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Abstract. Process compliance refers to the alignment between business
processes and regulatory requirements. Compliance is difficult because it
needs to be able to express the intent and the possible interpretations of
laws into formal models, align models with traces in a process, and in-
spect whether these traces are generating violations. This paper focuses
on a largely unexplored area within BPM: the compliance of high-level
and non-functional requirements. While compliance checking has been
studied through conformance checking techniques, most regulatory re-
quirements are defined in subjective and high-level terms, limiting the
application of rule-checking and alignments to specific cases. In contrast,
we propose the application of requirement engineering methods for busi-
ness process compliance. In particular, we raise the level of abstraction
from the compliance of specific patterns to the satisfaction of high-level
goals and subjective qualities. We propose a framework that connects
process models with goal models, rendering explicit alternatives for the
satisfaction of vague goals and subjective qualities. Compliance checking
is reduced to a reachability of a state where subjective qualities are sat-
isfied. This approach is exhibited in a data protection scenario, and we
provide a prototypical implementation of the compliance checking tool.

Keywords: Compliance Checking - Business Process Compliance - Goal
Modeling - Requirements Engineering.

1 Introduction

Business processes are considered the heart of organizations. Through processes,
companies achieve objectives, coordinate and optimize resources, and comply
with regulatory requirements. Legal compliance became a substantial task for all
business organizations. Yet, the majority of organizations treat law as an exoge-
nous force and compliance is mapped and measured rather than explained [23].
The management of business processes requires traceability between high-level
requirements (for instance, laws) to traces in an information system. Regulatory
compliance is one of the major drivers behind the adoption of process mining in
the industry [14], yet there is still a large gap between regulations and the arti-
facts used in PM. In particular, there is a non-trivial interpretative factor: a legal
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paragraph may have multiple interpretations by-design |10], and its disambigua-
tion may therefore require human support. This contrasts with the intention of
formalizing policies with a single, mathematical, and unequivocal semantics.

Modeling high-level business requirements is challenging, as their disambigua-
tion must be resolved by experts in both the process and legal domains 20|, and
if those experts do not remain involved through later compliance assessments,
the rationale behind each interpretation is lost. Multiple techniques have been
applied to resolve legal compliance, including combinations of imperative models
and modal logics [13|, conformance checking |5, and declarative process mod-
els [21] (see 22| for a recent review). However, these works consider a low-level
view of compliance, where goals in an organization can be directly mapped to
activities in a process. This limits the applicability to regulatory compliance,
where most requirements come in the form of high-level and subjective descrip-
tions. For instance, consider the following excerpt: “the company needs to send
a timely delivery confirmation”. Existing approaches may verify that a confir-
mation was sent; however, they will not be able to deal with the ambiguities
generated by not being able to define how “timely” delivery confirmation was.

This work explores how goal-modelling frameworks may help in the definition
of compliance checking techniques to align high-level requirements and business
processes. Goal Models [29] are a well-established set of techniques used in re-
quirements engineering to capture non-functional requirements (see |[7] for a
recent guide). Thanks to their graphical representation, it allows the communica-
tion of multiple stakeholders about functional and non-functional requirements.
While the relation of Goal Models and Business Processes has been explored
before (i.e., [12,[19/2426,[28]), its use has been limited to top-down, simula-
tion, and monitoring approaches, not considering qualities and non-functional
requirements. Moreover, a typical pitfall of these works is the tight links between
requirements and processes, when in reality, they evolve in different lifecycles [3].

In particular, we propose a compliance framework where 1) functional and
non-functional requirements are modelled as IStar models [29], 2) any process
modelling notation with an LTS semantics captures business processes, and 3)
a mapping between requirements and tasks in a goal model and activities in a
process model is maintained. This framework allows us to decouple the goals
and processes, maintaining their independence, identify ways of satisfying high-
level and non-functional goals, and reuse the goal models across multiple process
notations. Moreover, we introduce a design-time compliance checking algorithm
that evaluates the synchronized execution steps of process and goal models.
As an example of the applicability of the framework, we use workflow nets as
a process language, but the framework could be instantiated in imperative or
declarative languages with an operational semantics, for instance, BPMN [9] and
DCR graphs [16]. We illustrate the framework using a simple data protection
guideline and provide a prototypical implementation of the framework.

Structure of this paper. Section [2] introduces our compliance framework; Sec-
tion [3] presents the preliminaries; Section [4] provides a technique to check the
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Fig. 1: Overview of the framework

compliance of high-level requirements; Section [f] details a prototypical imple-
mentation; Section [6] presents related work; and Section [7] concludes.

2 Approach

Figure [1] illustrates our compliance checking approach, which combines three
well-formed inputs: the process model, the goal model, and the mapping. The
process model encodes the how, while the goal model captures what and why,
including the high-level business requirements (HL-BR). Both are translated into
labeled transition systems (LTS) and synchronized via the mapping, yielding a
composite system LT'Sc. Compliance holds if, from every state in LTS¢, there
exists a path to a state where all HL-BR are satisfied. Formal semantics and
well-formedness conditions are detailed in the following section.

