Attack Tree Generation via Process Mining

Alyzia-Maria Konstal0000-0002-0206-5217 " Gemma Di

Federico[0000—0002—2487—1164]7 Alberto Lluch Lafuente[0000—0001—7405—0818]7 and
Andrea Burattin[OOOO—0002—0837—0183]

Technical University of Denmark, Kgs. Lyngby, Denmark
akon@dtu.dk

Abstract. Attack Trees are a graphical model of security used to study
threat scenarios. While visually appealing and supported by solid theo-
ries and effective tools, one of their main drawbacks remains the amount
of effort required by security experts to design them from scratch. This
work aims to remedy this by providing a method for the automatic gen-
eration of Attack Trees from attack logs. The main original feature of
our approach w.r.t existing ones is the use of Process Mining algorithms
to synthesize Attack Trees, which allow users to customize the way a
set of logs are summarized as an Attack Tree, for example by discarding
statistically irrelevant events. Our approach is supported by a prototype
that, apart from the derivation and translation of the model, provides the
user with an Attack Tree in the RisQFLan format, a tool used for quan-
titative risk modeling and analysis with Attack Trees. We illustrate our
approach with the case study of attacks on a communication protocol,
produced by a state-of-the-art protocol analyzer.

Keywords: Attack Trees, Threat Modelling, Process Mining

1 Introduction

The use of electronic devices has become an integral part of our daily life. These
devices collect a huge amount of personal data, which are stored locally or on
remote server systems. The increasing complexity of such systems has also in-
cremented their vulnerability, making it critical to protect the data. Therefore,
it is crucial to identify these weaknesses in order to improve the systems.

One way to detect and evaluate the threats of a system is through the use
of graphical security models such as the Attack Trees [20]. Attack Trees are a
graphical representation of the potential attacks that a system could receive.
The tree-structured graphical representation provided by this framework places
it in a clear and easy way to identify the weaknesses of the system.

Security experts work on building Attack Trees and use tools [3] to analyze
the potential risks. A drawback of Attack Trees is that there is a gap [I0] be-
tween research and the actual employment as the experts have to design these
structures by hand, and the procedure can be tedious and error-prone (e.g., at-
tacks can be wrongly modeled or over/underestimated). Instead, by exploiting

2 A .M. Konsta et al.

the event log of a violated system, we can extract knowledge and precisely follow
the attacker’s steps. In fact, the log collects all the information needed to char-
acterize the behaviors in an attack. Despite efforts from the research community,
there is no tool to automatically derive Attack Trees from event data. Most tools
that synthesize Attack Trees automatically are based on traces collected from
existing models for the system under study (see [d] for a survey of such works).

The work proposed in this paper makes use of Process Mining techniques [2]
to automatically derive an Attack Tree of a system from an event log.
The core of the proposal (cf. Figure M) consists
of the derivation of a Process Tree representing
the behavior of the system, through the use of a
Process Discovery algorithm. The obtained model
is then translated into an Attack Tree.

‘ Available Tools for Attack Trees J

‘ Attack Tree ‘

The aim of discovering the process is to derive

a model that faithfully describes the behavior of

a system, by balancing the following dimensions.

The model should accurately reproduce the cases

recorded in the log, as well as generalize them so ,

that it is able to reproduce future instances of {
i

[o]

‘ Process Tree J

Process Discovery J

the process, but at the same time not allow for

unobserved behaviors. The model represents de- ‘ HRAR U J
pendencies between events, but it should also be i , ;
simple to be understandable by the experts. These - ‘ bkl Svzton J

criteria can be balanced as parameters of the pro-

cess discovery algorithms. For example, the noise Fig.1: Approach overview
threshold of the Inductive Miner can be used to

set focus on the discovery of either frequent or infrequent behaviors. For these
reasons, the employ of Process Mining makes it a valuable tool for the analysis
of attacked systems. Indeed, the ability to customize and balance the discovery
process constitutes one of the main original features of our work, w.r.t. existing
works known from the literature [4].

Although Process Trees already hold relevant information, the security ex-
perts are not familiar with this structure, and it might be tedious for them to
extract the important information. What is more, there are multiple tools [3]
available that analyze different metrics of the Attack Trees to gain insightful
knowledge about the security of the system. These kinds of tools cannot oper-
ate with Process Trees. Therefore, the necessity of translation. The work in this
paper also supports the formalization and correctness of the translation. The ap-
proach has been implemented as a Python tool, and it is freely available™. The
Attack Trees are exported in the RisQFLan format [3]: a tool that can be used
for quantitative security risk modeling and analysis. The proposal constitutes a
semi-automatic way of producing Attack Trees, as the tree can be subsequently
modified and adapted.

! https://anonymous.4open.science/r/PTtoAT-Anonymous

https://anonymous.4open.science/r/PTtoAT-Anonymous

Attack Tree Generation via Process Mining 3

Indeed, we envision our approach as closing the gap between threat modeling
and assessment tools and tools able to extract attack logs. To illustrate this, we
use a case study where Attack Trees in the format of RisQFlan are produced
from attack logs discovered by the OFMC security analyzer.

