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 A B S T R A C T

Process mining is a prominent discipline in business process management. It collects a variety 
of techniques for gathering information from event logs, each fulfilling a different mining 
purpose. Event logs are always necessary for assessing and validating mining techniques in 
relation to specific purposes. Unfortunately, event logs are hard to find and usually contain 
noise that can influence the validity of the results of a mining technique. In this paper, we 
propose a framework, named purple, for generating, through business model simulation, event 
logs tailored for different mining purposes, i.e., discovery, what-if analysis, and conformance 
checking. It supports the simulation of models specified in different languages, by projecting 
their execution onto a common behavioral model, i.e., a labeled transition system. We present 
eleven instantiations of the framework implemented in a software tool by-product of this 
paper. The framework is validated against reference log generators through experiments on 
the purposes presented in the paper.

. Introduction

Nowadays, process mining is an important discipline in extracting non-trivial information from the execution of business 
rocesses, thanks to the increasing usage of information systems that record event logs of the deployed processes [1]. The importance 
f process mining is also well recognized by companies, which appreciate the possibility of gathering knowledge from actual 
xecution data and continuously improving their processes [2].
In brief, process mining is a collection of techniques to automatically extract information from event logs recorded during the 

xecution of business processes. The effectiveness and the precision of process mining techniques are strictly related to the reliability 
f their mining algorithms, whose development requires validating them against different event logs [3], usually coupled with the 
odels that generated them [4]. Mining algorithms extract different types of information according to the mining purpose they 
ave to accomplish, e.g., process discovery, what-if analysis, and conformance checking. Therefore, to validate a process mining 
lgorithm, it is important to use event logs that suit the purpose for which the algorithm has been devised [5]. For instance, given a 
amily of discovery algorithms that leverages the same set of properties on the logs (e.g., the coverage of the direct following relations 
or the Alpha miner family [6]), a fair comparison of the algorithms would require logs that satisfy such properties. As stated in 
he literature [3,7,8], each mining purpose heavily relies on the quality, concerning specific properties, of the event logs given as 
nput to the mining algorithms. Indeed, obtaining event logs fitting for a purpose is a complex, yet necessary, achievement [9].
Event logs are difficult to find, in particular, those directly extracted from deployed IT systems that refer to real-world 

nstallations [10]. Moreover, bad-quality logs hamper the use of process mining techniques, thus, researchers are encouraged to 
evelop log generators that focus on a specific and explicit mining purpose [7]. This opens up the following research question.
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RQ1: What are the relevant approaches in the literature for generating artificial event logs?

In the literature, several approaches, e.g., [3,10–13], propose the automated generation of artificial event logs via the simulation 
of models in a predetermined language, e.g., BPMN or Petri Net. However, these are purpose-agnostic, thus not meant to produce 
event logs fulfilling properties required for a specific purpose. Instead, they simulate random execution traces, producing a different 
event log every time. This gap in the literature paves the way for the following research question.

RQ2: How can event logs generators support different mining purposes?

In this regard, we explore the possibility of driving the simulation to finally obtain specific execution traces that make the 
produced event log tailored to the mining purpose.  To this aim, in this paper, we propose the PURPose-guided Log gEneration 
(purple) framework. The main advantages of the purple framework concerning existing simulators are as follows. purple generates 
event logs specifically tailored to the purpose of the mining technique under investigation. To shape an event log, the framework 
performs a guided simulation of the input model that incrementally generates specific execution traces, until the desired purpose 
is satisfied. The simulation is guided by hints produced at each step based on the partial log generated up to that moment and 
the properties required for mining purposes. Additionally, the framework is meant to simulate many kinds of business process models 
(e.g., BPMN, Petri Net, WF-net) employing a common behavioral model that is the Labeled Transitions System (LTS). Besides the 
conceptual framework, we provide a tool, which implements eleven instantiations of the purple framework that address process 
discovery, conformance checking, and what-if analysis mining purposes for BPMN processes and collaborations, and Petri-nets. To 
assess the impact of guided simulation in contrast to other available approaches, we formulate the following research question.

RQ3:  How does purpose-guided simulation perform in comparison to purpose-agnostic approaches?

In this regard, we validate the advancements of our proposal to the state of the art on log generation, we carried out experiments 
measuring the quality of logs generated by purple for the purposes it supports, and we compared these results with those of other log 
generators. Moreover, we assessed the performance of the tool implementation using different instantiations on models of increasing 
size and complexity.

Notably, this work is based on the paper ‘‘A purpose-guided log generation framework’’ [14], published in the proceedings of 
the 20th International Conference on Business Process Management. Besides describing our approach in greater detail, this article 
extends the scope of the original conference paper as reported below. 

• We have revised the presentation of the framework by providing pseudocode descriptions of the main components.
• We have enriched the purple framework by

– a new component ensuring the termination of the log generation, namely a trace evaluator;
– a new log evaluator regarding branching probabilities for what-if analysis, which has been implemented in the purple 
tool as well as considered for the evaluation;

– instantiations of the trace evaluator component dealing with trace length and cost;
– a new semantic engine for BPMN collaboration models.

• We extended the validation to the new instantiations and we added performance analysis showing the execution times of purple 
instantiations with models of increasing size.

• We have revised the related work section with a systematic scouting of the literature to include further approaches related to 
our proposal.

The rest of the paper is structured as follows.  Section 2 provides a comprehensive review of the existing log generation 
approaches related to our work.  Section 3 provides background notions on event logs and Labeled Transition Systems.  Section 4 
introduces the purple framework and its components.  Section 5 and  Section 6 present some instantiations of the trace and log 
evaluator components of purple respectively.  Section 7 presents the purple tool implementing the framework and its instantiations 
and reports the results of experiments comparing purple with other reference simulators. Finally,  Section 8 closes the paper by 
discussing assumptions, limitations, and opportunities for future work.

2. Related works

To answer RQ1, this section discusses the most relevant works on the generation of event logs from process model simulation. 
In describing them, we focus on features of interest for this paper, such as the generation of event logs tailored to a desired mining 
purpose from models specified in different modeling languages. Thus, we primarily focus on the types of event logs these approaches 
can generate and the models they support.

The literature review has been inspired by the methodology described in [15]. The review process comprises three phases:
planning and conducting the literature review, and reporting on the review of the selected papers.
2 
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Table 1
Scopus query for the literature review.
 TITLE-ABS((‘‘event log*’’ OR ‘‘event data’’ OR ‘‘event stream*’’) AND (‘‘generation’’ OR ‘‘generator’’ 
 OR ‘‘simulator’’ OR ‘‘simulation’’ OR ‘‘synthesis’’ OR ‘‘synthetic’’))  
 AND ( LIMIT-TO ( SUBJAREA , ‘‘COMP’’ ) )  
 AND ( LIMIT-TO ( DOCTYPE , ‘‘ar’’ ) OR LIMIT-TO ( DOCTYPE , ‘‘cp’’ ) )  
 AND ( LIMIT-TO ( LANGUAGE , ‘‘English’’ ) )  

2.1. Planning and conducting

In the planning phase, we discussed defining the search query, the target papers’ repository, and the inclusion and exclusion 
criteria. From the discussion, we decided to break down RQ1 into two sub-questions related to the literature review:

RQ 1.1 Which mining purposes are addressed by event log generation approaches?

RQ 1.2 Which input modeling languages are used to generate synthetic event logs?.

Moreover, based on the research question, we defined a search query for retrieving relevant papers [16], see Table  1. As a digital 
library, we decided to focus on the Scopus library. We acknowledge that relying solely on Scopus represents a limitation to be 
considered when interpreting the comprehensiveness of the review. However, we adopt this choice since Scopus contains the highest 
number of unique articles [17], and indexes relevant works, discarding non-peer-reviewed articles [18].  As inclusion and exclusion 
criteria, we decided not to limit the results by publication year, while we limited the results to journal articles and conference papers 
written in English and belonging to the computer science field.

Then, we pass to the conducting phase that consists of the search for the research works and their analysis accordingly to 
the inclusion/exclusion criteria. Moreover, we apply backwards and forward snowballing to close the scouting [19,20]. From the 
application of the query, we obtained a first set of 1234 works. Then we scouted titles and abstracts of these works in order to 
exclude the ones that clearly are out of the scope of our analysis. This second run resulted in 54 papers, which have been read to 
assess their contribution. Finally, we identified 26 papers from the list, plus 3 from the snowball approach.

2.2. Reporting

The last phase consists of illustrating the data extracted during the review. First, we make some remarks on the identified 
research works. Of the 29 revised papers, 5 are journal papers, 21 are conference papers, and 3 (the ones from the snowballing) are 
not peer-reviewed. Moreover, two of them are our publications, i.e., the conference paper [14] and the demo paper [21], on top of 
which this paper builds on. Thus, we report on the remaining 27 papers reported in Table  2.

Referring to RQ 1.1, the selected papers propose approaches for event logs generation, both purpose-driven and purpose-agnostic; 
some of them provide tool support. As summarized in Table  2, 15 papers propose purpose-agnostic approaches that adopt random 
simulations. While the remaining 12 target seven classes of mining purposes, i.e., security, predictive process mining, generic 
benchmark of process mining techniques, compliance checking, drift detection, data-aware process mining, and multi-perspective 
process mining. Concerning RQ 1.2, we show that most of the approaches (i.e., 17) generate logs from the simulation of procedural 
models, i.e., Petri-nets, BPMN processes, Process trees, agents, and textual notations. The remaining approaches adopt declarative 
notations and process features.

Regarding purpose-agnostic approaches, Esgin and Karagoz present in [11] a solution to the problem of unlabeled event logs [44], 
proposing a synthetic event log generation approach. The generation of event logs can be tuned according to four parameters: 
the activity priority, an unexpected process termination probability, a noise threshold, and a branching probability for the choice 
gateways. Apart from these options, the simulation randomly executes the input Petri-net and cannot handle different mining 
purposes, nor have tool support.

Kataeva and Kalenkova propose in [12] grammar rules generating well-structured WF-Nets from which to produce logs. This 
work strongly limits the kind of logs that can be produced. Indeed, it handles just well-structured WF-Nets; moreover, logs cannot 
be tuned for specific mining purposes. Similarly, Burattin presents in [10] a tool called Process Log Generator (PLG2) that creates 
well-structured BPMN models and produces event logs from their simulation. To produce artificial models, PLG2 combines different 
control-flow patterns via context-free grammar according to options like the number of gateways or the presence of noise. Concerning 
purple, this approach relies on random executions of the input model and works only with BPMN. Similarly, García-Bañuelos [23] 
and then de Medeiros and Günter [3] propose the CPN tool for the generation of event logs through the simulation of colored 
Petri-nets, subsequently enhanced with an IDE implementation by Verbeek and Fahland [24]. They point out the issues related to 
using real-life event logs to fine-tune mining algorithms and how the incompleteness of an event log or the presence of noise can 
compromise the evaluation of the mining algorithms. In the realm of Petri-nets, Kuhn et al. [25] introduce a methodology to simulate 
and generate event logs from data Petri-nets. These models are translated into the probabilistic programming language WebPPL and 
then used as simulation configurations.  These approaches cannot tune the logs to produce since they rely on a random simulation 
of the input model.
3 
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Table 2
Summary of the literature review. In the ‘‘type’’ column, ‘C’ refers to conference; ‘J’ refers to journal; and ‘N’ refers 
to non-peer-reviewed papers.
 Paper Year Type Source Purpose Input Language  
 [22] 2024 C Springer Security Agent-Based Modeling 
 [13] 2017 J Elsevier Agnostic BPMN collaboration  
 [10] 2016 C CEUR Agnostic BPMN process  
 [3] 2004 N None Agnostic Colored Petri-net  
 [23] 2009 N None Agnostic Colored Petri-net  
 [24] 2023 C CEUR Agnostic Colored Petri-net  
 [25] 2024 C CEUR Agnostic Data Petri-net  
 [26] 2023 C Springer Multi-perspective Data Petri-net  
 [27] 2023 C CEUR Data Data Petri-net  
 [28] 2016 C CEUR Agnostic Declare  
 [29] 2018 C CEUR Agnostic Declare  
 [30] 2015 C Springer Agnostic Declare  
 [31] 2020 C CEUR Agnostic Declare  
 [32] 2024 C Springer Agnostic Declare  
 [33] 2023 C CEUR Agnostic Declare  
 [11] 2019 C Springer Agnostic Petri-net  
 [34] 2024 C IEEE Benchmark Petri-net  
 [35] 2014 C CEUR Security Petri-net  
 [36] 2013 C Springer Security Petri-net  
 [37] 2024 J SAGE Predictive Process configurations 
 [38] 2025 J Elsevier Agnostic Process features  
 [39] 2024 C Springer Benchmark Process features  
 [40] 2019 J Springer Benchmark Process Tree  
 [41] 2016 C CEUR Benchmark Process Tree  
 [42] 2022 C CEUR Concept drift Process Tree  
 [43] 2020 J Springer compliance SCIFF  
 [12] 2014 N None Agnostic WF-net  

Mitsyuk et al. face in [13] the problem of defining and generating logs from collaborative processes. They use an executable 
BPMN semantics supporting a subset of elements from the standard notation, such as tasks (also send/receive), sub-processes, parallel 
and exclusive gateways, and cancellation events. Moreover, they consider the data perspective, as data objects can store single data 
values used for driving exclusive choices. The result is a log generator integrated in the ProM framework that produces random event 
logs in .xes files. However, their approach only deals with a single modeling language and cannot be tuned for specific purposes.