2.1 Running Example
To illustrate how our framework works, consider a fictitious scenario:

“(R) Every time a company releases a new feature, it must take ap-
propriate measures to ensure its data remains protected. The process
begins with the IT department implementing a password policy by (a) update
the encryption standards and (b) revise access controls. Then, the company
deploys a system to monitor data security, choosing between (c) deploy Data-
Grail or (d) OneTrust. Once the monitoring system is in place, the security
team (e) conducts penetration tests to detect potential vulnerabilities. Testing
is repeated until no vulnerabilities are found. If there are anomalies, the sys-
tem (f) flags the suspicious activity, and (g) applies a vulnerability patch to
address the vulnerability. If no vulnerability is found, the testing is successful.”

Determining the specific tasks to achieve R requires expert interpretation,
and it may vary according to the understanding of “appropriate measures”. Most
business process compliance techniques [22] focus on verifying whether the tasks
carried out align with the predefined ones (i.e., a, b, ¢, d, e, f, g). However,
they do not distinguish among the conformant traces, which are more desirable
to fulfill stakeholders’ goals or differences in outcome quality [4]. For instance,
assume two process executions both follow tasks (a) to (g), yet in one case, the
company chooses DataGrail and in the other OneTrust. Although both traces are
conformant, they may differ in terms of effectiveness or cost. Existing compliance
techniques would treat them as equivalent, despite these distinctions.
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3 Preliminaries

This section provides the background to understand and position the contribu-
tions of the framework. Section provides a formalization of abstract mod-
els, capturing the commonalities between imperative process models and goal-
oriented model languages. Section [3.2] and [3.3] instantiate the framework using
i* for goal modeling and Workflow nets for process modeling.

3.1 Abstract Models

Any model artifact from a model-driven approach with trace-based semantics
can serve as a basic model, provided it uses the same notation.

Definition 1 (Abstract Model Notation (adapted from [8])). Let A be a
fized universe of model actions, where a € A is an action. An abstract model
notation MN £ (M, alph, excluded, step) comprises a set of models M; a
labeling function alph : M — 24; an exclusion function excluded : M — 24; and
a transition predicate step C M x A x M. Let My and My be two models in M.
We require that (M, a, Ms) € step implies both a € alph(M7) and alph(M7) =
alph(Mz), and if also (My,a, Mj) € step then My = M}, then step is action-
deterministic.

Let M be a set of process models. Intuitively, alph bounds the actions a pro-
cess may exhibit, and this bound must be preserved by step transitions. Simi-
larly, exclude identifies actions excluded from a given process and may change
over time. For non-monotonic languages, setting excluded = () suffices.

We use Labeled Transition Systems (LTS) to capture configurations, actions,
and transitions, where runs represent execution and traces their action sequence.

Definition 2 (Abstract Labeled Transition System). Let MAN = (M, alph,
excluded, step) be an abstract model notation. M € M is a model instance. An
LTS of the model M, LTSy = (Sar, Actar, —ar, sE, Far) comprises a set of
states Syr; a set of actions Acty; = alph(M); a transition relation —C Syy X
Actpr x Syr is the transition relation, where (M, a, M') €—n iff (M,a, M') €
step; and initial state s)! = M; and a set of final states Fpr C Sy
Definition 3 (Run and traces). Let LTSy = (Sar, Actar, — s, 581, Far) be
the LTS of a model M and so be its initial state. A finite run is a sequence
So Ly 5 2 2 s, with s; divt, Sit1 for all 0 < i < n. An infinite run
continues indefinitely. A trace o is the sequence {(a1,as,...) of actions in the
run.

Let LTSy = (Su, Actar, — s, 831, Far) be the LTS of a model M with
Actyr = Actyr U {e}, where e denotes no observable action. For s,s" € Sy
and a € Actyr, we write s %, s if (s,a,s’) €. The abstract reachabil-

M

ity relation s Z»,, s holds for a finite sequence o = (ay,...,a,) such that
al (e 2% ’ « e € o s

s =890 —m - —n Sp, = §'. Reflexivity means s —); s, and transitivity

. o1 * og * . o102 * T
means if s =, ' and s’ ==, s”, then we write s —=5,, s” to indicate that
s" is reachable from s via the execution of o; and 0.
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3.2 Goal Models

A goal model captures the rationale behind the execution of certain tasks, and
what requirements a system should achieve, using goals, qualities, and tasks.

Definition 4 (Goal Model Elements). Let the finite set of goal model el-
ements be the tuple GE £ (IE,L), where IE = T UG U Q is a finite set of
intentional elements, consisting of a set of tasks T, a set of goals G, and a set of
qualities Q. The set L = RUC denotes intentional element relations (or links),
where R C (GUT) x (GUT) — {and, or} is a set of refinement links, and
C C(GUT) x Q — {Make, Break} is a set of contribution links.