Summarizing, the main contributions of this work are:

— A novel approach to obtain Attack Trees from logs of malicious activities
(Section B). The main differentiating feature of our approach is the use of
process mining techniques, enabled by a novel transformation of Process
Trees into Attack Trees.

— A prototype implementation® of our approach that can bridge the gap be-
tween security analyzers and threat modeling tools. We illustrate this in
Section @ with a state-of-the-art security analyzer (OFMC) and a state-of-
the-art threat analysis tool (RisQFlan). We also include a set of experiments
in Section B to test the correctness and scalability of our tool.

The rest of the paper includes a gentle introduction to Attack Trees and
Process mining (Section B), a discussion of related works (Section B), and some
concluding remarks (Section @).

2 Background

This section provides notions useful for the understanding of the paper. First,
we introduce the Attack Trees (Section). Then Process Trees (Section P72)
are presented, along with a discussion of how to derive them automatically using
process mining techniques (Section 23).

2.1 Attack Trees

In order to assess a system’s security, Schneier proposed a technique called Attack
Tree [20]. An Attack Tree is a graphical tree-structured representation of the
system’s security depicting possible attacks.

The tree structure of the graph
highlights the vulnerabilities of the
system and helps developers focus
on the weak spots when they imple-
ment countermeasures [24]. The main
idea behind the Attack Tree is to de-
compose the tasks of an attack into
smaller tasks, thus making it easier to
describe and quantify different met-
rics. When different attack tasks are
connected to each other it means that) Qe comjunctive efnement
therg is 2 decomposition/refinement Fig. 2: Example Attack Tree
relationship but, the actual nature of
the decomposition is expressed via operators. With the Attack Trees, one can

O attack node
N\ disjunctive refinement
A\ conjunctive refinement

4 A .M. Konsta et al.

capture multiple attacks derived from physical, technical, or even human vulner-
abilities [24]. Since Schneier introduced the Attack Trees, multiple approaches
and formal semantics have been proposed in the literature. In the scope of this
work, we will try to include the most common operators used in the literature
to cover most of the cases. To our knowledge, the most common operators are
disjunction, conjunction [16], sequential conjunction [7], and the exclusive choice
which was detected by Kordy et al. [i0].

An example of an Attack Tree is shown in Figure B. The main components
of an Attack Tree can be narrowed down into three categories:

— Root node: the root node is the global goal of the attack. For example, in
Figure @ the global goal of the attacker is to “Rob Bob”.

— Children of a node: are refinements of the parent’s goal into sub-goals.

— Leaf nodes: these are basic attacks (i.e., tasks), that can not be further
refined, that the attacker must perform in order to achieve their goal.

We can observe in Figure @ that the refinements of an attack are represented
in four different ways. For example the “Go to the safe” attack is refined into
two attacks: “Break window” and “Break Door”. Exclusively one of the sub-
goals should be fulfilled in order to achieve the parent goal. This kind of node
is a xor node. We represent this kind of node as k-out-of-n, to align with the
representation of ter Beek et al. [3]. The k-out-of-n indicates that k nodes should
be achieved from n to fulfill the goal; in the xor case, exactly 1-out-of-n node
should be achieved. For example, in our case, if the attacker has only one bomb
for use, they will be able to break either the door or the window, but not both.
Furthermore, the “(get money from) Safe” attack is refined into two sub-goals
using the sequential conjunction [[@]. In this case, all the children must be fulfilled
in the given order — First the “Go to the safe” and then the “Break the lock”.
For the “ATM” attack a conjunction is introduced, which means that both the
children must be achieved but the order is irrelevant. Finally, the “Rob Bob”
attack is refined using a disjunction. In this case, one of the children must be
fulfilled, but theoretically, the attacker can execute both. The difference with
the exclusive operator is that in the zor case the attacker will only be able
to fulfill one of the child nodes. It is worth mentioning that the xor operator
is not broadly used in the literature on Attack Trees. In fact, we only came
across one work mentioning the exclusive choice and it was referring to Fault
Trees [M0]. Fault Trees are also DAG-based structures and we decided to include
this operator for completeness since one might be obligated to include such an
operator in their analysis.

2.2 Process Trees

Process Trees are graph-based models that capture sound process models. These
trees capture the relationships among activities of the process in a hierarchical
fashion. Specifically, the inner nodes of a Process Tree represent the operators
(dictating the order in which children should be executed) and the leaves repre-
sent the activities.