The literature also provides papers focused on the generation of event logs for a specific mining purpose. Differently, Sommers 
et al. [34] define an approach for generating event logs with traces that deviate from the input model. The final aim is to have 
datasets for benchmarking process mining techniques. This approach simulates Petri-nets (or higher order Petri-nets) modified 
to produce traces accordingly to the deviations required by the user. With the same aim, Loreti et al. [43] define an approach 
for generating compliant and non-compliant traces from the simulation of procedural and declarative process models. However, 
these approaches are not meant to be applied to other mining purposes. Stocker and Accorsi introduce in [35,36] an approach for 
generating event logs for a specific purpose, i.e., testing security properties. They present a tool, called SecSy, that generates logs 
from the simulation of a Petri-net in a specific scenario. The simulation performs random execution of the model, then it applies 
transformations to the generated event log. These transformations remove or insert activities and modify traces to violate security 
properties. This approach takes care of one specific purpose for which the produced event logs are tuned, and of one modeling 
language (i.e., Petri-net). In the same field, Kamal et al. [22] define an approach to generate event logs with anonymized labels for 
addressing privacy concerns in the healthcare domain.  Jouck and Depaire present in [40,41] a log generation approach specific for 
comparing discovery algorithms. They produce and then simulate a population of well-structured models from selected workflow 
patterns to ensure the presence of specific activity order relations chosen by the user. Grimm et al. [42] presents CDLG, a tool for 
generating logs with four types of concept drifts from the execution of process trees. These works use process trees to produce logs, 
and apart from process discovery and drift detection, further purposes are not considered. Mike Riess [37] introduces a framework 
for generating event logs tailored to predictive process monitoring experiments. The framework gets as input process configurations 
rather than a process model.

Finally, Grüger et al. present in [26] the SAMPLE approach for generating multi-perspective logs with realistic data. The approach 
semantically describes data via meta-models to ensure meaningful variable values and event logs that closely approximate reality. 
Moreover, the approach is implemented in the Data-Aware Event Log Generator [27], which enables users to generate synthetic 
event logs.

In particular, the literature presents approaches for log generation based on declarative process notations [28–31,41], which are 
out of our scope. The most significant attempts are by Alman et al. [32], which concentrate on generating event logs that come from 
the concurrent execution of a combination of declarative and procedural process models on the same case instances. The proposed 
approach produces an event log matching the concurrent execution of these hybrid models. More closely to a purpose-guided 
approach, Donatello et al. [33] propose a tool generating event logs that satisfy a given property.
4 
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Finally, the literature also proposes approaches that exploit machine learning techniques. Meneghello et al. [38] present the 
RIMS (Runtime Integration of Machine Learning and Simulation) approach to integrate predictions of deep learning models during 
the log generation to produce more accurate logs concerning the time perspective. Maldonado et al. [39] present GEDI, a framework 
for generating event data for benchmarking process mining. GEDI uses an unsupervised approach that creates event data according 
to user-selected features not directly related to a specific process model. 

Summing up, the above-mentioned works mainly focus on generating random event logs without focusing on specific mining 
purposes. Moreover, they limit the simulation to single modeling languages and structured models. Lastly, some produce logs in 
non-standard formats, jeopardizing the compatibility with process mining tools.

3. Background notions

This section provides the notions we use in the rest of the paper. Process models, which graphically describe when and how 
the involved activities take place, are a common representation of process-aware systems in the process mining disciplines. Fig.  1(a) 
depicts a system modeled using the BPMN notation [45], which is one of the most used notations in the modeling practice [46]. 
In brief, a BPMN process model consists of a combination of different elements. Events, drawn as circles, represent the points from 
which the process starts (start events) or terminates (end events), though more complex usages are also allowed. Activities, drawn 
as rectangles with rounded corners, represent work units. Gateways, drawn as diamonds, act as either join nodes or split nodes. The 
gateway with the ‘‘+’’ symbol – AND gateway – enables parallel execution flows in the split mode and supports the synchronization 
of parallel flows in the join mode, while the one with the ‘‘×’’ symbol – XOR gateway – gives the possibility to describe choices in 
the split mode and pass-through elements in the join mode. Sequence Edges, drawn as solid connectors, specify the internal flow of 
the process. About its execution semantics, the model of Fig.  1(a) executes for first the activity 𝐴, then two options are possible: in 
the upper path the activities 𝐵 and 𝐶 are executed in parallel, while in the lower path, there is just the activity 𝐷. Then, before the 
termination of the process, activity 𝐸 is executed.

An event log consists of a set of cases, each of which refers to some events that can be seen as one possible execution of a 
process. An event refers to the execution of a process activity, and it is described by a set of attributes. The most common attributes 
for a recorded event are the timestamp and activity name, but also other information can be captured, such as the resource involved 
in the activity execution or the monetary cost associated with it. The sequence of events related to a given case is called trace. Fig. 
1(b) shows a table containing a fragment, with three cases, of an event log generated by the system modeled in Fig.  1(a). Each row 
in the table corresponds to an event occurred during the execution and contains information regarding the event attributes. For 
instance, the first three rows in Fig.  1(b) belong to Case 1, which contains three events. The first event reports the execution of an 
activity named 𝐴, which happened on May 5th, 2024 at 10:43 a.m.; the event was performed by the resource Andrea and cost 10.

Fig.  1(c) reports a simple event log [1, Ch. 5], which focuses only on the names of the executed activities. In this situation, an 
event log can be seen as a multiset of traces, where a trace is a sequence of activity names [47]. Worth noticing that different cases 
may have the same trace. In the considered example, the trace ⟨𝐴,𝐷,𝐸⟩ occurs twice, while the trace ⟨𝐴,𝐵, 𝐶, 𝐸⟩ only once. The 
multiplicity of a trace is denoted in the simple event log by a positive integer (omitted when it is equal to 1). 

A way of generating event logs is through the simulation of a business process model [10]. The main idea is to repeatedly 
‘‘execute’’ a model and to record, in a log file, all events observed during the execution. Simulators use the so-called play-out engines, 
like in [48,49], to execute models [1, Ch. 2]. An engine provides the moves a model can perform according to the semantics of the 
considered modeling language (e.g., the firing rule of Petri Nets [50] or the transition rules of BPMN operational semantics [51]), 
usually defined employing LTSs.

An LTS consists of states, representing the possible system configurations (i.e., the execution states of the model), and labeled 
transitions, corresponding to directed edges connecting states (representing moves in the model execution). Formally, a transition 
system is a triple (𝑆,𝐿,→) where: 𝑆, ranged over by 𝑠, is a set of states; 𝐿 = 𝐴 ∪ {𝜏}, ranged over by 𝑙, is the union of a set of 
(visible) activity labels 𝐴, ranged over by 𝑎, and a special label 𝜏 denoting an invisible activity; and →⊆ 𝑆 × 𝐿 × 𝑆 is a transition 
relation. The 𝜏 action is used to decorate those transitions of the LTS that do not refer to the performing of an activity included in 
the model but refer to the control of the execution flow, e.g., the execution of decisions, that can be neglected in the log generation.

Fig.  1(d) reports the LTS representing the behavior of the BPMN model in Fig.  1(a). This LTS is produced by the BPMN formal 
semantics described in [51]. Informally, the LTS is obtained as follows. Each configuration of the BPMN process model, i.e., each 
marking of tokens, corresponds to a state of the LTS. For example, the initial marking, where there is only one token placed on the 
start event, corresponds to the state 𝑠𝑖, while the marking obtained by one step of execution from the initial marking, where the 
token is moved to the sequence edge incoming into the activity 𝐴, corresponds to the state 𝑠1. The execution of an activity of the 
BPMN model is rendered in the LTS in terms of a transition labeled by the name of the activity. For example, the execution of the 
activity 𝐴, which is enabled by the marking corresponding to the state 𝑠1, is rendered by the transition connecting 𝑠1 and 𝑠2. 

In an LTS, we call a state initial (resp. final) if it does not have incoming (resp. outgoing) transitions. The initial state, labeled 
𝑠𝑖, corresponds to the initial configuration of the model, where its execution starts, while a final state, labeled 𝑠𝑓 , is an ending 
configuration, which corresponds to a proper or an improper termination.

Finally, for a given LTS, (𝑆,𝐿,→) with 𝐿 = 𝐴 ∪ {𝜏}, it is possible to characterize: sub-traces as sequences of visible labels; traces
as sequences of visible labels from the initial to a final state; and logs as multisets of traces.  Formally, the sequence of labels 
⟨𝑎1, 𝑎2,… , 𝑎𝑛⟩ with 𝑎1, 𝑎2,… , 𝑎𝑛 ∈ 𝐴 is a sub-trace if there exists ⟨𝑙1, 𝑙2,… , 𝑙𝑚⟩ with 𝑙1, 𝑙2… , 𝑙𝑚 ∈ 𝐿 such that: (i) ⟨𝑎1, 𝑎2,… , 𝑎𝑛⟩
coincides with ⟨𝑙1, 𝑙2,… , 𝑙𝑚⟩ up to occurrences of 𝜏; and (ii) (𝑠1, 𝑙1, 𝑠2) ∈→, (𝑠2, 𝑙2, 𝑠3) ∈→, . . . , (𝑠𝑚, 𝑙𝑚, 𝑠𝑚+1) ∈→ for some 𝑠1, 
𝑠 ,… , 𝑠 ∈ 𝑆. If 𝑠  is the initial state and 𝑠  is a final state, the sub-trace is called trace. 
2 𝑚+1 1 𝑚+1
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Fig. 1. From process model to event log.

Traversing the LTS in Fig.  1(d) from the initial state 𝑠𝑖 to the final state 𝑠𝑓 , the sequences of visible labels associated with the 
transitions (thus, discarding the occurrences of 𝜏 labels) represent the execution traces that can be generated from the BPMN model 
in Fig.  1(a). Then, we obtain traces of the following forms: ⟨𝐴,𝐵, 𝐶, 𝐸⟩, ⟨𝐴,𝐶, 𝐵,𝐸⟩, and ⟨𝐴,𝐷,𝐸⟩. Multisets containing zero, one, 
or more occurrences of these traces, like the one in Fig.  1(c), are hence logs that can be generated from the BPMN model in Fig. 
1(a). 

4. PURPose-guided log gEneration framework

In this section and the next two, we present the purple framework and its components. To answer RQ2, purple is designed to 
simulate models for producing event logs with different properties that target different mining purposes. It supports the simulation 
of models specified with different languages by projecting their execution onto a common behavioral model, i.e., an LTS.

4.1. The purple conceptual framework

The purple conceptual framework is composed of the following components: a guided simulator, a semantic engine, a trace 
evaluator, and a log evaluator, see Fig.  2.

