distinctive contribution compared to 
region-based synthesis techniques.

Regarding the discovery of nested patterns, it is important to clarify the current capabili-
ties and limitations of our algorithm. Our approach analyzes all transitions in the process 
model and is able to identify a wide range of structures, including large loops and nested 
choices. Notably, loops and choices nested within parallel blocks can often be detected suc-
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Fig. 14  The SEPSIS log mined using Celonis, Fluxicon Disco, I-PALIA, and Inductive Miner
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cessfully under certain circumstances. However, the detection of parallelism is performed 
specifically between the corresponding split and join nodes. As a consequence, the current 
implementation is not able to discover nested parallelisms, which may limit the expressive-
ness of the resulting model in scenarios involving complex parallel constructs. Addressing 
this limitation and improving the detection of nested parallel structures will be an important 
avenue for future research.

According to the selection of the best Transition Merge mode, in general, it depends 
totally on the task to be performed. However, based on our experience some best practices 
should be taken into account:

	● The Simple Compatible Transition Mode is the one that has a greater maximization and, 
for that, is the one that usually better reduces the “spaghetti effect”. On the other hand, 
the Strict Mode has the most limited generalization and, for that, creates bigger models. 
So, in general, in high variability problems is better to start with a Simple Compatible 
Mode to allow a better understanding of the model

	● The Simple Compatible Mode can produce an over-generalization problem that can 
prevent the identification of parallel regions in I-PALIA Algorithm. See an example of 
this problem in Fig. 8. The Onward Merge Stage with Inline Transition Merge produces 
a flow (c) where the Parallel Merge algorithm can detect the parallel region. However, if 
instead of the Inline Transition Merge Mode, we would have applied the Simple Com-
patible Transition Merge Mode, the transitions B → B1 have also been merged, mak-
ing the identification of the parallel region more difficult. Figure 15 shows the resultant 
workflow after applying Onward Merge with Simple Compatible Transition merge mode 
with this example. The result is less understandable than the one with Inline Mode. A 
solution to this problem is to perform a first run of the Onward Merge algorithm with an 
Inline Transition Mode and, after the Parallel Merge, perform a second run of Onward 
Merge with an Simple Compatible Transition Merge Mode.

	● In terms of performance, the Strict Mode is the most efficient because the merge pivots 
on the incoming transitions of the nodes, and each merge pass can done simply by run-
ning through the nodes. On the other hand, the Inline Mode is the one that requires more 
computation because, in addition to running through the γ transitions, it is required to 
state that the transitions are in the same branch, and this is relatively hard to compute.

According to computational performance, While the algorithm shows very promising 
results, it still suffers from important issues. The most important ones are the current lack 

Fig. 15  Over-generalization in onward merge stage with simple compatible transition merge mode with 
the experiment of the Fig. 8

 

Fitness Precision F-score
I-PALIA 0.53 0.99 0.69
Inductive Miner 1 0.25 0.40

Table 1  Fitness, precision, and 
F-score for I-PALIA and Induc-
tive Miner on the SEPSIS log
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of robustness to noise and its computational complexity. Regarding the lack of robustness 
to noise, this is certainly a problem that makes the algorithm not mature enough for many 
industrial settings, however, we believe this is an issue that can easily be addressed by con-
sidering frequencies of the direct following relations and applying some threshold on those 
before applying the rest of the computation. A more fundamental challenge regards the 
complexity of the algorithm. Right now, several steps and needed in order to reach the goal, 
and each of these contributes substantially to the complexity. For small logs the mining time 
is acceptable, but it grows quickly as the numbers of traces and events grow. Optimizations 
can be employed also in this case, both in terms of implementation (e.g., multi-threading) 
as well as more conceptual ones.

8  Conclusion and future work

In this paper, we presented I-PALIA, a process mining algorithm for control-flow discovery. 
The algorithm is capable of synthesising BPMN process models containing all basic work-
flow patterns (i.e., sequence, parallel split, synchronization, exclusive choice, and simple 
merge) as well as duplicated activities. The algorithm, which has a publicly available imple-
mentation as both ProM package as well as a Java Maven dependency has been tested and 
evaluated both qualitatively (against state-of-the-art tools) as well as quantitatively on logs 
of different sizes. The algorithm is also implemented in the research platform PMApp.

I-PALIA algorithm generates TPAs with a limited representativity, an interesting exten-
sion of the algorithm is to incorporate new stages, or incorporate some heuristics for rela-
beling that can identify more complex workflow patterns such as Milestones or Interleaved 
Parallel Routines. Also, the first stages of I-PALIA (except Parallel Merge) can be used as an 
entry point for other process mining discovery techniques to enhance his capability making 
them able to identify duplicated tasks. For example, the result of the Onward Merge can be 
used as an entry point for the Inductive Miner Algorithm (Leemans et al., 2014b) instead of 
the use of DFG, that are not able to identify duplicated tasks.

Other future work for I-PALIA certainly includes the extension of the algorithm to 
become noise tolerant, for example employing frequencies. Additionally improving the per-
formance and the computational complexity of the approach certainly represents a funda-
mental step towards wider adoption.
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