Attack T

sequential
composition

Five types of operators can be
represented in a Process Tree, and
they are the sequential operator (—),
the exclusive choice (X), the paral-
lel composition (A) , the redo loop
(0) and the inclusive choice, i.e. OR,
(V). Let’s consider the example in
Figure B. We can observe that the ac-
tions are on the leaves and the inner
nodes are operators. The — operator
indicates that its children should be
executed in sequential order, meaning
that the left sub-tree should be exe-
cuted first. In the example, every process starts with executing activity a fol-
lowed by the sub-tree with the OR operator (V). After the OR, the sub-tree
of the redo loop is executed, and finally the exclusive choice. The OR operator
executes at least one of its children. The O redo loop operator has to have at
least two children. The first child is in the “do” part (i.e., the part that has
always to be executed) and the other children are “redo” parts. The redo loop
starts the execution from the leftmost child and can loop back through any of
its children. In the example, after the execution of the leftmost child of the redo
loop, activity f can be performed. The X operator is an exclusive choice, i.e. only
one of the children has to execute. The last operator is the parallel A, which
can be observed in the example between the exclusive choice and the d activity,
and indicates that all the children have to be executed. The Process Tree in the
example can be summarized textually as:

exclusive
choice

parallel
composition

redo
loop

inclusive
choice

normal
activity

ERERGRORSRONO)

silent
activity

Fig. 3: Example of a Process Tree

—(a, V(b,c), O(=(A(X(i,j),d).e).f),x (g,h))

The Process Tree notation also includes the 7 activity, a silent activity that
cannot be observed. The silent activity can be used in X(a,r) to indicate that
activity a can be skipped. More precisely, we follow the definitions introduced
by van Zelst et al. [25] and Leemans [i2] for the inclusive choice operator. In
general, 7 acts as the empty sequence €, that can be removed from sequences.

2.3 Process Mining

Process Mining consists of three techniques which are process discovery, confor-
mance checking, and process enhancement [2].

In the context of this paper, we only focus on process discovery. Process dis-
covery takes as input a log recording the execution of activities and produces
a process model representing the process observed in the log. Several process
discovery algorithms exist, such as the Heuristic Miner [23] and the Inductive
Miner [i4]. Algorithms can produce different types of process models, such as
Petri Nets, Process Trees, Causal Nets, etc. Important quality criteria to se-
lect the discovery algorithm is the rediscoverability [i3] of the process model.

6 A .M. Konsta et al.

Le., given an event log that contains information about the process, the algo-
rithm is able to produce a model equivalent to the original process (up to some
equivalence notion).

In order to apply Process Mining, it is necessary to have execution logs,
recording which activities have been executed. These logs are called event logs.
An example of an event log is reported in Table 0. Event logs are grouped into
cases, that are process instances. Each case consists of events, that correspond
to activities or tasks performed by a process participant. Each event has an
associated set of attributes, such as the activity name, the timestamp of the
event, or the resource that executed the activity. For example, the first event
in Table M refers to the execution of the activity register request, on the date
31/12/2010 at 11.02, by a user called Pete. The set of attributes of an event log
can be extended. For the scope of this work, the minimum information required
is the case id and the activity attribute. To position the event log in the context
of this paper, a log collects information regarding attacks. The event log can
both represent successful and unsuccessful attempts. For example, in Figure &
the attacker might try to break the window multiple times. This is represented
as different events in the event log. However, in the Attack Tree, as shown in
Figure B, this action is represented once by a label.

CaselD Properties

Timestamp Activity Resource
1 30-12-2010:11.02 register request Pete
31-12-2010:10.06 examine thoroughly Sue
05-01-2011:15.12 check ticket Mike
07-01-2011:14.24 reject request Pete
2 30-12-2010:11.32 register request Mike
30-12-2010:12.12 check ticket Mike

30-12-2010:14.16 examine casually Pete

Table 1: Example of an Event Log in [21]]

An event log can be processed by a process discovery algorithm in order to
derive a process model. A discovery algorithm that ensures the rediscoverability
property is the Inductive Miner [14] (IM). The Inductive Miner makes use of a
divide-and-conquer approach to decompose the event log into smaller sublogs, in
order to construct a Process Tree. The algorithm separates activities, selects an
operator, and splits the log, after that it iterates over the sublogs until conver-
gence. The IM provides the guarantee that it can re-discover the process model
from an event log since it relies on the directly following relation between all
pairs of activities in the event log. For a detailed explanation of the algorithm,
please refer to the book by van der Aalst [21]. The IM returns a Process Tree.
Since the objective of this work is to represent attacks, we want to ensure that
our model is sound, meaning that every activity can participate in a process
instance and it is ensured that the process always terminates properly. For this
reason, we decided to consider the Inductive Miner as a valid solution to derive
an Attack Tree.

Attack Tree Generation via Process Mining 7
3 From Process Trees To Attack Trees

In this section, we carefully explain the details of our approach, with a particular
focus on the transformation from a Process Tree into an Attack Tree. What is
more, we formalize and prove the correctness of the translation.