Starting from the semantic engine, this component is devoted to interpreting the input model representation according to its 
execution semantics and consequently to construct on the fly the corresponding LTS. The semantic engine starts creating an LTS 
6 
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Fig. 2. purple framework.

with only the initial state (i.e., the initial model configuration). Then, it offers the framework functions (i) to retrieve states of 
the LTS reachable by transitions with a specific label; (ii) to get states of the LTS reachable from a specific state by a sequence of 
transitions with specific labels; and (iii) to construct the LTS and get from the input model all the transitions outgoing a given state 
coupled with the relative target states. Relying on LTSs as behavioral representations of the input models, purple can simulate any 
modeling language equipped with, or that can be mapped to, an executable semantics [1, Ch. 3]. This allows purple to gain in terms 
of generalizability, since it can support any modeling language with a direct LTS semantics, e.g., [51,52], or adopting a mapping 
approach, e.g., [53,54]. It is worth noticing that purple is not meant to support modeling languages with stochastic semantics that 
require other kinds of behavioral models, like Markov chains. On the other hand, the framework does not impose any constraint 
on the topology of the input models; ideally, it accepts models with arbitrary topology. Such restrictions, when needed, can be 
imposed by the semantic engine implementation, which can constrain specific topologies such as the absence of loops, safeness, or 
well-structuredness.

The trace evaluator component is responsible for deciding if to stop the generation of a trace during a simulation run. This 
component is twofold, it permits to specify conditions (i) related to the termination of a simulation run, e.g., a trace cannot be 
longer than 100 activities; and (ii) related to the mining purpose, e.g., the sum of the costs of the activities in a trace has to be 
lower than a threshold. Therefore, the trace evaluator permits adding to the log traces that do not necessarily end in the final state 
of the LTS. Hence, we refine the notion of trace, used throughout the rest of the paper, as follows: a sub-trace is a trace if it starts 
from the initial state and ends on a final state or 𝖾𝗏𝖺𝗅𝗎𝖺𝗍𝖾 holds.

The log evaluator component is responsible for evaluating an event log according to the peculiarities of the desired mining 
purpose. More practically, this component checks ‘‘how much’’ an event log satisfies the properties needed for the purpose 
under consideration. As a result, the log evaluator produces a delta. Formally, a delta is a set of sub-traces of the form 
{⟨𝑙11, 𝑙12,… , 𝑙1𝑖⟩, ⟨𝑙21, 𝑙22,… , 𝑙2𝑗⟩,… , ⟨𝑙𝑛1, 𝑙𝑛2,… , 𝑙𝑛𝑘⟩}. The sub-traces in the delta drive the simulator to produce traces that contain 
them. They act as a bias indicating the parts of the LTS to be traversed, thus making the produced traces and the log suitable for 
the purpose. As each log evaluator is defined to deal with a specific mining purpose, the generated delta has to ensure the traces 
required by that purpose in the final event log. We clarify this point with a simplistic example that refers to Fig.  1, used just for the 
sake of presentation. Assuming a mining purpose that requires a log where model activities appear at least once, the log evaluator 
will select the activities not yet in the log and will produce a delta containing sub-traces of length one with the labels of the missing 
activities. For instance, assuming the log contains only case 2, Fig.  1(b), the only missing activity would be 𝐷. Thus, the log evaluator 
would produce a delta like {⟨𝐷⟩}. Consequently, this delta guides the simulator to produce a trace that passes from state 𝑠9 in the 
LTS of Fig.  1(d). It is worth noticing that the effectiveness of the generated delta for the addressed mining purpose depends on the 
implementation of the log evaluator itself.

Finally, we introduce the simulator. This component produces specific traces from the execution of the input model. Its 
peculiarity lies in a guided traversal of the LTS to guarantee the production of traces, and hence a log, that satisfies the desired 
mining purpose. Indeed, differently from a purely random simulation, what the framework proposes is a guided simulation that 
takes as input from the log evaluator a delta that suggests execution paths, or part of them, to follow in the LTS traversal.

All components are coordinated by a looping routine, referred to as the purple routine, which iteratively constructs an event log 
from a simulation of the input model. At each iteration, the delta generated by the log evaluator guides the simulator in the creation 
7 
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of the next trace, which has to be accepted by the trace evaluator. Then, the routine terminates if the log evaluator does not produce 
further deltas. In the following subsection, we provide further details on the concrete implementation of the purple routine and of 
the framework components. 

4.2. The purple framework instantiation

The conceptual framework can be instantiated using different implementations of the components presented so far. Except for 
the simulator that is fixed, the other components can be instantiated with (i) a semantic engine, to support a particular modeling 
language (e.g., BPMN, Petri Net); (ii) a trace evaluator, to specify the termination of a simulation run; and (iii) a log evaluator, 
tailored to a mining purpose (e.g., discovery, compliance checking, and what-if analysis). A framework instance is coordinated 
by the purpleRoutine function, see Listing 1. The routine requires a semantic engine, a log evaluator, a trace evaluator, and the 
simulator as input.
1 Log purpleRoutine (SemanticEngine 𝑠𝑒 , LogEvaluator 𝑙𝑒 , TraceEvaluator 𝑡𝑒 , Simulator 𝑠 ) :
2 Log 𝑙 = new Log ( ) ;
3 TraceSet 𝑑𝑒𝑙𝑡𝑎 = new TraceSet ( ) ;
4 do :
5 𝑙 . add ( 𝑠 . globalSimulate (𝑑𝑒𝑙𝑡𝑎 ) ) ;
6 𝑑𝑒𝑙𝑡𝑎 = 𝑙𝑒 . evaluate ( 𝑙 ) ;
7 while (𝑑𝑒𝑙𝑡𝑎 != nul l )
8 return 𝑙 ;

Listing 1: purpleRoutine function of the PURPLE framework.

At the routine startup, the semantic engine creates an LTS containing only the initial state (i.e., the initial model configuration). 
The semantic engine offers the framework the functions find, to retrieve states of the LTS reachable by transitions with a specific 
label; getNexts, to get states of the LTS reachable from a specific state by a sequence of transitions with specific labels; and 
getMoves, to construct the LTS and get from the input model all the transitions outgoing a given state coupled with the relative 
target states. Notably, find and getNexts functions are the same in each semantic engine implementation; the actual difference 
between semantic engines lies in the implementation of the abstract method getMoves, which is responsible for interpreting the 
semantics of the input model and constructing the LTS.

Then, the purple routine starts to simulate traces (line 5 of Listing 1) based on the guide it receives from the evaluation of the 
current log (line 6 of Listing 1). Once the generated log satisfies the purpose, i.e., the delta is null the routine terminates and the 
log is provided as output. We distinguish the case where the delta is null, indicating that the log generation has to be terminated, 
from the case where the delta is an empty set of traces, indicating that there is no guide for the simulation. More in detail, the 
generation of new traces is up to the function globalSimulate of the simulator, which takes as input a delta, see Listing 2.
1 TraceSet globalSimulate ( TraceSet 𝑑𝑒𝑙𝑡𝑎 ) :
2 i f (𝑑𝑒𝑙𝑡𝑎 . isEmpty ( ) ) :
3 return new TraceSet ( randomSim( ) ) ;
4 else :
5 TraceSet 𝑡𝑟𝑎𝑐𝑒𝑠 = new TraceSet ( ) ;
6 for 𝑠𝑡 in 𝑑𝑒𝑙𝑡𝑎 :
7 𝑡𝑟𝑎𝑐𝑒𝑠 . add (guidedSim ( 𝑠𝑡 ) ) ;
8 return 𝑡𝑟𝑎𝑐𝑒𝑠 ;

Listing 2: globalSimulate function of the Simulator component.

In case the delta is empty (line 2 of Listing 2), for instance, when the log evaluator has not performed any comparison yet, the 
simulator randomly executes the model via the randomSim function. The randomSim function generates a trace from a random 
path in the LTS from the initial state until it reaches a final state or the trace evaluator evaluates the trace as true. Differently, in 
case the delta contains one or more sub-traces (line 4 to 8 of Listing 2), the simulator performs a guided simulation for each of 
these sub-traces 𝑠𝑡, considering them as breadcrumbs to follow for logging a specific trace in the LTS.

The guidedSim function, see Listing 3, looks for a path in the LTS corresponding to the sub-trace in input 𝑠𝑡 and finalizes it by 
adding a prefix, i.e., a sub-trace from the initial state to the state where 𝑠𝑡 begins; and a suffix, i.e., a sub-trace from the state where 
𝑠𝑡 ends and a state that is final or if the trace evaluator returns true.
1 Trace guidedSim ( Trace 𝑠𝑡 ) :
2 StateSet 𝑠𝑡𝑎𝑡𝑒𝑠 = 𝑠𝑒 . f ind ( 𝑠𝑡 . f i r s t ( ) ) ;
3 Trace 𝑠𝑡𝑝 = new Trace ( ) ;
4 𝑠𝑡𝑝 . add ( 𝑠𝑡 . f i r s t ( ) ) ;
5 𝑠𝑡 . removeFirst ( ) ;
6 for ( 𝑠 in 𝑠𝑡𝑎𝑡𝑒𝑠 ) :
7 i f addPrefix ( 𝑠𝑡𝑝 , 𝑠 ) :
8 i f recursiveSim ( 𝑠𝑡𝑝 , 𝑠 , 𝑠𝑡 ) :
9 return 𝑠𝑡𝑝 ;
10 return new Trace ( ) ;

Listing 3: guidedSim function of the Simulator component.
8 
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More in detail, the guided simulation starts looking in the LTS for paths that start with the first element in the sub-trace 𝑠𝑡, 
i.e., 𝑠𝑡.𝖿 𝗂𝗋𝗌𝗍(). This activity is demanded to the function find of the semantic engine (line 2 of Listing 3). This function, called on 
𝑠𝑡.𝖿 𝗂𝗋𝗌𝗍() returns the states that are the target of transitions labeled with 𝑠𝑡.𝖿 𝗂𝗋𝗌𝗍(). Then, the function initializes the construction of 
the sub-trace 𝑠𝑡𝑝 used to store the trace simulated up to that moment. The first element 𝑠𝑡.𝖿 𝗂𝗋𝗌𝗍() is indeed added to 𝑠𝑡𝑝 and removed 
from 𝑠𝑡 (lines 4 and 5 of Listing 3). At this point, the function explores the possibility of continuing the guided simulation starting 
from each state found so far. If no states are found, the function returns an empty trace (line 10 of Listing 3), otherwise, the function 
tries to go ahead with one of the found states 𝑠 (line 6 of Listing 3). The simulator adds to 𝑠𝑡𝑝 a prefix sub-trace that leads to 𝑠 using 
function addPrefix (line 7 of Listing 3).

Then, it calls the recursive function recursiveSim, see Listing 4. The function takes as input the trace under construction 𝑠𝑡𝑝, 
the state of the LTS 𝑠𝑐𝑢𝑟𝑟 from which it continues the simulation, and the remaining part of the hint of the delta, i.e., the sub-trace 
𝑠𝑡. This function tries to complete the trace 𝑠𝑡𝑝 with the labels corresponding to the remaining part of 𝑠𝑡.
1 boolean recursiveSim ( Trace 𝑠𝑡𝑝 , State 𝑠𝑐𝑢𝑟𝑟 , Trace 𝑠𝑡 ) :
2 i f ( 𝑠𝑡 . isEmpty ( ) ) :
3 return addSuffix ( 𝑠𝑡𝑝 , 𝑠𝑐𝑢𝑟𝑟 ) ;
4 else :
5 Label 𝑙 = 𝑠𝑡 . f i r s t ( ) ;
6 StateSet 𝑠𝑡𝑎𝑡𝑒𝑠 = 𝑠𝑒 . getNexts ( 𝑠𝑐𝑢𝑟𝑟 , 𝑙 ) ;
7 for ( 𝑠𝑛𝑒𝑥𝑡 in 𝑠𝑡𝑎𝑡𝑒𝑠 ) :
8 𝑠𝑡𝑝 . add ( 𝑙 ) ;
9 i f ( 𝑡𝑒 . evaluate ( 𝑠𝑡𝑝 ) ) :
10 return 𝑓𝑎𝑙𝑠𝑒 ;
11 𝑠𝑡 . removeFirst ( )
12 i f ( recursiveSim ( 𝑠𝑡𝑝 , 𝑠𝑛𝑒𝑥𝑡 , 𝑠𝑡 ) ) :
13 return 𝑡𝑟𝑢𝑒 ;
14 else :
15 𝑠𝑡𝑝 . removeLast ( ) ;
16 𝑠𝑡 . add ( 𝑙 ) ;
17 return 𝑓𝑎𝑙𝑠𝑒 ;

Listing 4: recursiveSim function of the Simulator component.