We adopt naming conventions from [11] to ensure clarity and consistency in
modelling: goals use passive syntax (i.e., Data protected), tasks use active forms
(i.e., Implement password policy), and qualities add manner complements (i.e.,
Data protected appropriately). The model is further refined through links of the
form r(e1, e2), where element e; is refined by es. Figure |2, shows the refinement
of the goal Data Protected (e1) by tasks such as Implement password policy
(e2). Achieving e; contributes to fulfilling the HL-BR expressed as the quality
Appropriate measures to protect data. Intentional elements (IE) are assigned to
a truth state for reasoning over their satisfaction.

Definition 5 (Intentional Element Status). Let GE = (IE, R) be the set
of goal model elements, with IE = GUT U Q (Definition . Let A={T,L1,7}
be the set of truth-values “true,” “false,” and “unknown”. Let d € A be a status

value. The status of an intentional element e € IE s defined by the function
$:IE — A, where &(e) = (d,d) if e GUT, and &(e) =d ife € Q.

Goals and tasks take states (d,d) € A x A, where d = (T, T) marks them as
achieved but pending and d = (T, L) means achieved and not-pending. Qualities
use a single d € A, where d = T means satisfied and d = T indicates that it
is denied. Initially, all goals and tasks are marked as unknown with state (7, 7),
and all qualities are set to unknown (?) (Figure[2). A goal model represents and
tracks the state of its intentional elements.

Definition 6 (Goal Model). Let MN = (M, alph, excluded, step) be an ab-
stract model notation. Let GE = (IE, L), with IE =G UT UQ and L =R UC
be the set of goal model elements (Definition [f). Let A = {T,L,?} be the set
of truth-values and @ : IE — A the status function of an intentional element
(Deﬁmtim@, Let GM € M be a model instance. A goal model is defined as
the tuple GM %2 (GE,IDg, idengyr), where GE is a finite set of goal model
elements, IDgys is a finite set of identifiers, and idengy C IE — IDgpy is a
bijection that assigns each intentional element a distinct identifier.

Figure [2|shows a goal model based on the behaviour described in Section [2.1]
with one quality (@), two goals (CD), nine tasks (), refinements of type
and (—+) and or (—>), and contribution links Make and Break. Each intentional
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Fig. 2: A goal model GM, modeling the behaviour described in Section

element shows its identifier (id) and its status (). A goal model marking pu&™
represents the current distribution of intentional elements’ status. A marked goal
model is a tuple of a goal model GM = (GE,IDg, idengy) and a goal model
marking M C IE — &, denoted by (G M, u“M). For instance, the goal model
marking in Figureis (dpa:?,dp: (7,?7),ap: (?,7),db: (?,?),ip: (?,7), dmp :
(7,7, ue: (2,?7),ra: (2,7),0:(2,7),g: (2,7, £s: (2,7), pt: (7,7)).

Let GE = (IE, L) be the set of goal model elements, with I[/E = GUT,UQ
and L = RUC, and e € GUT'. The refinement reachability relation —C IEXIE
is defined as the smallest relation such that (e,e’) € R implies ¢’ < e (direct),
and if ¢/ < e and €’ — ¢/, then ¢’ —* e (transitive). Its reflexive—transitive
closure <—* expresses reachability through zero or more refinement steps. For
example, in Figure [2] the goal “Data Protected” (e) is refined through “Deploy
monitoring tools” (e'), which includes tasks such as “Deploy OneTrust” (e");
thus, ¢’/ <—* e. To ensure analyzability for HL-BR satisfaction, we define well-
formedness criteria constraining the structure and labeling of goal models.

Definition 7 (Well-formed Goal Model). Let GM = (GE,IDgy, idengr)
be a goal model (Definition [). Let GE = (IE,L) , with IE = GUT UQ
and L = RUC be the set of goal model elements (Definition . GM is well-
formed iff: (1) GE is acyclic; (2) R and C are asymmetric; (3) There ex-
ist a minimum amount of goal model elements |GUT| > 1, |Q] > 1, and
Jde e GUT,q € Q : C(e,q) = Make; (4) All refinements of e are the same
type Ve € G UT,Vei,ea : (e,e1),(e,e2) € R = R(e,e1) = R(e,ea); (5) Be-
tween any two intentional elements, at most one refinement link exists Vey,eq €
GUT : |{(e1,e2) € R}| < 1; (6) elements that contribute conflicting values to
a quality must stem from disjoint refinement branchesVq € @, (e1,q), (e2,q) €
C,Cle1,q) #Clez,q) :{z [z =" er}N{y [y =" e2} = 0.