The approach is divided into two phases: the mining and the translation.
In the mining phase, the behavior of an attacker, collected in the event log, is
represented in the form of a process model. The model captures activities and
their dependencies in a conceptual model, i.e. a Process Tree. The Process Tree
is derived by the use of the Inductive Miner algorithm. As previously mentioned,
through fine-tuning the algorithm’s parameters, it is possible to emphasize par-
ticular viewpoints e.g., take into consideration infrequent behaviors or deal with
incomplete event logs. The resulting Process Tree is translated into the corre-
sponding Attack Tree in the second phase of the approach. The Attack Tree
is also converted in the RisQFLan format so that can be used in the tool for
further analysis. Before going into detail with the transformation, we introduce
the semantics of both modeling languages.

In particular, we start providing trace-based semantics of Attack Trees (Sec-
tion Bl) and Process trees (Section B2), to support the formalization and cor-
rectness of our translation. Then, the main idea of the transformation is provided
in Section B3 and the specific transformation rules are provided in Section BA.
We prove that the source Process Tree can produce the same potential traces as
the translated Attack Tree (in the Appendix ®). The case of the loop operator
is reported in the Appendix as well.

3.1 Attack Tree Semantics

T:=a|and(a,Th,...,Tn) | or(a, Th, ..., Ty) | zor(a, Ti,...,Ty) | sand(a, T4, ..., Ty)

where « € Aandn <1

[e]e = {e}
[and(e, Tt, ..., T)]e = ([Tl .. I[Tn]e) - @

[or(e, T, ..., T2)]e U {ITlw) - a | 3w'w- o' € lieqo,nn [T}

1€{0,...,n}
[xor(a,Th, ..., Tu)]e = ([Th]e - @) U+ U ([Tn]: - @)
[sand(a,Th,. .., Tu)]e = [Th]e -+ - [Th] -«

Table 2: Attack Tree Syntax and Semantics

2 https://doi.org/10.5281/zenodo.8386683

https://doi.org/10.5281/zenodo.8386683

8 A .M. Konsta et al.

In our semantic definitions, we assume there is an alphabet A of symbols rep-
resenting actions. We use standard operations and notations for traces, including
a trace interleaving function || : (A* x A*) = (AU A)* defined as follows:

0A; = A1 ({w} U A)[|As = (w]|A2) U (Ay]|A2)
Aq)|0 = Ay awy||fwz = (a(w:||Bws)) U (B(aw:[|ws))

ellw = {w} wlle = {w}

We sometimes denote concatenation of traces by juxtaposition and sometimes
we explicitly use a concatenation operator - when it improves readability. The
operator - is lifted to sets of traces as usual (pairwise concatenation).

The formal syntax and semantics of Attack Trees are given in Table B. Attack
Trees are terms generated by T in the grammar. The trace-based semantics of
Attack Trees are given by function [J; : T — A*, which maps each tree into a
set of action sequences. Our Attack Tree semantics are based on the semantics
of Attack Trees supported by RisQFlan [3] since our purpose is to be able to
produce Attack Trees for said tool. It is worth to that, as observed by other
authors (see discussion in [IH]) there is no common agreement on the meaning
of Attack Trees. The semantics presented here, in addition to being compatible
with RisQFlan, are close to the one presented in [IH] with some minor differences
discussed in said paper (e.g. labels in inner nodes).

Table B defines the function by providing rules for creating the traces for
every operator.

As can be seen from Table B, an Attack Tree can be a single node a € A,
where A is a set of actions or a combination of n subtrees with a new node. The
and(a, Ty, ..., T,) operator, denotes a conjunction where node « is the parent of
the n subtrees T3 to T,,. In this case, in order to reach node « all of the n subtrees
T; to T,, should be achieved. Accordingly, the or(a,T1,...,T),) operator, depicts
a disjunction where node « is the parent of the n subtrees 17 to T),. In this
case, in order to reach node « at least one of the n subtrees T} to T, should
be achieved. The zor(«a,Th,...,T,) depicts an exclusive or, meaning that in
order to achieve the parent goal, exactly one of the subtrees should be fulfilled.®
Finally, the sand(«,T1,...,T,) introduces the sequential conjunction meaning
that the events are ordered [[@]. We chose to include the most commonly used
operators we came across in the literature. One can decide to use a subset of the
aforementioned operator according to their purpose.

3.2 Process Tree Semantics

A Process Tree represents activities in a hierarchical order. The inner nodes of
a Process Tree are operators and the leaves are activities, « € A. We formalize
the syntax and semantics of Process Trees similarly to Attack Trees. Table B
provides the grammar for Process Trees (terms generated by P) as well as the

3 Readers familiar with [I5] may recognize that this corresponds to the semantics
of disjunction on said paper. Consequently, our approach can be easily adapted to
produce Attack Trees in the format of tools that follow [IH]

Attack Tree Generation via Process Mining 9

semantic function [, : P — A*, which maps each Process Tree into a set of
traces, following the standard meaning of Process Trees [2].