In brief, recursiveSim unwinds 𝑠𝑡 until it does not contain labels anymore (base case of the recursion, line 2 of Listing 4). In 
this case, the function addSuffix (line 3 of Listing 4) adds to 𝑠𝑡𝑝 a suffix sub-trace that starts from 𝑠𝑐𝑢𝑟𝑟 and reaches a final state 
of the LTS or a state in which the trace evaluator evaluates it as true. In the cases where 𝑠𝑡 still contains labels, the recursiveSim 
calls function getNexts of the semantic engine to get the states reachable from 𝑠𝑐𝑢𝑟𝑟 by a transition with a visible label 𝑙, or by a 
sequence of transitions with invisible labels that includes a visible label 𝑙 (lines 5 and 6 of Listing 4). For the sake of presentation, 
function getNexts is described in detail in Appendix.

Back to the recursiveSim, if the set of next states 𝑠𝑡𝑎𝑡𝑒𝑠 is empty, the function returns false (line 16 of Listing 4). Otherwise, the 
recursiveSim tries to continue the guided simulation from one of the found state 𝑠𝑛𝑒𝑥𝑡𝑠 (line 6 to 15 of Listing 4). More in detail, 
𝑠𝑡𝑝 is increased with 𝑙 and is evaluated again by the trace evaluator. If the trace evaluator asses that 𝑠𝑡𝑝 is a completed trace, the 
recursiveSim returns 𝑓𝑎𝑙𝑠𝑒 to the previous recursive step. Otherwise, the hint 𝑠𝑡 is decreased of the first label (line 10 of Listing 
4) and another recursive step is invoked using as parameter the current trace 𝑠𝑡𝑝, the chosen state 𝑠𝑛𝑒𝑥𝑡, and the remaining part of 
the hint 𝑠𝑡.

5. Trace evaluator instantiations

To better show the role of the trace evaluator, we present three possible instantiations of the component, such as default, trace 
length, and trace cost evaluators, and discuss how a new one can be created.
Default trace evaluator. The default trace evaluator (Listing 11 in Appendix) is the simplest instantiation of this component. 
Essentially, it always evaluates the current trace as false. Even if its functioning is trivial, this trace evaluator allows the simulator 
to generate traces that only end in a final state. 
Trace length evaluator. The default trace evaluator suffers when the input model can generate traces of infinite length due to loops 
or unsafeness. This problem can be avoided using a trace evaluator that bounds the length of the traces. This is the trace length 
evaluator (Listing 12 in Appendix), which can be instantiated by giving as input the desired threshold for the maximum trace length. 
Consequently, the evaluate function returns true when the generated trace has overcome the threshold.

To show the relevance of this evaluator, let us consider the Petri Net models in Fig.  3. The semantics of the Petri Net in Fig.  3(a) 
is given by the LTS in Fig.  3(b), which has finite states but not a final one. Instead, the semantics of the Petri Net in Fig.  3(b) is 
given by the LTS in Fig.  3(d), which has infinite states (and no final state). In both cases, the default trace evaluator does not work 
well because it allows the simulation to diverge. Instead, using the trace length evaluator, the simulation can be stopped when a 
given number of states is reached.
Trace cost evaluator. The trace cost evaluator (Listing 13 in Appendix) is an example of a trace evaluator that predicates over event 
attributes. The goal is to limit the cost of a trace, i.e., the sum of the costs of the events composing it, to a threshold. Similarly to the 
previous trace evaluator, this one is instantiated with the maximum cost allowed for a trace. Then the evaluate function assumes 
that the events have an attribute named cost and checks if the sum of the costs of the events in a trace is greater than the threshold.
9 
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Fig. 3. Examples of Petri Nets and their corresponding LTSs.

Fig. 4. An input process model (a), and the related footprint matrix (b).

Custom trace evaluator. The above trace evaluator definitions are only examples showing how to impose simple constraints on 
the traces the simulator can generate. More complex trace evaluators can be developed from scratch or by combining different 
evaluators. For example, we can construct a trace evaluator that avoids the generation of traces over 100 events or that costs more 
than 100e  by combining the trace length and the trace cost evaluators (Listing 14 in Appendix).

6. Log evaluator instantiations

We present here five instantiations of the log evaluator tailored to the three purposes addressed by purple such as process 
discovery via order relations and via frequencies, what-if analysis via branching probabilities, and conformance checking via noise 
frequencies and via fixed align cost.

6.1. Process discovery in purple

The first instantiations of the log evaluator that we consider regard the process discovery. To check the reliability of a discovery 
algorithm, or to conduct a benchmark of different techniques, logs presenting specific characteristics are required. The evaluators 
address two specific discovery purposes: one is devised for algorithms relying on the order relation between activities, such as the 
Alpha algorithm [6], while the other one is for algorithms relying on frequencies, such as the Heuristics miner [55].
10 
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Process discovery via order relations. This log evaluator aims to make the simulator generate event logs for discovery algorithms that 
build the output models on the basis of the order relations between activities. These algorithms, e.g., the Alpha family, scan the 
input event log to find the footprint matrix of the original model. Assuming that an activity 𝑌  directly follows an activity 𝑋 (𝑋 > 𝑌 ) 
if and only if there exists a trace in the log where 𝑌  appears immediately after 𝑋, the footprint matrix can contain three kinds of 
order relations [6, Def. 3.2]. The sequence relation, denoted by 𝑋 → 𝑌 , holds if and only if 𝑋 > 𝑌  and 𝑌 ≯ 𝑋. The parallel relation, 
denoted by 𝑋 ∥ 𝑌 , means that X directly follows Y and vice versa (𝑋 ∥ 𝑌 ⟺ 𝑋 > 𝑌  and 𝑌 > 𝑋). The last relation, denoted by 𝑋#𝑌 , 
is used when two activities are unrelated, i.e., neither X directly follows Y nor Y directly follows X (𝑋#𝑌 ⟺ 𝑋 ≯ 𝑌  and 𝑌 ≯ 𝑋). 
Considering the model in Fig.  4(a), the corresponding matrix is provided in Fig.  4(b). Depending on the input model, the generation 
of the footprint matrix may slightly differ. In the case of a collaboration, relations between sending and receiving activities are also 
included in the footprint matrix. Fig.  5 shows an example of a collaboration diagram and the related footprint matrix; in addition 
to the relation between activities of the same process, the matrix includes a sequential relation between the send task D and the 
receive task F. To obtain an accurate version of the original model, the input event log has to provide as many order relations as 
possible to fill the footprint matrix. For instance, logging multiple times the same trace is useless, as it always provides the same 
order relations. This can be achieved through a log evaluator that guides the simulation into the discovery of the footprint matrix, 
avoiding producing duplicates of the same trace, thus generating the smallest log covering the relations in the footprint matrix.
1 f l oa t 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ;
2 RelationsMatrix 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 ;
3
4 OrderRelationEvaluator ( f l oa t 𝑐 , Model 𝑚 ) :
5 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑐 ;
6 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 = calculateFootpr int (𝑚 ) ;
7
8 TraceSet evaluate (Log 𝑙𝑜𝑔 ) :
9 TraceSet 𝑑𝑒𝑙𝑡𝑎 = new TraceSet ( ) ;
10 i f 𝑙𝑜𝑔 . length ( ) = 0 ;
11 return 𝑑𝑒𝑙𝑡𝑎 ;
12 RelationsMatrix 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹 𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 = calculateFootpr int ( 𝑙𝑜𝑔 ) ;
13 RelationSet 𝑚𝑖𝑠𝑠𝑖𝑛𝑔𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 = compare (𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹 𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 ) ;
14 i f ( 𝑚𝑖𝑠𝑠𝑖𝑛𝑔𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠.size()

𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡.size() ≥ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ) :
15 return 𝑛𝑢𝑙𝑙 ;
16 for ( Relation 𝑟 in 𝑚𝑖𝑠𝑠𝑖𝑛𝑔𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 ) :
17 i f ( 𝑟 . type ( ) = ‘‘→ ’’ ) :
18 𝑑𝑒𝑙𝑡𝑎 = 𝑑𝑒𝑙𝑡𝑎 . add ( ⟨𝑟 . f i r s t ( ) , 𝑟 . second ( ) ⟩ ) ;
19 else i f ( 𝑟 . type ( ) = ‘‘||’’ ) :
20 𝑑𝑒𝑙𝑡𝑎 = 𝑑𝑒𝑙𝑡𝑎 . add ( ⟨𝑟 . f i r s t ( ) , 𝑟 . second ( ) ⟩ ) ;
21 𝑑𝑒𝑙𝑡𝑎 = 𝑑𝑒𝑙𝑡𝑎 . add ( ⟨𝑟 . second ( ) , 𝑟 . f i r s t ( ) ⟩ ) ;
22 else i f ( 𝑟 . type ( ) = ‘‘#’’ ) :
23 𝑑𝑒𝑙𝑡𝑎 = 𝑑𝑒𝑙𝑡𝑎 . add ( ⟨𝑟 . f i r s t ( ) ⟩ ) ;
24 𝑑𝑒𝑙𝑡𝑎 = 𝑑𝑒𝑙𝑡𝑎 . add ( ⟨𝑟 . second ( ) ⟩ ) ;
25 return 𝑑𝑒𝑙𝑡𝑎 ;

Listing 5: Evaluator for process discovery via order relations

Listing 5 provides the pseudocode of the log evaluator for process discovery via order relations. The constructor takes as input 
(line 4) the coverage, i.e., a number from 0 to 1 indicating the percentage of order relation to be covered in the final log, and the 
input model from which to calculate the footprint matrix. While the evaluate function takes as input the current log. In case the 
log does not contain traces yet (line 10), the function returns an empty set as delta, triggering a random simulation. Otherwise, the 
function calculates the footprint matrix of the current log (line 12), and compares it to the one of the model to retrieve only the 
relations that are still missing (line 13). Therefore, if the number of missing relations divided by the number of relations in the model 
exceeds the required coverage, the function returns and stops the log generation (line 15). While, if it is not the case, each missing 
relation is analyzed separately (lines 16–24). Depending on the type of relation (sequence, parallel, or choice) (lines 17,19,22) the 
delta is increased with traces composed of the activities involved in the missing relation. Specifically, if it is a sequence relation, 
the resulting trace contains the first member of the relation followed by the second (line 18). If it is a parallel relation, the function 
adds in the delta two traces with the activities in the relation in any order (lines 20 and 21). Finally, if it is a choice relation, the 
delta is increased by 2 traces, each of which contains an event labeled with the activities involved in the relation (lines 23 and 24). 
The resulting delta is therefore returned to the simulator (line 25).

Considering the example in Fig.  4, the first time the evaluate function is invoked, the log is empty and it returns an empty delta. 
This leads to a random simulation of the model (see lines 2–3 of Listing 2). Supposing that the first simulation run is ⟨𝐴,𝐵, 𝐶, 𝐸⟩, 
the simulator performed tasks A, B, C and E, one after the other. Thus, the semantic engine can add to the LTS (containing only the 
initial state) the discovered states and transitions, producing the LTS in Fig.  6(a) to the exclusion of dotted states and transitions 
that are still to be discovered. Moreover, the discovered trace is added in the empty log, resulting in Fig.  6(b). Notably, to speed up 
the generation of the entire LTS, the semantic engine adds all the discovered states, even if they do not take part in the produced 
trace (see states 𝑠6 and 𝑠9). In the second run, the log evaluator calculates the order relations by considering the current log. The 
log identifies 3 order relations: 𝐴 → 𝐵, 𝐵 → 𝐶, and 𝐶 → 𝐸;  the other activities are still unrelated, thus the resulting footprint 
matrix is the one in Fig.  6(c). At this point, the log evaluator compares the obtained footprint matrix with the one of the original 
model (Fig.  4(b)) to calculate the missing relations and produces the delta for the upcoming simulation step. The order relations 
11 
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Fig. 5. An input collaboration model (a), and the related footprint matrix (b).