Figure [2] depicts a well-formed goal model. We assume that every GM pro-
vided as input to our algorithm is well-formed. Based on this structure, we
define its LTS, where states (Sgas) correspond to configurations reachable from
the initial marking p§* via the transition relation —gys. We use the shorthand
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GM = pu§™M 5 u§M to denote the transition relation where GM does not
change, that is ((GM, u$M), 2, (GM, uS™M)) €.

Definition 8 (Labeled Transition System Goal Model). Let (GM, u“M)
be a marked goal model. Let GM = (GE,IDg,idengyr) be a goal model (Defi-
nition @ Let GE = (IE,L) , with IE = GUTUQ and L = RUC be the set of
goal model elements (Definition Let LTSy = (Sa, Actar, —ar, sdE, Far)
be a labeled transition system of a model M (Definition @ Let GM be the
model M. A labeled transition system for a goal model is the tuple: LT Sqy =
(Sans Actanr, —anr, s§M, Faur), where:

1. Sqgn is the set of states,

2. Actgy = GUT is the set of actions,

8. =amC Sagm X Actgyr X Sar, s the transition relation governed by the rules
described in Figure [3,

4. s§M = u§M s the initial state, s.t. u§M(e) = (7,7) Ve | e € GUT and
u§M(e) =? Ve | e € Q,

5. Fau C Sau are the final states s.t. Vg € Q, uM(q) = T.

Let LTScn = (Saur, Actaar, —ans s§™, Faar) be a labeled transition sys-
tem of a goal model G, (Definition [§)). The rules (Figure [3) that govern the
transition relation — g can be grouped in four categories: (1) Activation: A
leaf node may fire if it has no refinements, (2) Refinement Propagation: If the
conditions for the refinement type (i.e., and, or) are satisfied, then the element e
in a refinement link (e, e’) is marked as satisfied, (3) Contribution Propagation:
If an element e with a contribution link to a quality ¢ is satisfied, the status
value of ¢ will change according with the contribution type, (4) Backpropaga-
tion: As the satisfaction of the qualities evolve overtime, its effect is propagated
backwards, indicating which executions are pending (i.e., need to be redone).

Let GE = (IE, L), where IE = GUT UQ and L = RUC be the set of goal
model elements (Definition . Let GM = (GE,ID¢),idengy) be the goal
model (Definition [6]). We write GM = (G, T, Q, R, C,IDgu, idengar). Given a
marking ;&M | Figure [4/ shows some of the reachable markings of the goal model
shown in Figure 2] Each arrow is labeled with the identifier of the executed
element and the transition rule applied for the resulting marking.

Lemma 1 (Goal Model as Abstract Model Notation). Let MA = (M, alph,
excluded, step) be an abstract model notation (Definition , Let GE = (IE, L),
where [E = GUTUQ and L = RUC be the set of goal model elements (Definition
[{). Let GM = (GE,ID¢,idencar) be the goal model (Definition[6), and ®(e)
the status of e € GUTUQ (Definition @) Let M be the set of all such GM where
pCM  GUTUQ — &, A = iden the labeling function, excluded(GM) = 0, and
step CM x (GUT) x M where (GM,e, GM') € step iff e is executed according
to Figure @ Then A = (M, X, excluded, step) is an abstract model notation.

3.3 Process Models

A process model captures executable workflow steps; they can be modeled using
imperative or declarative languages. Here, we use a subclass of Petri nets |25],
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(G,T,Q.R,C.IDG s sideng ar) EpGM = uGM!
pMle — L, € = (T,T) forall Cle,e) = Make, €’
(T,T) for all &’ <% €]

Fig.3: Operational semantics of a goal model by extension GM =
(G,T,Q,R,C,IDgypr,idengyr) under marking M, denoted as GM = u©M.
Transition rules update the marking based on activation, refinement, and con-
tribution.

called Workflow nets |1]. Let MN = (M, alph, excluded, step) be an abstract
model notation (Definition [I)). Let a Petri net N be a model instance N € M.

Definition 9 (Petrinet). (taken from [2]) A Petrinet is a tuple N = (P, Tr, F,
IDpys,idenpy) where (1) P is a finite set of places, (2) Tr is a finite set of
transitions such that PNTr =0, (3) F C (P xTr)U(Tr x P) is a set of directed
arcs, called the flow relation. A Petri net node is an element of PUTr. (4) IDp
is a finite set of unique transition identifiers, and (5) idenpy : Tr — IDpyy is
a bijection that assigns a distinct identifier to each transition.

Figure [ba] shows a Petri net, with ten places and eleven transitions. Token
resides in places; pg has one token. A marking (") represents token distribu-
tion. A marked Petri net is a tuple of a net N = (P, Tr, F,IDpy;,idenpys) and
a marking u € B(P). The initial marking in Figure [5a]is [po]; the set of all
marked Petri nets is . A node z is called an preset of node y if (z,y) € F,
and an postset of y if (y,z) € F. For example, *t4 = {p3,ps} and t§ = {ps}. A
transition is enabled if all input places have tokens. Firing removes tokens from
input places and adds tokens to output places.