P:=a|and(Pi,...,Pn) | or(Pi,...,Pn) | zor(Py,...,Py) | = (P1,...,Py) | O(P,...

where a € Aand n <1

7P’n)

le], = {a}
7], = {}
land(Pr, ..., Pu)lp = ([Pl - - - [[[Pa]p)
[or(Pr,....P)l, = |J {PIpllw)| 3w, w-w' € ljeq0,.np iy [Piln}
i€{0,....,n}
[zor(Pi,...,Pu)]p =[Pi]p U U[Pn]p
[=(Pry. s Po)lp = [Pilp -+ [Pullp
(O (Pr,-- . Po)lp = [Palp - ([Pe]p U+ U [Pu]p) - [P1]n)”

Table 3: Process Tree Syntax and Semantics

According to Table B a Process Tree can be a single node or a combination
of an operator and n subtrees. The and(Pi, ..., P,) operator defines a conjunc-
tion between n subtrees, which means that all the subtrees P; to P, should
be executed in order to reach the goal. The sequence operator — (P, ..., P,),
defines a sequential relation between the subtrees P; to P,, which means that
P; should be executed before P> and so on. We can perceive this operator as a
parental relationship between P,,_; and P,,, where P, is the parent node. We are
also defining the xor(P,..., P,) which depicts the exclusive choice among the
n subtrees P; to P,. Finally, we introduce the or(P,..., P,) operator, which
defines a disjunction, where at least one of the n subtrees should be executed in
order to reach the goal. Finally, we define the redo loop O operator, where the
leftmost child is always executed and can loop back through any of the other
children and execute the first child again. The repetition is not mandatory, that
is why we enclose the traces with the Kleen star, indicating a possible repetition.

3.3 Basics of the Transformations

Attack Trees, by definition, are composed of a main goal (i.e. the root node),
sub-goals (intermediate nodes), and actions (leaves). The main goal is decom-
posed into sub-goals. Each attack consists of components required to perform
the attack. On the other side, Process Trees belong to the family of process
models. A process model describes the flow of activities that are executed in
order to accomplish a specific goal. The goal of a process model is to describe

10 A.M. Konsta et al.

p2t(a) = a (1)

p2t(— (Pi,...,Pn)) = sand(r, p2a(P1),...,p2t(Pyn)) (2)
p2t(and(Pi, ..., Pn)) = and(7, p2t(P1), ..., p2t(Py)) (3)
p2t(or(Pr,...,Pn)) = or(7, p2t(P1), ..., p2t(Py,)) (4)
p2t(zor(Pi, ..., Pn)) = zor(t,p2t(P1),...,p2t(Pn)) (5)

Table 4: Transforming Process Trees into Attack Trees, formally

activities and relationships, and their execution order [2]. In a Process Tree,
internal vertices represent operators, and leaves represent activities. The main
difference between the two languages is that an Attack Tree explicitly models
activities and goals, while a Process Tree does not directly model the goal, since
it is the objective of the model representation itself. To translate the concept of
goal into the Process Tree, we consider the root node (from the Attack Tree) as
the last activity to be executed in a Process Tree. More specifically, rephrasing
it under a process perspective, to achieve a goal you first need to execute the list
of activities required and, in the end, you reach the goal node. Hence, the last
activity executed in the Process Tree replaces the root node in the Attack Tree.

However, since the concept of goal is not embedded in the Process Tree, we
had to introduce the notion of observable and non-observable actions: an action
a € A collected by the information system, which contributes to the achievement
of the goal is called observable, while an action o € A that cannot be directly
mapped to an execution of an activity is called non-observable. The distinction
between observable and non-observable actions is necessary since Attack Trees
have a goal-oriented and self-explainable structure, while Process Trees, in order
to be executed, require that each activity node is observable in the event log.
We hence denote all non-observable actions by 7, 7;, which is commonly used
to denote silent actions [M]. These will serve in the Attack Tree as intermediate
nodes in some cases, as we shall see.

Attack Tree Generation via Process Mining 11

As introduced in Section B, the Attack includes four operators, conjunc-
tion (and), disjunction (or), exclusive choice (xzor), and sequential conjunction
(sand). On the other side, Process Tree defines four different operators that are
the sequential (—), the exclusive choice (xor), the parallel composition (and),
the disjunction (or), and the redo loop (©). In order to translate an Attack
Tree into a Process Tree, the latter must be able to represent the operators
of the former. We can see a correspondence between the operators of the two
trees. The conjunction already finds a definition in the Process Tree, that is
the parallel operator (and), the disjunction (or), and the exclusive choice (zor)
can be found in both trees and finally, the sequential conjunction (sand) can be
paired with the sequential operator (—). The main subtle difference we need to
take into account is that Attack Trees have action-labeled internal nodes. Our
transformation takes care of this introducing non-observable silent actions 7.

The redo loop () operator is more complicated, as there is not a 1 to 1
mapping in the Attack Tree. The redo loop, states that the leftmost branch is
always executed, and can loop back through any of its other children and then
execute the leftmost child again. We can see the traces produced in Table B,
where the traces of the leftmost child are always produced. However, the traces
of the loop are denoted by the Kleen star *, meaning that the procedure might
be repeated or not. Handling the loop operator is out of the scope of this paper,
but we include a discussion in the Appendix for interested reviewers.