Fig. 6. LTS (a), log (b), and footprint (c) resulting from the first run of simulation.

that are still missing are: 𝐴 → 𝐷, 𝐵 → 𝐸, 𝐶 → 𝐵, and 𝐷 → 𝐸.  These relations are translated into sub-traces composing the delta as 
following:{⟨𝐴,𝐷⟩, ⟨𝐵,𝐸⟩, ⟨𝐶,𝐵⟩, ⟨𝐷,𝐸⟩}. Since the delta is not empty, this time is crucial to guide the simulator to find additional 
traces containing the missing relations; in doing that, the simulator also relies on the current LTS. Considering the first hint of the 
delta, ⟨𝐴,𝐷⟩, the simulator looks for a state with an incoming transition labeled by 𝐴, that is state 𝑠2, then it goes forward in the 
LTS to find a transition labeled by 𝐷. Being 𝑠3 already visited, the simulator goes ahead to state 𝑠9 that corresponds to a state in 
which activity D is enabled. Then, the simulator finalizes the trace until it reaches a final state, logging the trace ⟨𝐴,𝐷,𝐸⟩. Instead, 
considering the hint ⟨𝐶,𝐵⟩ of the delta, the simulator has two states with an incoming transition labeled by 𝐶, i.e., 𝑠6 and 𝑠7, from 
which it starts looking for a transition labeled by B. State 𝑠7 leads only to a transition labeled by E, while state 𝑠6 leads to state 𝑠7
with a transition labeled by B. Thus, the simulator follows this latter path in the LTS, logging the trace ⟨𝐴,𝐶, 𝐵,𝐸⟩. After the second 
simulation run, the LTS produced by the simulator corresponds to the one in Fig.  6(a) considering also dotted states and transitions. 
The resulting log is {⟨𝐴,𝐵, 𝐶, 𝐸⟩, ⟨𝐴,𝐶, 𝐵,𝐸⟩, ⟨𝐴,𝐷,𝐸⟩}. The log evaluator takes this log as input and assesses that all relations in 
the footprint matrix are covered, i.e. 100% of completeness is achieved. Notably, in this example, we required the highest level of 
completeness, but the user could specify a lower threshold.
Process discovery via frequencies. This log evaluator aims at making the simulator generate event logs for discovery algorithms 
based on frequencies. For instance, the Heuristics algorithm relies on threshold values for filtering less frequent behaviors, e.g., the 
occurrences of an activity or an order relation. To this aim, this instantiation of the log evaluator permits the choice of trace 
frequency. The resulting event log can be tuned to represent more realistic situations where behaviors could be less or more 
frequent than others. Logs of that form suite to compare the filtering approaches of different algorithms. To address this purpose, 
the log evaluator extracts the set of traces the model can perform and information regarding the loops. Then, the user specifies the 
12 
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Fig. 7. An input process model including scenario parameters (a), and its activity occurrence rates (b).

percentage of occurrence for each trace, a threshold value for the maximum number of repetitions of loops, and a minimum number 
of traces to be produced. Notably, in case the input model is a collaboration of processes, the log evaluator extracts groups of traces 
belonging to the same collaboration case, then a single percentage is associated with each group.

Therefore, during the log generation, the log evaluator implemented for this purpose compares the occurrences of traces and 
the thresholds for the loops chosen by the user with the current log and generates a delta accordingly. If some of these values are 
lower than requested, the log evaluator gives the simulator a delta containing the entire traces still infrequent in the log. If a trace 
includes a loop, the log evaluator modifies the trace in the delta by repeating the loop (for a random number of times below the 
given threshold). Then, the delta, which contains only complete execution traces of the input model, guides the simulator from 
the initial to the final state of the LTS. Once the minimum number of traces in the log is reached, and the requested occurrence 
percentages are satisfied, the log evaluator stops the simulation.
1 TraceFrequencyEvaluator ( in t 𝑚𝑖𝑛𝑇 , TraceSet 𝑡𝑟𝑎𝑐𝑒𝑠 , FreqMap 𝑓𝑟𝑒𝑞 , in t 𝑙𝑜𝑜𝑝𝑅𝑒𝑝 ) :
2 …
3
4 TraceSet evaluate (Log 𝑙𝑜𝑔 ) :
5 TraceSet 𝑑𝑒𝑙𝑡𝑎 = new TraceSet ( ) ;
6 for ( Trace 𝑡 in 𝑡𝑟𝑎𝑐𝑒𝑠 ) :
7 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹 𝑟𝑒𝑞 = getFreq ( 𝑡 , 𝑙𝑜𝑔 ) ;
8 𝑡𝐹 𝑟𝑒𝑞 = 𝑓𝑟𝑒𝑞 . get ( 𝑡 ) ;
9 i f ( 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹 𝑟𝑒𝑞 < 𝑡𝐹 𝑟𝑒𝑞 ) :
10 i f ( hasLoop ( 𝑡 ) ) :
11 𝑡 = repeatLoop ( 𝑡 , 𝑙𝑜𝑜𝑝𝑅𝑒𝑝 ) ;
12 𝑑𝑒𝑙𝑡𝑎 = 𝑑𝑒𝑙𝑡𝑎 . add ( 𝑡 ) ;
13 i f (𝑑𝑒𝑙𝑡𝑎 . isEmpty ( ) & 𝑙𝑜𝑔 . length ( ) > 𝑚𝑖𝑛𝑇 ) :
14 return 𝑛𝑢𝑙𝑙 ;
15 return 𝑑𝑒𝑙𝑡𝑎 ;

Listing 6: Evaluator for process discovery via frequencies.

Listing 6 provides the pseudocode of the evaluator implemented in purple for the process discovery via frequencies. The evaluator 
is instantiated by giving as input a minimum number of traces to generate, the set of traces that the input model can generate, and the 
user selections for trace frequencies and loop repetitions (line 1). For the sake of readability, we omitted the entire implementation 
of the constructor since it assigns only input parameters to class variables as for the previous evaluator. The evaluate function 
iterates over the traces the model can generate (line 6) and checks if its frequency in the current log (line 7) is lower than requested 
(line 9). In this case, if it contains a loop, the trace is modified by repeating the loop a number of times lower than requested (line 
11) and then added to the delta (line 12). Then, if the resulting delta contains traces it is returned to the simulator (line 15), while 
in case the delta is empty (since trace frequencies are sufficient) and the log size is greater than requested (line 13) the function 
returns and stops the log generation. 

6.2. What-If analysis via branching probabilities

This log evaluator is tailored to what-if analysis via branching probabilities. In this case, the generated event logs will be exploited 
for the analysis of quantitative aspects of model execution, e.g., the cost and the completion time of the model activities, the resources 
performing them, and the branching probability. This permits us to answer questions and make predictions without data from a 
real environment [56]. It is worth noticing that this evaluator addresses a limited set of simulation features needed for an extensive 
what-if analysis. More complex instantiations could add activity duration, resource schedule, and other features.

Considering the BPMN model in Fig.  7(a), a typical question in the what-if analysis is ‘‘what is the average cost of the model 
execution if we consider the showed scenario?’’. The scenario we are considering reports the cost of the activities, that is 1e for each 
13 
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of them, apart from activity 𝐷 which costs 100e and imposes the branching probability. This information is crucial for tuning the 
log the purple tool has to produce. Indeed, it constrains the occurrence rate of an activity, as reported in the table of Fig.  7(b). 
The occurrence rate is calculated as follows. Being the sequence flow e1 activated the 80% of the times the process executes, the 
following activity 𝐴 will be performed the 80% of the times as well. Considering activities 𝐵 and 𝐶, the percentage decreases to 
20% due to the probability of choosing the sequence flow e2. In this 20% of times, one activity between 𝐷 and 𝐸 will run depending 
on the probabilities associated with sequence flows e8 and e9. More precisely, activity 𝐷 is executed the 5% of the times the process 
follows the sequence flow e2, that corresponds to the 1% of the entire process executions; activity 𝐸 the 19%. To get reliable results 
from the analysis, the occurrence rate of activities in the event log has to correspond to the ones discussed above.
1 BranchingProbabil i t iesEvaluator ( in t 𝑛𝑢𝑚𝑇 , Model 𝑚𝑜𝑑𝑒𝑙 , CostMap 𝑐𝑜𝑠𝑡𝑠 , f l oa t 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ) :
2 𝑜𝑐𝑐𝑢𝑟𝑟 = getOccurrencies (𝑚𝑜𝑑𝑒𝑙 ) ;
3 …
4
5 TraceSet evaluate (Log 𝑙𝑜𝑔 ) :
6 TraceSet 𝑑𝑒𝑙𝑡𝑎 = new TraceSet ( ) ;
7 for ( Act iv i ty act in 𝑚𝑜𝑑𝑒𝑙 ) :
8 i f ( | occurrence(𝑎𝑐𝑡,𝑙𝑜𝑔)occurr.𝑔𝑒𝑡(𝑎𝑐𝑡) | ≤ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ) :
9 𝑑𝑒𝑙𝑡𝑎 . add (< 𝑎𝑐𝑡 > ) ;
10 i f (𝑑𝑒𝑙𝑡𝑎 . isEmpty ( ) ) :
11 return 𝑛𝑢𝑙𝑙 ;
12 return 𝑑𝑒𝑙𝑡𝑎 ;

Listing 7: Evaluator for branching probabilities.

Listing 7 shows the implementation of the log evaluator used for this purpose. It is instantiated by specifying the minimum 
number of traces to generate, the input model, the cost of each activity, and the precision in reproducing the exact rate of occurrence 
of the activities. The evaluate function has the duty of producing an event log where the activities appear according to the 
percentages of activity occurrences induced by the scenario, see Fig.  7(b). Therefore, for each activity in the model (line 7), it 
compares the occurrence percentages of the model activities in the current log with the desired occurrences (line 8). In case the 
activity occurrence is lower than expected, the evaluator adds to the delta a new sub-trace with just the considered activity (line 
9). Only in case all activities reach the desired occurrence, the delta remains empty, and the evaluator returns null (lines 10–11).

For instance, considering the example, if the first produced trace is ⟨𝐵,𝐶,𝐷⟩, the evaluator calculates the activity percentages 
as follows: 𝐴 = 0%, 𝐵 = 100%, 𝐶 = 100%, 𝐷 = 100%, 𝐸 = 0%. This means that activities 𝐵, 𝐶, and 𝐷 appear more than expected, 
while 𝐴 and 𝐸 are not sufficiently present in the log. For this reason, the delta for the next simulation step will include exactly the 
sub-traces ⟨𝐴⟩ and ⟨𝐸⟩. These sub-traces in the delta guide the next simulations to log traces including them. Only when each 
activity has reached the desired percentage of occurrence, the generation of the log can terminate. The resulting event log is 
{⟨𝐴⟩160, ⟨𝐵,𝐶,𝐸⟩

38, ⟨𝐵,𝐶,𝐷⟩

2}. It contains 200 traces, where activity A appears 160 times, B and C 40 times, E 38 times, and
D 2 times; that is exactly the result required up to the 100% of precision. 