Definition 10 (Firing Rule). (taken from [2]) Let (N,u"™) be a marked
Petri net, with N = (P,Tr,F,IDpy,idenpy) (Definition @ A transition
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Fig. 4: Execution fragment of the LTS associated with the goal model in Fig. @

t € Tr is enabled, denoted (N,u"M)[t], if and only if ot < puM. The firing
rule [~] C N x Tr x N is the smallest relation satisfying: for any (N, utM) € N
and any t € Tr, (N, p"M)[t] = (N, ™M) [t] (N, (7 \ ot) Ute)

In the marking of Figure transition ¢ is enabled. Firing ¢; yields [p1, pa].
Transition sequences determine which markings are reachable and describe the
dynamic behavior of the net.

Definition 11 (Firing Sequence). (taken from [2]) Let (N, utM) be a marked
petri net, with N = (P,Tr,F,IDpys,idenppr) (Definition @ A sequence o €
Tr* is a firing sequence of (N, ud™) if, there exist markings ut™, ... uf™ and
transitions t1,...,t, € Tr | n € N such that 0 = (t1...t,), and for all i with
1 <i<mn, it holds that (N, uf™M)[t; 1] and (N, pIM)ti1] = (N, uZM).

A marking pM is reachable from pl™ if a sequence of enabled transitions
leads from pu{™ to pfM. Given an initial marking pd™ the set of reachable
markings of (N, u{™) is denoted Spys, and can be computed using a reachability
graph which is a specific type of labeled transition system.

Definition 12 (Labeled Transition System - Petri Net). Let (N, u"M) be
the marked Petri net, with N = (P, Tr, F,1Dpys,idenpy) (Definition @ Let N
be a model instance M. Let LTSy = (S, Actar, —ar, b, Far)  be a labeled
transition system of a model M (Definition @) A labeled transition system for a
Petri net is the tuple: LT Spy; = (Spa, Actpar, = par, s5M, Fpar) where:

1. Spyr is the set of states,

2. Actppyy = Tr is the set of actions,

8. = pyuC Spy X Tr x Spys is the transition relation, it follows the firing rule
(Deﬁnition’@), ice., (WPMt, MYy e par iff (N, pPMY[t] = (N, uPMY,

4. sEM = puPM is the initial state.

5. Fpyr C Spar are the final states.

Figure [5b] shows the LTS of the Petri net in Figure [fal We use Workflow nets
to model processes with clear start, end, and control flow, with a unique entry
point, a unique exit point, and well-defined execution semantics.

Definition 13 (Workflow nets). (Taken from [2]) Let N = (P, Tr,F,IDp,
idenppr) be a Petri net (Deﬁnition@ and t a fresh identifier not in PUTr. N
is a workflow net (WF-net) iff: (1) P contains an input place i s.t. oo =0, (2) P
contains an output place o s.t. o8 = (), and (3) N = (P, TrU{t}, FU{(o,1), (t,i)})
is strongly connected.
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Fig.5: A WF-net and its behaviour (a) A WF-net representing the example in
Section (b) visualizes its LTS. For example, to represents Update Encryption
Standards, t3 Revise the Access Controls, ts and tg correspond to Deploy Data-
Grail or OneTrust, respectively, while tg, t19 and t1; denote Perform Penetration
Tests, Flag suspicious activity and Apply Vulnerabilities Patches.

Definition 14 (Safeness). Let WF = (N, u"™) be a marked Workflow net,
with N = (P, Tr,F,I1Dpyy,idenpy) (Definition [9). We say WF is safe if,
for every reachable marking u™ from the initial marking pt™, it holds that
uPM(p) <1 for allp € P.

Let LT Spy = (Spa, Actpyr, = puas 50 FpM> be the labeled transmon system
of a safe Workflow net, here s5" = u&'™ with uf’™ () = 1 and pf™ (p) = 0 for
all p # A, and Fp); includes all markings with P (B) = 1 and P (p) =0
for all p # M. Figure 5] depicts a safe Workflow net and its LTS. We assume that

every process model used as input to our algorithm is a safe WF-net.

Lemma 2 (A Marked Workflow Net as Abstract Model Notation). Let
MWN = (P,Tr,F,IDpyy,idenpys, ub ™) be a marked Workﬂow net (Defini-
tion. Define M = {NPM : P — N | 3 firing sequence uf’ My I ,uPM}
as the set of reachable markings. Let X : M — 2IPPy be the labeling func-
tion defined by N(u"M) = {idenpp(t) | t € Tr and Vp € ot : p"M(p) > 1}. Let

excluded : M — 2% denote the exclusion function, and let step C ./\/l x Tr x
M be the transition relation such that (u™™ t,/’PM) € step if and only if

utM AN wWEM holds according to the firing rule (Definition m . Then A =
(M, A\, excluded, step) is an abstract model notation (Definition |1)).