3.4 Transformation Rules

We are now ready to present one of the main contributions of our paper, namely
the transformation of Process Trees into Attack Trees.

The transformation is formally provided by the function p2t : P — T, which
transforms Process Trees into an Attack Tree. The function is formally defined
in Table @. The definition is by structural induction and the four recursive cases
are graphically depicted in Figure @. The top-left rule in Figure @ concerns the
sequence construct. As observed in Figure B the sequence operator (—) can be
replaced by the sequential conjunction (sand) operator. Both operators define
an order between the nodes involved. The top-right rule in Figure @ represents
the translation of the A (and) operator of the Process Tree into conjunction,
the and operator of the Attack Tree. The bottom-left rule in Figure @ represents
the translation of the V (or) operator of the Process Tree into disjunction, the
or operator of the Attack Tree. The bottom-right rule in Figure @ represents
the translation of the x (xor) operator of the Process Tree into exclusive or the
xor operator of the Attack Tree. Common to all four rules is the fact that a
non-observable action 7 is introduced as the root of each sub-tree in the Attack
Tree

One of the main results of the paper is that our translation is correct, as
stated in the following theorem, whose proof can be found in the Appendix.

Theorem 1. Let P be a Process Tree. Then [P], = [p2t(P)];.

12 A.M. Konsta et al.

4 Validation

To validate the approach proposed in this paper we apply it to a real use case, i.e.
we construct a scenario that represents an attack, with the aim of deriving the
corresponding Attack Tree. We use the open-source Fixedpoint Model Checker
(OFMC) ? to obtain attack logs. OFMC is a security analyzer that allows to
detection of potential attacks on cryptographic communication protocols. The
example protocol we used is called Selfi ['4]. This protocol allows the authenti-
cation of two parties, A and B, using two nonces N; and Ny respectively. The
protocol can be summarized in the following steps:

— Step 1: A sends a message to B containing: A, B, and Nj.

— Step 2: B responds to A with a message containing: A, B, Ny, and the
encrypted keys for both A and B.

— Step 3: A sends a message to B containing: A, B, and the encrypted keys.

This protocol is meant for key rotation, you have A and B that share a Diffie-
Hellman key and they want to establish a new key, which would be derived using
N; and Ny. The protocol is not secure. Indeed OFMC provides traces of potential
attacks. An example is shown in Figure B. Each line of the trace consists of four
different elements: The sender, the receiver, the name of the activity, and the
content of the message.

Attack 1
weak_auth*(x601,1) -> i: A strats session with I,x601,x662,N1(1)
i -> (x601,2): I starts session with A,x662,x661,N1(1)

(x601,2) -> i: A replies to I as B,x602,x601,N2(3),h(h(exp(exp(g,secretk(x602)),secretk(x601)),N1(1),N2(3)),N1(1),N2(3))
i=> (x6A1,1): T renlies as R x6A1_xAA? N2(2) _hih(avnlavnla secratk(xAA1)) cacratk(xAA2)) N1£1) N2(3)) N1(1) N2(3))
(x681,1) -5 i:|A sends keys to I x661,x662,h(h(exp(exp(g,secretk(x661)),secretk(x662)),N1(1),N2(3)),N1(1),N2(3))

| sender | ‘ activity |

Fig.5: Example of a trace

Fig. 6: Process Tree

For example in the specific trace, A (party x601) starts a session with an
intruder (i), while x601 believes that they are talking with x602. We can see

4 http://www.avantssar.eu/

http://www.avantssar.eu/

Attack Tree Generation via Process Mining 13

that the sender is (x601,1) in the first interaction. In the sender section, the
number next to the party indicates the session. Then, the intruder starts a new
session with participant x601 pretending to be x602. The intruder is basically
using the messages from session 1 to communicate in session 2 and that means
x601 gets confused. The intruder is simply messing with x601 so that in the end,
they believe they have established a new key but the real x602 from session 1
was never contacted at all.

While such a trace provides a detailed step-by-step explanation of one indi-
vidual attack, we can use our approach to provide a visual summary of a set of
attacks with an attack tree. For the sake of simplicity, we are going to include
only two different traces of attacks in our tree. The attacks included are simi-
lar to the one in Figure B. We translate the attack traces from OFMC into an
XES event log, which serves as input to our tool. A Process Tree is discovered
from the log and reported in Figure B. Afterward, the Process Tree is translated
into the corresponding Attack Tree in the format suitable for the RisQflan tool
(Figure @). The obtained attack tree provides a summary of the original set of
attack traces and can also be used to perform quantitative analysis by enriching
the attack tree with additional information supported by RisQflan (e.g. cost or
success rates for attack actions). We can see on the Attack Tree that a SAND
operator is connecting the root with the rest of the tree. The Attack Tree was
translated based on the translation rules and summarizes the possible attacks
based on the given traces.