6.3. Conformance checking in purple

Lastly, we present two log evaluators related to conformance checking, a family of techniques for comparing a model and a log. In 
particular, we consider techniques based on [1]. They permit to spot differences between the expectation (i.e., the process model) and 
the reality (i.e., the event log). Alignments explicitly show where deviations are located and which activities are involved. Computing 
alignments is an expensive task, especially in the presence of models with huge state-space, and there exist different approaches 
implementing it [57]. To check the reliability of such techniques, or to compare their performances, it is necessary to have logs 
embedding traces with deviations from the normal behavior, i.e., noisy behaviors. To this end, we propose two instantiations of 
purple producing event logs from BPMN and Petri-nets with a precise amount of noisy behavior, or with a precise alignment cost.
Conformance checking via noise frequencies. This log evaluator generates event logs with the desired percentages of noisy traces. The 
literature identifies types of noise that can affect a trace in an event log [58]; here we consider the following: missing head, a trace 
without some of the initial events; missing tail, a trace without some of the final events; missing episode, a trace without some of the 
intermediate events; order perturbation, a trace where some events appear in a wrong order; and additional event, a trace in which 
appears an alien event. This log evaluator takes as inputs a model to simulate, a number of traces to generate, a percentage of 
occurrence for each type of noise, and a precision in reproducing the noise percentages. Whenever it is invoked, the log evaluator 
sends an empty delta to make the simulator produce a random trace without noise. Then, the log evaluator compares the percentage 
of occurrences for each type of noise in the current log with respect to the requested one. The trace is hence modified introducing 
the type of noise farthest from the requested occurrence. In case of missing head, missing tail, or missing episode, purple removes a 
random number of events from the head, from the middle, or from the tail of the trace, respectively. In the case of order perturbation, 
it swaps two or more events in the trace, while in the case of additional event it inserts an event named differently from every activity 
name in the model. Once the log evaluator finds the desired noise percentages and number of traces, it returns the final log.

Listing 8 provides the pseudocode of the log evaluator for conformance checking via noise frequencies. It takes as input the 
number of traces to generate, the frequencies of each type of noise, and a precision value from 0 to 1 (line 1). The evaluate 
function checks if the current log is empty, in this case, it returns an empty delta to get back a random trace (lines 5–7). Otherwise, 
the function calculates the current noise frequencies from the current log, and checks which of these frequencies is the lowest with 
14 
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respect to the user choice (lines 8–15). In doing so, the function saves temporally in the variable minimum the lowest frequency, and 
in noiseType the corresponding type of noise. Then, the function checks if the minimum frequency reaches the requested precision 
and if the log size reaches the one requested (line 16). In this case, the function returns and stops the log generation. Otherwise, the 
evaluator retrieves from the log the last trace generated and adds to it the type of noise corresponding to the minimum frequency 
(line 18). 
1 NoiseFreqEvaluator ( in t 𝑛𝑢𝑚𝑇 , FreqMap 𝑛𝑜𝑖𝑠𝑒𝐹 𝑟𝑒𝑞 , f l oa t 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ) :
2 …
3
4 TraceSet evaluate (Log 𝑙𝑜𝑔 ) :
5 TraceSet 𝑑𝑒𝑙𝑡𝑎 = new TraceSet ( ) ;
6 i f ( 𝑙𝑜𝑔 . length ( ) = 0 ) :
7 return 𝑑𝑒𝑙𝑡𝑎 ;
8 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 = calculateNoise ( 𝑙𝑜𝑔 ) ;
9 f l oa t 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = 1 ;
10 String 𝑛𝑜𝑖𝑠𝑒𝑇 𝑦𝑝𝑒 = 𝑛𝑢𝑙𝑙 ;
11 for ( String 𝑛𝑜𝑖𝑠𝑒 in 𝑛𝑜𝑖𝑠𝑒𝑇 𝑦𝑝𝑒𝑠 ) :
12 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠.get(𝑛𝑜𝑖𝑠𝑒)

𝑛𝑜𝑖𝑠𝑒𝐹 𝑟𝑒𝑞get(𝑛𝑜𝑖𝑠𝑒) ;

13 i f ( 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 < 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ) :
14 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ;
15 𝑛𝑜𝑖𝑠𝑒𝑇 𝑦𝑝𝑒 = 𝑛𝑜𝑖𝑠𝑒 ;
16 i f (𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = 1 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛&𝑙𝑜𝑔 . length ( ) ≥ 𝑛𝑢𝑚𝑇 ) :
17 return 𝑛𝑢𝑙𝑙 ;
18 addNoise ( getLastTrace ( 𝑙𝑜𝑔 ) , 𝑛𝑜𝑖𝑠𝑒𝑇 𝑦𝑝𝑒 ) ;
19 return 𝑑𝑒𝑙𝑡𝑎 ;

Listing 8: Evaluator for conformance checking via noise frequencies.

Conformance checking via fixed align cost. This log evaluator aims at generating event logs with a precise amount of noise that 
involves a specific cost for the alignment. Roughly speaking, the alignment cost indicates the number of deviations between the 
model and the log. An alignment cost equal to zero indicates a perfect match between the log and the model, while higher costs 
indicate the presence of non-compliant behaviors. Synchronous moves between trace and model cost zero, while moves that can 
be performed only in the model or only in the trace usually cost 1. The same trace can be aligned to the model following different 
execution paths and leading to different costs; the one to consider for calculating the mean value is the lowest i.e., the optimal 
alignment. The overall alignment cost is the average of the optimal alignments for each trace in the log. Considering the model in 
Fig.  4(a), a noisy trace could be ⟨𝐵,𝐶,𝐸⟩, where the event labeled with 𝐴 lacks. By aligning this trace through the path ⟨𝐴,𝐷,𝐸⟩, 
only the last event matches, thus we have to perform two moves in the trace and two moves in the model that cost in total 4. While 
following the path ⟨𝐴,𝐶, 𝐵,𝐸⟩ and ⟨𝐴,𝐵, 𝐶,𝐸⟩, the alignment costs are respectively 3 and 1. Therefore, the optimal alignment cost to 
consider is the lowest one, i.e. 1.

Here, the log evaluator takes as input a model, a desired alignment cost, a log size, and a precision in reproducing the exact 
alignment cost. Before evaluating the current log, it extracts the set of traces that the model can produce and uses them later for 
calculating the alignment costs. Then, similarly to the previous purpose, the log evaluator receives from the simulator traces without 
noise, perturbs them with a type of noise, and updates the reached alignment cost. Every time a noisy trace is added to the current 
log, the log evaluator calculates the optimal alignment cost computing the minimum among the Levenshtein distances [59] between 
the noisy trace and traces previously extracted from the model.
1 FixedAlignEvaluator ( in t 𝑛𝑢𝑚𝑇 , f l oa t 𝑐𝑜𝑠𝑡 , TraceSet 𝑡𝑟𝑎𝑐𝑒𝑠 , f l oa t 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ) :
2 …
3
4 TraceSet evaluate (Log 𝑙𝑜𝑔 ) :
5 i f ( calculateCost(𝑙𝑜𝑔,𝑡𝑟𝑎𝑐𝑒𝑠)

𝑐𝑜𝑠𝑡 > 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛&𝑙𝑜𝑔 . length ( ) > 𝑚𝑖𝑛𝑇 ) :
6 return 𝑛𝑢𝑙𝑙 ;
7 TraceSet 𝑑𝑒𝑙𝑡𝑎 = new TraceSet ( ) ;
8 addRandomNoise( getLastTrace ( 𝑙𝑜𝑔 ) ) ;
9 return 𝑑𝑒𝑙𝑡𝑎 ;

Listing 9: Evaluator for conformance checking via fixed align cost.

Listing 9 provides the pseudocode of the log evaluator for conformance checking via fixed align cost. It takes as input the number 
of traces to produce, the alignment cost required, the set of traces the model can produce, and the precision in reaching the exact 
alignment cost (line 1). The evaluate function calculates the cost for aligning the current log with the traces the model can perform 
(via function calculateCost) and compares it with the cost to reach considering the precision value. If the reached cost is sufficiently 
high and the log size exceeds the required dimension (line 5), the function returns and stops the log generation (line 6). Otherwise, 
it adds a random type of noise to the last trace added in the log (line 8). 

7. Validation

This section presents a list of experiments on several instantiations of the purple framework using the purple tool we developed. 
The final aim of this section is to answer RQ3, thus evaluating if the event logs generated by purple better satisfy the selected mining 
purpose and what is the impact of implementing guided simulations rather than purpose-agnostic approaches. 
15 
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Fig. 8. The purple tool interface.

Fig. 9. Instantiations of purple.

7.1. Setup

The purple tool, Fig.  8 is a progressive web application implementing the homonym framework and its instantiations. It can 
be used online as a service or executed on a local machine. Tool, source code, instructions, and examples are available at https:
//pros.unicam.it/purple. The purple tool implements eleven instantiations of the framework addressing the five purposes introduced 
in  Section 6 as reported in the Sankey diagram of Fig.  9. Three are for process discovery via order relations, they differ for the 
semantic engine: one is for BPMN processes, one for BPMN collaboration diagrams and the last for Petri-nets. They all use the order 
relation log evaluator and the trace length evaluator to avoid infinite traces (setting a threshold of 100 events per trace). Other two 
instantiations regard process discovery via trace frequencies, one simulating BPMN processes and one BPMN collaborations. They adopt 
the trace frequency log evaluator and the default trace evaluator since the log evaluator bounds itself to infinite traces. Similarly, 
purple implements two instantiations of what-if analysis via branching probabilities, they simulate BPMN processes and collaborations, 
and exploit the branching log evaluator and the trace length evaluator. Finally, the last four are related to conformance checking via 
noise frequencies and conformance checking via fixed align cost. The first two use the noise frequency log evaluator, the others use 
the fixed align log evaluator, and all of them implement the trace length evaluator. All instantiations handle BPMN processes and 
Petri-nets.

More in detail, the three semantic engines implement BPMN process and collaboration semantics as described in [51], and the 
Petri-net semantics [50]. Concerning BPMN, purple supports process and collaboration diagrams made up of pools, empty start, 
and end events, message start and end events, terminate end events, intermediate message throw and catch events, tasks, parallel 
16 
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Table 3
Process discovery via order relations validation results.
 Model El. AND XOR Traces purple Coverage with 1k traces Coverage with min traces
 BIMP GED PLG2 BIMP GED PLG2  
 p0 10 1 0 3 100% 63% 100% 100% 63% 100% 100%  
 p1 11 1 1 3 100% 63% 100% 100% 63% 63% 75%  
 p2 12 1 1 5 100% 75% 100% 100% 75% 100% 100%  
 p3 17 1 2 5 100% 83% 100% 100% 83% 92% 100%  
 p4 21 1 3 10 100% 61% 100% 100% 56% 89% 100%  
 p5 27 1 4 10 100% 74% 91% 91% 70% 91% 83%  
 p6 34 3 3 14 100% 39% 69% 100% 39% 69% 94%  
 p7 40 6 0 76 100% 24% 68% 97% 24% 68% 93%  
 p8 49 6 1 226 100% 6% 49% 99% 6% 49% 97%  
 p9 53 4 5 41 100% 25% 54% 99% 25% 50% 89%  

gateways, exclusive gateways, and event-based gateways. In particular, in the case of BPMN collaborations, purple produces a unique 
log file, of which each trace lists the events of a single participant. For convenience, traces belonging to the same collaboration 
case [60] have the same case identifier. Therefore, depending on the final usage, a generated log can be used as-is, divided into 
separate files (one for each participant), or the traces can be merged based on the collaboration case. The latter engine, instead, 
supports standard Petri-nets (including particular classes of Petri-nets, such as WF-nets). 

The experiments are carried out by means of synthetic and real(istic) BPMN and Petri-net models, respectively generated by 
PLG2,1,2 or obtained from the literature. The models contain start/end events, activities, and XOR/AND gateways; their dimension 
ranges from a minimum of 8 to a maximum of 53 elements. Concerning their topology, they are both structured and unstructured, 
and some of them contain loops. Any further information about the models and the artifacts generated during the experiments is 
available at https://bitbucket.org/proslabteam/validation/.

The aim of this validation is to show the suitability of the framework in addressing mining purposes of different kinds. In each 
experiment, we use as a measure a quality criterion for the event logs, set on the basis of the purpose to address. When possible, 
we compare the results of these measurements with the ones achieved by reference tools, such as PLG2, BIMP,3 and the ProM4 
plugin of the GED methodology [40]. We selected these tools among the ones found in the literature (we refer to  Section 2 for a 
comprehensive review of tools for log generation) using as inclusion criteria: the availability of an operating software to be used 
for the experiments, and the possibility of tailoring the produced logs to the mining purpose under analysis. 