3.4 Mapping

To enable synchronization, we map process actions (transitions) to goal model
elements (goals and tasks).

Definition 15 (Mapping between Process transitions and Intentional
Elements). Let GM = (GE,IDg, idengar) be a well-formed goal model. Let
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N = (P,Tr,F,IDpy,idenpys) be a safe Workflow net (Definition . The
process transition to intentional element mapping is a total function defined as:
map: IDEY, — IDEYF U {e} where IDLL, C IDpyy is the set of identifiers
assigned to process transitions, I Dg}\ZT C IDg)y is the set of identifiers assigned

to goals and tasks only, and € denotes that a transition is left unmapped.

For example, consider the well-formed goal model in Figure 2] and the safe
Workflow net shown in Figure Transitions to, t3, t5, tg, t7, t10, t11 are mapped
to intentional elements with identifiers ue (Update Encryption Standards), ra
(Revise Access Controls), o (Deploy OneTrust), g (Deploy DataGrail), pt (Per-
form Penetration Tests), £s (Flag Suspicious Activity), and ap (Apply vulner-
ability patch), respectively; all others (i.e., t1,t4,t9) remain unmapped (¢). To
ensure consistency, we introduce well-formedness criteria.

Definition 16 (Well-formed Mapping). Let map : IDEY, — IDGVE U {€}
be the process transition to intentional element mapping (Definition , Let
GE = (IE,L), with IE = (GUT UQ) and L = (RUC) be the set of goal
model elements (Definition . We say that map is well-formed if the following
conditions holds:

1. Consistent contribution: Let id € IDE}, such that map(id) = {e;, ej,...}
and |map(id)| > 2. Let e;,e; € IDg}QT. For all intentional elements e, ea
with identifier e;, e; and the same quality q € Q:

(a) if ey or one of its descendants (Ve' s.t. e’ <—* e1) contributes to g,

(b) if ea or one of its descendants (Ve' s.t. ¢ —* es) also contributes to q,
(c) then ex and ea must contribute the same type (either Make or Break).
Formally, if there exist €}, € GUT s.t. e = €} or ey —* €),eq =
e oreg —* e and (€}, q), (€5, q) € C then C(el,q) = C(eh, q)

2. No and-refinement co-mapping: For any process transition identifier id €
IDEn, . let map(id) = {ei,ej,...} € IDSYE. For all e;e; € map(id), if
there exist e1,eo € GUT such that idenga(e1) = e, idenga(e2) = e;, and
there exists R(e1,eh) = and, and ea —* ey or ey —* ea, then e; and es can
not be mapped by the same transition identifier.

For example, in the goal model shown in Figure[2] a single process transition
must not map to both the identifier db (Data breach detected) and ap (Apply
vulnerability patch), since they contribute differently, one as Make, the other as
Break, to the same quality. Similarly, a transition must not be mapped to both
ue (Update encryption standard) and ip (Implement password policy), because
there is an and-type refinement relation between them. We assume that every
mapping used as input of our algorithm is well-formed.

4 Compliance Assessment of High-Level Business
Requirements

We define compliance as the satisfaction of all high-level business requirements
(HL-BR). HL-BR are represented as qualities in the goal model (Figure [2)).
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This section introduces the method to assess compliance at design time by
evaluating whether the execution of process actions leads to a system state in
which all the HL-BR are fulfilled. We introduce the synchronous product of the
labeled transition system of each model and the compliance criterion.

Definition 17 (Composed Labeled Transition System). Let LT Sqy =

(Sanm, Actan, = e, ng, Fer) be the labeled transition system of the goal model
(Definition @ Let LTSpyr = (Spar, Actpar, —pu, sE™M, Fpy) be the labeled

transition system of the process model (Definition @) Their synchronous prod-

uct is defined as: LTSc = (Sc, Actc, —c, sS , Fo) where:

1. Sc = Sgm X Spar is the set of composed states,

2. Acte = Actepr U Actpyr U {€} is the set of actions, where € represent a no
observable action,

8. —¢ is the transition relation, preserving synchronization of shared actions,

4. 5§ = (s§M sEM) is the initial state,

5. Fo = {{sam,spm) € Sc | Vg € Q : n®M(q) = T} is the set of final states
where all qualities are satisfied.

Definition 18 (Compliance Criterion). Let LT Scy = (Saar, Actam, —em
,s§M  Faar) be the LTS of a well-formed goal model (Deﬁm'tz'on@. Let LTSpy =

Spur, Actpar, —pary s, Fpar) be the LTS of a safe Workflow net (Definition
. Let LTSc = (Sc, Actc, —c, 5§, Fc) be the synchronous product of LT Sps
and LT Scy (Definition . The compliance satisfaction is defined as true if
Vs € S¢, ds’ € F¢ such that s —* s', and false otherwise.