Fig. 7: Attack Tree

5 Experiment

The objective of the evaluation is to test the correctness of the implemented
translator by verifying the equivalence between the input Process Tree and the
resulting Attack Tree. The test consists of generating traces from Process Trees,
and then verifying if the traces can be replayed by the translated Attack Trees.
The experiment is conducted on a large scale, where we test a total of 1000 Pro-
cess Trees of different dimensions. The increase in the dimensions also allows us
to verify the scalability of the approach. The procedure followed for the analysis
consists of the following 4 steps.

1. Firstly, we randomly generate the 1 000 Process Trees by means of a function
from the PM4py library. To construct the set of Process Tree models, three
different parameter configurations were adopted, reported in Table B. In each
run, we increased the size of the models to be generated. To set the size we

14 A.M. Konsta et al.

make use of the mode, min and max parameters listed in the Table. These
parameters are used to compute the triangular distribution which is used
by the PM4Py function to generate the list of activities. Furthermore, the
probabilities of the operators reported in Table refer to the probability of
observing the specific operator, i.e. a fair distribution in all the run.

2. Once the Process Trees are obtained, 1000 traces are generated from each
tree using a function from the same library.

3. The Process Trees are finally translated into Attack Trees by means of our
translator. The tool also generates the corresponding RisQFlan file for each
Attack Tree.

4. Finally, we verify if each trace generated by each Process Tree can be exe-
cuted by the corresponding Attack Tree. For this step, we implemented an
algorithm that, given a trace and an Attack Tree, verifies if the sequence of
activities in the trace can be executed by the Attack Tree. Therefore, we use
the depth-first search algorithm to verify the path.

As a result, for all the 1000 Pro-

cess Trees generated, the fitness value =~ Parameters confl conf2 conf3
for the replay of all the 1000 traces No. of models 300 300 400
on the translated Attack Tree is 1. In Mode activities 30 50 150

other words, all traces generated by Min no. activities 30 50 150
each Process Tree can be executed by Max no. activities 50 100 300
the corresponding, translated, Attack ~ Prob. sequence op. 0.25 0.25 0.25
Tree. This gives us high confidence in ~ Prob. choice op. ~ 0.25 0.25 0.25
the correctness of the translator since Prob. parallel op. 0.25 0.25 0.25
we assessed the equivalence between Lrob.or op. 025 025 0.25

an input Process Tree and the result-)
ing Attack Tree. Table 5: Configurations of the three

groups of Process Trees generated

The other aspect we evaluated is
the processing time of the approach,
calculated on the three runs mentioned above. We computed the processing time
as the time to translate each Process Tree into Attack Tree, and save the Attack
Tree file (i.e. step 3 above, without considering the conversion into RisQFlan file).
The Process Tree was already loaded in the application as it was randomly gen-
erated by the mentioned function. The translation took on average 5.54, 14.62,
57.96 milliseconds for confl, conf2 and conf3 respectively. The execution time
picked at 22.14ms in the first configuration, 38ms in the second and 261.09ms
in the third one. We noticed that the execution time increased with the increase
of the size of the tree, but still remaining very efficient.

6 Related Work

To the best of our knowledge, there are no other works exploiting the logs of
violated systems leveraging Process Mining to derive the corresponding Attack
Tree. Thus we present some works considering the Automatic Generation of
Attack Trees and point out the advantages of our work compared to the existing

Attack Tree Generation via Process Mining 15

ones. For a more detailed study of the current approaches for the automatic
generation of Attack Trees, we encourage the reader to refer to [d].

According to [0], there are only 3 works that generate attack trees from
a security analysis of a system model, namely [8, I8, 22]. The main idea in
such approaches is to use a model of the system under study, specify security
properties and use counterexamples for such properties as attack traces that
are then summarized in Attack Trees. This is similar to our case study with
the OFMC model checker. The main difference of our approach is that we use
process mining algorithms, which allow us to accommodate to the user preference
in balancing features such as precision and inclusion of statistically (ir)relevant
events.

Another family of approaches is the so-called vulnerability-driven approaches,
which use libraries of predefined attack tree templates as the starting point.
According to [d], there are only 5 works that generate attack trees using this
approach, namely [@,5,8 01,09]. The main difference with our work is that they
often do not depart from attack traces and often necessitate domain experts to
instantiate the templates for the system under study. An exception is the work
presented in [19] which provides an Attack Tree for a single attack log by parsing
it given a suitable grammar of common patterns of attack (de)composition.

7 Conclusion and Future Work

We have presented a tool-supported approach to derive Attack Trees directly
from observed malicious activities in the form of logs. Our automatic derivation
is intended to complement the manual design of the Attack Trees. The obtained
trees can be seen as initial proposals that can then be adapted by domain experts.
The paper proves that the translation not only is feasible (i.e., it is implemented
and has thoroughly been tested) but it is also formally correct. The actual im-
plementation targets the RisQFlan tool and we also illustrate how the input logs
could be obtained from a security analyzer (OFMC). Our tool can be adapted
and integrated to connect with other attack tree tools (e.g. ADT) as well or to
import traces from other security analyzers as those in [d]. As a future work,
we would like to extend the set of operators provided and the set of tools for
which we produce an output. Another interesting question is whether and how
Process Mining techniques can be applied to synthesize Attack Defense Trees,
an extension of Attack Trees that includes attacker and defender behavior.