7.2. Results

Following we present the result of the validation for each of the presented purple instantiations.
Process discovery via order relations. For this experiment, we use coverage, i.e., the percentage of activity relations provided in the 
log with respect to the entire set of relations present in the model, as a comparison measure to assess event logs’ quality.  In this 
regard, we ran the logs generation setting to 1000, the number of traces to be produced by the tools, except for purple since it stops 
the simulation autonomously once the purpose is satisfied. In a second experiment, for each input model, we decreased the number 
of traces to be produced to the number of traces that purple needs to cover the entire footprint matrix. Both kinds of experiments 
have been repeated 10 times for each model; however, for the sake of presentation, the results reported in the following consider 
the worst results achieved by purple and the average results achieved by the other tools.  For each of the considered process models, 
we obtained eight event logs, two from each tool, and we compared them with respect to the coverage of the footprint matrix.

Table  3 summarizes the results of this comparison. The first two columns, Model, El., XOR, and AND contain the name of the 
process model and the number of its elements, the number of XOR slpit and AND split gateways respectively. The third column,
Traces, reports the number of traces autonomously generated by purple that permit to cover the entire footprint matrix as reported 
in column 4. Columns 5 to 7 show the percentages of activity relations covered by BIMP, GED, and PLG2, respectively, using a 
threshold of 1000 traces to be generated. The last three columns provide results for analogous experiments where the values of 
column 3 are used as a threshold for the traces to be generated. Being guided by the evaluator, purple covered entirely the relations 
matrix for each of the considered process models. Instead, the other tools show worse results, especially in the case of bigger models 
containing many parallel or exclusive branches, as such models involve higher numbers of order relations. Indeed, a model with 𝑛
activities to be executed in parallel implies having 𝑛(𝑛 − 1) relations to discover, while a model with 𝑛 activities in sequence (one 
after the other) shows just 𝑛−1 relations. For instance, model 𝑝8 has six parallel split gateways and one exclusive split gateway with 
3 levels of nesting, and the resulting footprint matrix contains 699 relations to be discovered. The results achieved using the number 
of traces generated by purple as threshold show that, on average, BIMP covers 6% of the footprint matrix, PLG2 97%, and GED 49%. 

1 https://plg.processmining.it/.
2 Notably, purple can take as input .bpmn or .pnml models generated by other tools, even those relying on process discovery or other techniques.
3 https://bimp.cs.ut.ee/.
4 https://www.promtools.org/.
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Table 4
Process discovery via frequencies results.
 Model El. AND XOR Traces  Loops repetition avg. Error 
 p10 8 0 1 10000 3.2 0%  
 p11 10 0 1 10000 3.2 0%  
 p12 19 4 2 10000 2.9 0%  
 p13 25 2 2 10000 2.7 0%  
 p14 38 1 4 10000 2.9 0%  

Table 5
Branching probabilities validation results.
 Model El. AND XOR Error with min traces Error with 1000 traces 
 Traces BIMP purple BIMP  
 p15 11 0 1 10 10% 0% 1,1%  
 p16 13 1 2 25 5,3% 0% 2,4%  
 p17 17 1 2 25 6% 0% 1,2%  
 p18 21 1 3 45 2% 0,4% 1,9%  
 p19 25 0 4 59 3,5% 0,3% 2,7%  
 p20 29 4 1 71 3,4% 0,7% 1,2%  
 p21 34 3 3 30 8,8% 0% 1,6%  
 p22 40 3 3 50 6% 0% 2,6%  
 p23 52 0 9 116 2,1% 0,5% 1,9%  
 p24 53 4 5 120 3,6% 0,5% 3,4%  

When we increase the number of traces to produce, the results get slightly better for PLG2 which reaches 99% of coverage, while 
they remain unchanged for BIMP and GED.

Process discovery via frequencies. In this case, we use as quality measures the error in reproducing the desired percentages of 
occurrence for the trace variants, and the number of repetitions of each loop in the model. For this instantiation, a comparison 
between purple and other tools would be unfair, since none of the other tools permits to customize the trace frequencies. Therefore, 
we run the simulations only on purple. To this aim we used a set of models that contain loops, using a random value for the trace 
frequencies, the loop repetition thresholds fixed to 5, and the number of traces set to 10000. We analyzed the resulting logs using 
ProM to extract the occurrences of each trace variant and the number of loop repetitions. The results are presented in Table  4. 
We report the dimension of the input model and splits gateways, the number of generated traces, and the error. For each model, 
purple reproduces the correct number of trace variants, keeping the loop repetitions under the selected threshold. These results were 
expected since the evaluator always provides deltas that force the simulator to follow a precise execution trace in the LTS. Thus, 
the simulator produces exactly the log required by the user, avoiding errors.

What-if analysis via branching probabilities. Concerning this purpose, we take BIMP as the reference tool, because the others do 
not permit specifying a business scenario to simulate. We ran the log generation on a set of BPMN models from the considered 
dataset, using the same scenario for both tools. As a quality measure, this time we use the mean absolute error of the branching 
probabilities. In detail, we measure from the logs the percentage of appearance of each choice branch, and consequently the average 
of the absolute errors with respect to the scenario.

We present in Table  5 the results of the comparison. For each model, we report the number of elements and split gateways, the 
dimension of the log resulting from purple, and the errors made by the two tools. The last column instead shows the error made by 
BIMP when increasing the log size to 1000 traces.

Even in this case, purple better satisfies the purpose, having always an error quite close to the 0%. On average purple shows a 
mean absolute error equal to 0,4%, while BIMP reaches 5%. It results that the logs generated in BIMP are less reliable for making 
assumptions on the model execution. In particular, by increasing the number of traces to 1000, see the last column of Table  5, BIMP 
produces smaller errors in the branching probabilities; on average, the error decreases to 2%, but it is still higher than the one of 
purple. 

Conformance checking via noise frequencies. In this case, we compare the event logs generated by purple and PLG2, as the latter 
permits choosing percentages of noise. We compare event logs with 5000 traces and the 10% of noisy traces for each type of noise, 
i.e., 500 for missing head, 500 for missing tail, 500 for missing episode, 500 for order perturbation, and 500 for additional event. 
Finally, we analyze the logs to calculate the error in reproducing the desired occurrence rate for each type of noise. Table  6 reports 
the results of the comparison. It shows that purple always produces the exact number of noised traces, while PLG2 produces fewer 
noised traces than requested. On average, the error in the logs of PLG2 is equal to 20,8%, meaning that around 500 noised traces 
over 2500 are missing. The bigger lack results in reproducing traces with order perturbation, probably because PLG2 swaps also 
activities that are in parallel, so that the resulting trace is still compliant with the model. This problem is avoided in purple, because 
it checks if the noised trace is compliant or not with the model before adding it to the log.
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Table 6
Conformance checking via noise frequencies results.
 Model El. AND XOR Traces Error

 PLG2 purple 
 p25 10 1 0 5000 20,6% 0%  
 p26 11 1 1 5000 22,5% 0%  
 p27 12 1 1 5000 21,0% 0%  
 p28 17 1 2 5000 21,3% 0%  
 p29 21 1 2 5000 18,8% 0%  

Table 7
Conformance checking via fixed align cost results.
 Model Places Transitions Traces Alignment cost
 Required Obtained Error 
 p30 6 8 2000 3 3.03 1%  
 p31 18 19 2000 3 2.91 3%  
 p32 27 27 2000 3 2.93 3%  
 p33 35 34 2000 3 2.91 2.3% 
 p34 43 41 2000 3 2.89 4.3% 

Table 8
purple and collaboration models validation results.
 Model El. AND XOR Pool Msg. Ord. rel. Trace freq. Branch. prob. 
 c0 33 2 1 3 4 100% 0% 0.6%  
 c1 20 0 2 2 5 100% 0% 0%  
 c2 40 1 3 4 4 100% 0% 0.9%  
 c3 38 0 4 3 5 100% 0% 0.7%  
 c4 31 3 2 3 6 100% 0% 0%  

Conformance checking via fixed align cost. For this purpose, we evaluate only the logs of purple, as no other tool supports this purpose. 
Here we set the desired alignment cost to 3 for each simulated model and a log size of 2000 traces, then we use the resulting logs 
and the input models to calculate, via ProM, the real costs for the alignments. Table  7 puts in comparison, for each considered 
model, the required and the obtained alignment costs. The results show that the generated logs have alignment costs very close to 
the expectations. Overall, the error percentage made by the tool is on average equal to 2.7%. This discrepancy depends on the fact 
that the tool generates noised traces in order to make the log converge to the required alignment cost, but before reaching it, the 
simulation is stopped because the requested number of traces to produce is reached.
purple and BPMN collaborations. Since purple implements a semantic engine for BPMN collaborations, and use it in three instantia-
tions (see Fig.  9), we assessed purple against five BPMN collaboration models from the literature [60]. As reported in Table  8, the 
models range from collaborations composed of 2 to 4 pools, 4 to 6 message flows, 20 to 41 elements, 0 to 3 AND split gateways, 
and 0 to 4 XOR split gateways. A complete account of the models and the logs generated from them with the three instantiations 
is available in the validation repository.

Concerning the results, in the rediscoverability via order relations instantiation, for all models purple provides event logs that 
cover all order relations, including those between a sending element and its corresponding receiving element. In the rediscoverability 
via trace frequencies, purple respects the imposed thresholds without errors. Finally, for the branching probabilities instantiation, 
the resulting event logs fulfill the purpose perfectly, except for a few cases where there are small errors, in line with the results in 
Table  5. 

7.3. Performance assessment

To assess the performance of purple, we measured the time the tool spent generating event logs for the introduced instantiations. 
We run the simulation ten times for each model and purple instantiation and then report the average. As input models, we choose 
ten BPMN diagrams with an increasing number of elements, from 11 to 427. In particular, the last model has been selected as a 
borderline example since it represents an extremely large model comprising 80 parallel split gateways with 2 to 4 outgoing sequence 
flows. This high number of parallel gateways and parallel flows implies a large LTS. The experiments have been conducted on a 
MacBook Air with an M2 chip and 24 GB of RAM; precisely purple was run within a Java SE 21 runtime environment, with the 
JVM configured to use up to 4 GB of heap space. For each instantiation, we selected a percentage of precision of 95% and for those 
who need them, a minimum of 1000 and a maximum of 100000 traces. Finally, for conformance checking instantiations, we used 
custom noise percentages equal to 5%, and an alignment cost equal to 2.

Table  9 reports the result of the performance evaluation, each row provides model information, and the times in milliseconds 
needed to run the instantiation. Concerning the rediscoverability via order relations, purple spent reasonable times for almost all 
19 



A. Burattin et al. Data & Knowledge Engineering 161 (2026) 102526 
Table 9
Results of the performance assessment.
 Model Rediscoverability What-if Conformance

 Name El. AND XOR Loops Order relations Custom frequencies Branching probability Noise frequencies Align cost
 p35 11 1 1 Yes 46 ms 601 ms 62 ms 19005 ms 6044 ms
 p36 11 2 0 No 53 ms 624 ms 32 ms 10471 ms 3250 ms
 p37 17 2 1 Yes 88 ms 940 ms 63 ms 37941 ms 11793 ms
 p38 27 1 4 Yes 508 ms 1542 ms 113 ms 54368 ms 17238 ms
 p39 34 3 3 No 382 ms 37905 ms 1527 ms 67457 ms 35674 ms
 p40 39 3 3 No 1024 ms 4882 ms 2585 ms 87576 ms 43658 ms
 p42 53 4 5 No 1481 ms 811268 ms 8077 ms 127018 ms 66167 ms
 p43 111 7 7 Yes 15 413 ms – 232095 ms – 693608 ms
 p44 427 80 97 Yes 3 343174 ms – – – –

models, from a minimum of around 50 ms for a model of about ten elements, to 15 s for a model of a hundred elements (including 
7 AND and 7 XOR split gateways). The time increases significantly with the last model 𝑝44, which consists of 427 elements (177 
of which are split gateways) and loops. For this model, purple took around 55 min to provide the final log. The situation changes 
with the next instantiations: the rediscoverability via custom frequencies requires higher times due to the extraction of the possible 
execution traces from the input model. Indeed, for models up to 30 elements, the tool produces the logs in about one second. For 
models with 30 to 50 elements, purple produces the logs in reasonable times, from tens of seconds to tens of minutes, depending 
on the complexity of the process. For the last two models, 𝑝43 and 𝑝44, the tool suffers from traversing a very large LTS; we 
stopped the simulation after an hour, although there was still space in the heap memory of the JVM. For the what-if analysis via 
branching probabilities instantiation, purple shows times of a few seconds for models up to fifty elements (8 s to process model 𝑝42). 
While for model 𝑝43 purple took about 38 min to complete the task, and for model 𝑝44 it exceeded the time limit we imposed. 
Regarding the conformance checking via noise frequencies, the shown times are higher than all the other instantiations: from about 
ten/twenty seconds for models 𝑝35 and 𝑝36 to more than 2 min for model 𝑝42; the last two models exceeded the time limit. Finally, 
for conformance checking via fixed align cost, the tool terminates in reasonable times, from about 3 s for model 𝑝35 to 1 min for 
model 𝑝42. The outlier is model 𝑝43, which required about 10 min, while 𝑝44 exceeded the time limit.