Let GM = (GE,ID¢,idenc ) be a well-formed goal model (Definition [6)
Let GE = (IE, L), with I[E = GUTUQ and L = RUC be the set of goal model
elements (Definition . Let N = (P, Tr,F,IDpy;,idenpyr) be a safe Workflow
net (Definition . Let LTSc = (Sc, Actc, —c,sS, Fc) be the composed la-
beled transition system. Given an goal model marking &M and process model
marking "M such that GM = ™ and N = uM. The operational semantics
of the transition relation — ¢, is defined by the following rules:

map(idenp (t)) = idenc (e)
(G,T,Q,R,C,IDg, idencn) | p& San p™
<P, T’I‘, F, IDPM7 idean> 'I MPJW i>P1u MPM/

(Psync)
G, T,Q,R,C,IDgwm,idencum, t / ’
<P,T7‘, F, IDpM,idean > ): (MGlelPM) gel (MGM 7MPM )
map(idenpum(t)) = €
(P ) <P, TT’, F‘7 IDpM,idean> ': ;LPM L)]D]u /LPM
local

G,T,Q,R,C,IDcu,idencr, o Pt o o
<P7T7"7F7IDPM,7:d6’rLPM >:(:U’ , 1 )—>c’ (M M )

Fig. 6: Transition rules LT S¢
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The composed LTS runs the process and goal models in a unified step, so
every process transition either triggers the matching goal model update or leads
to no changes. For instance, Figure[7] depicts two exemplary execution fragments
of the labeled transition system composed for the goal model shown in Figure
and the Workflow net in Figure In the left side (PM is compliant with GM).
States sg, s10, and s17 satisfy all the qualities (dpa) defined in the goal model,
and therefore belong to the set Fo. If every state in LT'S¢ that is not shown in
the exemplary execution eventually leads to at least one of these states, then the
process model depicted in Figure [pa]is considered compliant with the goal model
presented in Figure [2, which means that the data was protected appropriately.

In contrast, in the right side scenario (PM is non-compliant with GM) con-
sider a variation in the transition ¢5 labels shown in Figure[I2] instead of "Deploy
OneTrust”, now the company will "Deploy Grafana" (tf). Previously, the map-
ping of that transition was associated with the intentional element identified as
"o" in the goal model shown in Figure 2| that is map(t5) = o, but now with
the mapping would be map(tf) = €, meaning that tf is not mapped to any in-
tentional element. Since at least one state in LT'S¢ does not eventually reach
a state where all qualities are satisfied, the process model including ¢f is not
compliant with the goal model shown in Figure 2]

Having established the formal rules for process execution and goal satis-
faction, we now present the complete compliance-checking algorithm. The algo-
rithm first constructs the state space of the composed Labeled Transition System
LTSc (Definitior[17) by iteratively applying the transition rules. Its complexity
is O(n) where n = M x K, with M = |Sg | denoting the number of states in
the goal model and K = |Spys| denoting the number of states in the process
model. In the second part, compliance is verified by ensuring that for every state
s € S¢ there exists at least one reachable final state s’ € Fo (s—*s’) such that
Vg € Q, uSM(q) = T. Termination is guaranteed by the finiteness of LTSc.
Note that while LT'Sgys is always finite, the finiteness of LT Spys holds only
under specific properties of the process model (Definition .

The algorithm is modular and extensible, allowing improvements or adapta-
tions to be incorporated according to the specific application domain or process
analysis need. For instance, it can be easily modified based on a set of traces that
determine which of these are compliant with the goal model, and the mapping
can be redesigned and validated by legal and process experts.

5 Prototypical Implementation

We implemented our algorithm tasking as input a process model pattern de-
rived from Article 17 of the GDPR, which defines the data subject’s right to
erasure, also known as the right to be forgotten. This article contains high-level
business requirements (HL-BR) such as Data deleted without undue delay, when
no longer necessary, after consent withdrawal, and Data retained when overrid-
ing legitimate grounds, and public interest. The requirements were modeled in
a goal model and refined into tasks. Each process activity was associated with
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PM is compliant with GM PM is non — compliant with GM
, dp, db,
. dpa, dp, db
, dmp, ap, = pa. op
[?:, P:,Ill:u)e,ap 151 _ma&(tm)——fsw [ifp, dtn'[p, ap, ] sn map (t10) = fs
, s, pt, ue, ra, V
72 00 8 [ps] dpa, dp, db, o, g [ps] dpa, dp, db,
(P dmp, ap, 15 ip, dmp, ap,
map (tg) = pt fs, pt,[ u?, a, Tmur’ (ts) = pt [i%, pt ue, ra, Isu
o8,
, dp, db, &/ dpa, dp, db, o, g /[ps]