References

1. van der Aalst, W.M.: Process discovery: Capturing the invisible. IEEE Computa-
tional Intelligence Magazine 5(1), 28-41 (2010)

2. van der Aalst, W.M., Weijters, A.: Process mining. (2005)

3. ter Beek, M.H., Legay, A., Lafuente, A.L., Vandin, A.: Quantitative security risk
modeling and analysis with risqflan. Computers & Security 109, 102381 (2021)

16

10.

11.

12.
13.

14.

15.
16.
17.
18.

19.

20.
. Van Der Aalst, W.: Process mining: data science in action, vol. 2. Springer (2016)
22.
23.
24.

25.

A.M. Konsta et al.

Bryans, J., Liew, L.S., Nguyen, H.N., Sabaliauskaite, G., Shaikh, S., Zhou, F.: A
template-based method for the generation of attack trees. In: Information Security
Theory and Practice. pp. 155-165. Springer, Cham (2020)

Gadyatskaya, O., Jhawar, R., Mauw, S., Trujillo-Rasua, R., Willemse, T.A.:
Refinement-aware generation of attack trees. In: Security and Trust Management.
pp. 164-179. Springer (2017)

Hong, J.B., Kim, D.S., Takaoka, T.: Scalable attack representation model using
logic reduction techniques. In: IEEE International Conference on Trust, Security
and Privacy in Computing and Communications. pp. 404-411 (2013)

Jhawar, R., Kordy, B., Mauw, S., Radomirovié¢, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: ICT Systems Security and Privacy Protection. pp.
339-353. Springer (2015)

Jhawar, R., Lounis, K., Mauw, S., Ramirez-Cruz, Y.: Semi-automatically augment-
ing attack trees using an annotated attack tree library. In: International Workshop
on Security and Trust Management. pp. 85-101. Springer (2018)

Konsta, A.M., Spiga, B., Lluch-Lafuente, A., Dragoni, N.: A survey of automatic
generation of attack trees and attack graphs. CoRR abs/2302.14479 (2023)
Kordy, B., Pietre-Cambacédes, L., Schweitzer, P.: Dag-based attack and defense
modeling: Don’t miss the forest for the attack trees. Computer Science Review
13-14, 1-38 (2014)

Kumar, R.: An attack tree template based on feature diagram hierarchy. In: In-
ternational Conference on Dependability in Sensor, Cloud and Big Data Systems
and Application. pp. 92-97 (2020)

Leemans, S.J.: Robust process mining with guarantees. In: BPM (Disserta-
tion/Demos/Industry). pp. 46-50. Springer (2018)

Leemans, S.J., Fahland, D.; Van der Aalst, W.M.: Scalable process discovery and
conformance checking. Software & Systems Modeling 17(2), 599-631 (2018)
Leemans, S.J., Fahland, D., Van Der Aalst, W.M.: Discovering block-structured
process models from event logs-a constructive approach. In: Petri Nets. pp. 311-
329. Springer (2013)

Mantel, H., Probst, C.W.: On the meaning and purpose of attack trees. In: IEEE
Computer Security Foundations Symposium. pp. 184-199. IEEE (2019)

Mauw, S., Oostdijk, M.: Foundations of attack trees. In: International Conference
on Information Security and Cryptology. pp. 186-198. Springer (2005)
Médersheim, S.: Protocol security verification tutorial (2018)

Pinchinat, S., Acher, M., Vojtisek, D.: Atsyra: An integrated environment for syn-
thesizing attack trees. In: Mauw, S., Kordy, B., Jajodia, S. (eds.) Graphical Models
for Security. pp. 97-101. Springer, Cham (2016)

Pinchinat, S., Schwarzentruber, F., Lé Cong, S.: Library-based attack tree synthe-
sis. In: Eades III, H., Gadyatskaya, O. (eds.) Graphical Models for Security. pp.
24-44. Springer, Cham (2020)

Schneier, B.: Attack trees. Dr. Dobb’s journal 24(12), 21-29 (1999)

Vigo, R., Nielson, F., Nielson, H.R.: Automated generation of attack trees. In: 2014
IEEE 27th Computer Security Foundations Symposium. pp. 337-350 (2014)
Weijters, A., van Der Aalst, W.M., De Medeiros, A.A.: Process mining with the
heuristics miner-algorithm. TU /e, Tech. Rep. WP 166, 1-34 (2006)

Widel, W., Audinot, M., Fila, B., Pinchinat, S.: Beyond 2014: Formal methods for
attack tree—based security modeling. ACM Computing Surveys 52(4), 1-36 (2019)
van Zelst, S.J., Leemans, S.J.: Translating workflow nets to process trees: an algo-
rithmic approach. Algorithms 13(11), 279 (2020)

	Attack Tree Generation via Process Mining