To sum up, purple achieves its purposes in reasonable times for large models up to 40 or 50 elements. Increasing the dimension 
to a hundred elements makes the tool unable to produce logs in a reasonable time for the instantiation with a higher computational 
input. Anyway, studies show that process models in BPMN notation contain on average 32 elements [61]. We are aware that our 
approach is less time-efficient than purpose-agnostic simulators. Indeed, the first requirement in purple is to guide log generation, 
which requires performing heavy computations, rather than focusing on time efficiency.

8. Concluding remarks

The presented work proposes a novel framework, purple, to generate event logs via guided simulation of process models. purple is 
meant to deal with several modeling languages and different mining purposes, as well as to ensure that the produced event log brings 
properties related to the selected mining purpose. Along with the definition of purple, we present eleven framework instantiations 
addressing the generation of event logs tailored to different mining purposes. These instantiations are implemented in the purple 
tool we provide. The analysis of the related works and the comparison we conducted between the existing log generators show that 
purple is able, better than the others, to tune the simulation to the mining purpose in reasonable times.
Assumptions and limitations. We formalize the purple framework under the assumption of simple event logs, which contain only 
activity names. Consequently, the purple framework focuses mainly on control-flow aspects. In particular, the delta inherits this 
assumption as it contains simple traces. This still allows for defining mining purposes and evaluators that guide the simulation 
according to aspects of some other model perspectives. For instance, as shown in  Section 6.2, the evaluator exploits the branching 
probability to build up the delta and guide the simulation. In the same fashion, we could have defined an evaluator producing an 
event log based on the cost of the activities, e.g., an evaluator that minimizes as much as possible the average cost of the model 
execution. Nevertheless, handling traces with just the activity names is a limitation to the variety of mining purposes and evaluators 
that can be defined on top of purple. For example, simple logs do not deal with the resource perspective needed for social network 
analysis [62], the data perspective for decision-mining purposes [63], communication for collaboration mining [60], and more in 
general to objects [64]. Another consequence of this assumption is that the input models cannot contain homonym activities. Indeed, 
without considering other information, e.g., the resource performing the activities, events triggered by different activities with the 
same name are impossible to distinguish thus, the guided simulation could fail when searching for states in the LTS suggested by the 
delta. To overcome these limitations the framework can be extended to include more sophisticated definitions of event logs and LTS 
transitions (c.f.  Section 3) to include information about other perspectives. Moreover, even if purple produces event logs containing 
timestamps, they correspond to the moments the tool records the events. The user cannot influence timestamps, e.g., setting activity 
durations and delays between activities.

Regarding the delta definition in terms of sub-traces, another concern is that it cannot guide the simulator toward more abstract 
or generic behaviors. For instance, the delta cannot suggest the simulator to look for traces where a loop is repeated a casual number 
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of times or where an event follows another not directly, as some events may appear in the middle. Instead, by defining the delta 
using a language for expressing a set of traces (e.g., regular expressions), we could make more complex queries on the LTS, and 
thus address more purposes.

Discussion. In the following, we discuss the termination guarantees of the purple framework, by analyzing the purple routine and 
the two main factors that may affect the simulation: (i) the characteristics of the input models and the related LTS, and (ii) 
the implementation of the log evaluator. For each factor, we illustrate the underlying challenges and the adopted solutions or 
assumptions.

First, purple does not guarantee termination in every possible configuration. To mitigate this, we adopted mechanisms that—under 
specific assumptions—allow the simulation to terminate and produce a final log. In this regard, in  Section 4, we have shown that 
purple returns the final log once the main routine terminates (see purpleRoutine function in Listing 1), thus when the log evaluator 
return null.

Analyzing the purple routine, a first aspect that influences the termination of purple is related to the complexity of the input 
models and the consequent possibility that the purple simulator is guided to perform infinite traversal of the LTS, e.g., when the 
model presents a loop. This weakness can be avoided via an appropriate trace evaluator that bounds the length of the trace to 
produce, thus avoiding infinite traversal of loops in the LTS.

Similarly, the simulator may produce an LTS of infinite dimension, e.g., in the presence of unsafe models. However, the LTS is 
generated on the fly during the simulation, using the getNext function (see Listing 10), without the need for the generation of the 
complete state space. Therefore, assuming to have an adequate trace evaluator, even if the LTS dimension can increase at every 
iteration of the purple routine, making the computation heavily time consuming (see  Section 7.3), the function globalSimulate will 
always terminate in a finite number of steps. Notably, this assumption implies that purple produces incomplete traces or may not 
explore parts of the LTS required by the purpose. Anyway, the results in  Section 7.2 show that this approximation does not greatly 
impact the completeness of the produced logs.

The second aspect that influences the termination of the purple routine is the evaluation of the log. This aspect is up to the specific 
implementation of the evaluate function of the log evaluator instantiation. What the conceptual framework can ensure is that the 
input to the evaluate function, represented by the current log, is always finite. Therefore, assuming the evaluation always terminates 
in finite steps, the last point of failure is the possibility that the delta never becomes null. If this happens, the do-while loop of the 
purple routine never ends. Also, this aspect is up to the specific implementation of the log evaluator. Anyway, the assumption that 
the evaluate function of the log evaluator returns null after finite iterations is not so limiting. Indeed, in the case of evaluators who 
continue to produce non-empty deltas due to complex requirements, it is possible to impose the termination of the purple routine by 
bounding the number of traces to produce or lowering the strictness of the requirements. For instance, in the fixed alignment cost 
instantiation, when the cost of alignment for the current log tends to the required value without ever reaching it, the evaluation of 
the log will never produce a null delta; this explains why the instantiation requires as input also the maximum number of traces to 
produce. 

Future work. In the future, we intend to pursue the development of the purple framework, both from the theoretical and the practical 
point of view. We aim to formalize the purple framework and its components in order to investigate its formal properties. Moreover, 
we intend to define and implement additional evaluators to handle other mining purposes and consider other model perspectives, 
like data and multi-party communication. This can, for instance, give the user the chance to generate event logs with different data 
quality issues to test approaches and algorithms dealing with them. Regarding the tool, we aim to parallelize the computations of 
the simulator by handling more than one hint of the delta at the same time. Moreover, we aim to facilitate the implementation of 
new semantic engines and evaluators, and thus foster collaboration with other researchers, we intend to turn the purple tool into an 
extensible software framework, following an architecture based on plug-ins. In this way, we could divide the logic of purple between 
a fixed core component, advocated to simulate models, and independent plug-in components, each of which implements a modeling 
language semantics or an evaluator. For instance, a possible plug-in can be a wrapper for integrating external formal environments, 
like Maude [65], to easily implement new semantic engines and increase the number of managed modeling languages. Similarly, a 
wrapper for process mining tools, like Disco [66] or ProM, could be developed to help the definition of new evaluators and, hence, 
the handling of new mining purposes.
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Appendix. Additional listings

Function getNexts, see Listing 10, takes as input a state 𝑠 and a label 𝑙. In case the state 𝑠 is not in the LTS, the function returns 
an empty set. Otherwise, if the LTS contains 𝑠 and it has not been visited yet, the semantic engine uses the function getMoves to 
calculate all the possible pairs of transitions outgoing from 𝑠 and the relative target states. All the pairs of transitions and states are 
then added to the LTS, and the state 𝑠 is marked as visited. Finally, the function returns the set of all states targeted by a transition 
outgoing from 𝑠 and labeled with 𝑙 if any. Only in case an outgoing transition labeled with 𝜏 exists, getNexts is called recursively 
on the target of the 𝜏 transition and the label 𝑙. This permits performing one or more invisible transitions before the one with the 
desired label.

For example, if we consider the model in Fig.  1(a) and part of its LTS in Fig.  1(d) containing only states 𝑠𝑖, 𝑠1, and 𝑠2, the 
function getMoves called on state 𝑠2 and label 𝐵 returns a set containing 𝑠5. More in detail, it discovers and adds to the LTS the 
states 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠9, and 𝑠10, and their incoming transitions, but returns the only state reachable by label 𝐵.
1 StateSet getNexts ( State 𝑠 , Label 𝑙 ) :
2 StateSet 𝑟 = new StateSet ( ) ;
3 i f ( ! 𝑙𝑡𝑠 . contains ( 𝑠 ) ) :
4 return 𝑟 ;
5 i f ( ! 𝑙𝑡𝑠 . i sV i s i t i e d ( 𝑠 ) ) :
6 LTSMoves 𝑚𝑜𝑣𝑒𝑠 = getMoves ( 𝑠 ) ;
7 𝑙𝑡𝑠 . add ( 𝑠 , 𝑚𝑜𝑣𝑒𝑠 ) ;
8 𝑙𝑡𝑠 . se tV is i ted ( 𝑠 ) ;
9 for ( Transit ion 𝑡 in 𝑙𝑡𝑠 . getOutgoing ( 𝑠 ) ) :
10 i f ( 𝑡 . getLabel ( ) == 𝜏 ) :
11 𝑟 . add ( getNexts ( 𝑡 . getTarget ( ) , 𝑙 ) ) ;
12 i f ( 𝑡 . getLabel ( ) == 𝑙 ) :
13 𝑟 . add ( 𝑡 . getTarget ( ) ) ;
14 return 𝑟 ;

Listing 10: getNext function of the Semantic Engine component.

1 boolean evaluate ( Trace 𝑡 ) :
2 return 𝑓𝑎𝑙𝑠𝑒 ;

Listing 11: evaluate function of the DefaultTraceEvaluator class.

1 in t 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ;
2
3 TraceLengthEvaluator ( in t 𝑛 ) :
4 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑛 ;
5
6 boolean evaluate ( Trace 𝑡 ) :
7 return 𝑡 . length ( )> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ;

Listing 12: TraceLengthEvaluator class.

1 f l oa t 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ;
2
3 TraceCostEvaluator ( f l oa t 𝑓 ) :
4 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑓 ;
5
6 boolean evaluate ( Trace 𝑡 ) :
7 f l oa t 𝑐𝑜𝑠𝑡 = 0;
8 for (Event 𝑒 in 𝑡 ) :
9 𝑐𝑜𝑠𝑡 += 𝑒 . getAt t r ibute ( ’ cost ’ ) ;
10 return 𝑐𝑜𝑠𝑡 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ;

Listing 13: TraceCostEvaluator class.

1 TraceLengthEvaluator 𝑙𝐸𝑣𝑎𝑙 ;
2 TraceCostEvaluator 𝑐𝐸𝑣𝑎𝑙 ;
3
4 CustomTraceEvaluator ( in t 𝑛 , f l oa t 𝑓 ) :
5 TraceLengthEvaluator 𝑙𝐸𝑣𝑎𝑙 = new TraceLengthEvaluator (𝑛 ) ;
6 TraceCostEvaluator 𝑐𝐸𝑣𝑎𝑙 = new TraceCostEvaluator (𝑓 ) ;
7
8 boolean evaluate ( Trace 𝑡 ) :
9 return 𝑙𝐸𝑣𝑎𝑙 . evaluate ( 𝑡 ) || 𝑐𝐸𝑣𝑎𝑙 . evaluate ( 𝑡 ) ;

Listing 14: CustomTraceEvaluator class.
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