(i dmp, ap, ] o <™AP (t11) = ap [ip, dmp, ap,

map (t11) = ap
fs, pt, ue, fs, pt, ue, ra,

]510

ra, o, g [psl o, g [p7l
map (t7) = €
map (t7) = € dpa, dp, db
, dp, db, ip, dmp, ap, map (t5) = €
i t5) = o [ o 1%
(1P dmp, ap, 15 map (ts fs, pt, ue, ra,
fs, pt, ue, o, & [psl
g 1p
ra, o, g [psl dpa, dp, db, idPa d,n(liP, db,
ip, dmp, ap, 5, [ p,\ap,y 58
[fs t e ] fs, pt, ue, ra,
, pt, ue, o [ps]
ra, 0, g [ps] 8 1P

Conventions

| Process Marking 1 : Intentional Element Status
: [p}"] Place i with 1 tokens : | (M Satisfied
| t; Transition i | : W) Denied

B (T, L) Executed, No pending |
M (T, T) Executed, Pending |

|
H ( |

Fig. 7: Execution of the composed LTS of the Marked Workflow net in Figure
[bal and the goal model in Figure[6] The left side shows an example of a compliant
execution, and the right side shows the counterexample of a non-compliant case.

some intentional element. Compliance was evaluated at design time by verify-
ing the alignment between goal satisfaction and process execution behavior. We
compared the capabilities of our framework against the requirements and inter-
actions described in Art. 17 of the GDPR, such as the request for data erasure,
verification of the data subject identity, evaluation of legal exceptions, and the
actual deletion of personal data. These interactions serve as a representative ex-
ample of the type of multi-step, conditional processes that are legally regulated.
The evaluation was used to reason about the expressiveness of the framework.
Our case study showed enough expressiveness to capture most requirements;
however, requirements describing interprocess communication and relationships
among multiple agents and their goals are still missing. Moreover, the current
version does not yet support certain expressive constructs of process models,
such as data conditions and timed events. The prototype implementing our ap-
proach is available in Python Eﬂ It requires three inputs to perform design-time
compliance checking: a process model in PNML format, a goal model in JSON
format, and a mapping file in CSV format.

! mttps://github.com/jc4vl/HLBRBPM25


https://github.com/jc4v1/HLBRBPM25

High-Level Requirements-Driven Business Process Compliance 15

Algorithm 1: Compliance Checking Algorithm

Input: Goal model GM = (GE,IDgu,idencm),
Process model PM = (P,Tr,F,IDp,idenp),
Mapping function map : IDERI — IDgxIT U {e}
Output: true if every state leads to one where all ¢ € Q are satisfied; false otherwise
1 Initialize Sc = {(uS™, u&M)};
2 Construct state space by exploring all enabled transitions ¢ € T'r; for each, update },LP
GM

M

and apply goal model semantics to p
Scs
foreach s € S¢ do
/
if no reachable s’ € Sc from s with /,LGIW (q) =T for all g € Q then
| return false // Not compliant
end

if map(idenpar(t)) # €; add resulting states to

end
return true // Compliant

N oo s ®

6 Related Work

Recent advances in process compliance have emphasized the alignment of oper-
ational processes with regulatory and business constraints through formal meth-
ods such as conformance checking and logic-based validation. Foundational tech-
niques focus on aligning observed executions with procedural models (i.e., Petri
nets) or multi-perspective specifications that include data and resources [5,(6].
However, most approaches presuppose a complete, procedural specification and
struggle with high-level requirements expressed in non-operational terms, such
as stakeholder goals or soft constraints. While extensions using preferences [18|
or alignment of goals and processes [15] offer expressive power, they lack runtime
verification semantics or cannot systematically integrate with trace-level abstrac-
tions. As such, the space between high-level intent modeling and low-level event
traces remains fragmented, limiting formal reasoning about compliance.

To address this, recent efforts have explored mapping business requirements
to executable process behaviors, but largely from the perspective of conformance,
not enforcement or design-time guarantee. For example, works like |4] investi-
gate the conformance space by comparing different behavioral equivalences, yet
stop short of offering a mechanism to ensure satisfaction of non-functional con-
straints during execution. Predictive approaches [27] further extend the vision by
forecasting compliance outcomes, but do not explicitly link these to stakeholder-
defined goals. Moreover, alignment-based conformance checking [17] focuses on
decomposing data-aware models for efficiency, not for semantic integration with
intentional structures. This gap shows an opportunity for frameworks that unify
abstract goal models and operational models through shared transition seman-
tics, enabling formal guarantees over business objectives at runtime.

7 Conclusion and Future Work

We proposed a design-time compliance framework that integrates Workflow Petri
nets with i goal models using synchronized labeled transition systems to as-
sess whether all high-level business requirements (HL-BR) are satisfied. The key
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contributions include: (1) a formal operational semantics for goal models with
support for conflict resolution; (2) a compliance-checking algorithm based on
synchronous composition of process and goal models; and (3) a prototype im-
plementation that evaluates compliance from model inputs. Current limitations
include a lack of support for timed events and capturing full model-driven lan-
guage expressiveness. Future work will address this by extending the framework
to support time, data, and multi-agent behavior, and adding a runtime monitor
for detecting violations during execution.
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