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A B S T R A C T

Beamline is a software library to support the research and development of streaming process mining algorithms.
Specifically, it comprises a Java library, built on top of Apache Flink, which fosters high performance and
deployment. The second component is a Python library (called pyBeamline, built using ReactiveX) which
allows the quick prototyping and development of new streaming process mining algorithms. The two libraries
share the same underlying data structures (BEvent) as well as the same fundamental principles, thus making
the prototypes (built by researchers using pyBeamline) quickly transferrable to full-fledged and highly scalable
applications (using Java Beamline).
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1. Introduction

Process mining [1,2] is an established field that seeks to inte-
grate data science and process science to enhance processes and their
executions. Process mining encompasses several sub-tasks, including
‘‘control-flow discovery’’ [1], which focuses on deriving a control-flow
model based on the executions of the model itself. Another sub-task
is ‘‘conformance checking’’ [3], which aims to validate that process
executions align with a normative process description. In practical
scenarios, control-flow discovery can be applied to gain insights into
how a company manufactures or handles goods, with the aim of
understanding the actual processes in order to optimize them. On the
other hand, conformance checking finds applications in domains such
as clinical protocols, ensuring that the observed processes align with
the expected protocols. This enables the early detection of potential
mistreatment of patients.

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.

E-mail address: andbur@dtu.dk.

Traditional process mining techniques utilize event log files, which
are structured as XML files following the IEEE XES standard [4].
These files contain events associated with a specific time period, and
the process mining analyses are conducted within that timeframe. In
streaming process mining, instead of working with static files, the input
consists of an event stream [5]. Similar to event stream processing,
streaming process mining aims to analyze data in real time and update
the analysis promptly.

The field of streaming data analysis [6] imposes certain compu-
tational requirements that directly translate to the streaming process
mining discipline [7]. Furthermore, in the latter, the need to establish
conceptual connections between multiple data points observed at dif-
ferent timestamps (e.g., to be able to correlate events that belong to
the same process instance) introduces complexity associated with the
observation window (i.e., the time period during which the analysis
takes place) [8].
https://doi.org/10.1016/j.simpa.2023.100551
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Fig. 1. General overview of Beamline and pyBeamline and the corresponding design principles. While pyBeamline is meant for researchers, Beamline is meant for developers as
ell, so it is expected that after an algorithm is prototyped and tested in pyBeamline, it will then be ported to Beamline.

This paper introduces Beamline: a comprehensive toolkit designed
o support both researchers and developers in prototyping and deploy-
ng streaming process mining algorithms.

. Description

Beamline comprises two libraries: the first one is built in Java (for
implicity we refer to this version just as Beamline), and the second
s built in Python (called pyBeamline). The idea of the toolkit is that
he two libraries serve as a comprehensive toolkit for researchers and
evelopers of streaming process mining algorithms. While pyBeamline
s meant for researchers (thus emphasizing collaboration, code read-
bility, and fast development), the Java library is designed for both
esearchers and developers (thus emphasizing performance aspects).
he two libraries share their general objectives, data structures, naming
onventions, and programming principles and are devised to be used
equentially: first, an algorithm is prototyped by researchers on Python
otebooks using the pyBeamline; and once maturity is reached, a
omplete implementation is ported to the Java library, as depicted
ig. 1.

While several non-functional requirements can be identified for
treaming process mining algorithms (such as constant computational
omplexity in the processing of a single event), from a functional point
f view, these algorithms are characterized by two fundamental aspects:
eactiveness and their configuration via data flows:

• Reactiveness indicates that the algorithms should operate in an
event-driven fashion in order to react to events in a responsive
and efficient manner. In these approaches, the flow of data is
represented as a stream of events that can be observed and
reacted to.

• Data flows are graphs that represent the flow of data within a
system: edges indicate the movement of data (in our case events)
and nodes represent the processes or components that handle
the data. An example of data flow could comprise connecting to
an event source, filtering out certain events, sending them to a
control-flow discovery algorithm, and finally storing the models
in a time series database.

oth these requirements are fulfilled in both Beamline and pyBeamline.

.1. pyBeamline (Python)

pyBeamline is a Python library that leverages the functionality of
eactiveX1 and its Python counterpart, RxPY.2 pyBeamline extends

the capabilities of RxPY by providing process mining operators that
facilitate the analysis of data streams in a reactive and event-based pro-
gramming environment. This means that process mining-specific func-
tionalities can be seamlessly integrated into the programming paradigm
provided by RxPY.

1 https://reactivex.io/
2 https://rxpy.readthedocs.io/

2.2. Beamline (Java)

The Java library Beamline [9] is built on top of Apache Flink3 [10],
which is a library designed for distributed stateful computations over
data streams. Apache Flink enables the creation of pipelines, that define
the transformations to be applied to each event within the stream.

Beamline extends the capabilities of Apache Flink by introducing
additional operations, particularly focused on process mining trans-
formations. These transformations include process-aware event filters
and flat-mappers, which are used for tasks such as process discovery
or conformance computation. As Beamline leverages Apache Flink, all
event transformations (both pre- and post-processing) and all the data
connectors implemented are accessible.

3. Impact

Beamline and pyBeamline are currently being used for research and
teaching purposes. The Java version of the library, which has been
available since 2022, has been successfully used in several publications
and teaching activities. pyBeamline is also currently being used as part
of research and education activities.

The Java library currently implements control-flow discovery [11–
15], conformance checking [16,17], and simulation [18] algorithms.4
When comparing the impact of implementing streaming process min-
ing algorithms using Beamline, as opposed to other process mining
Java platforms, the benefit of the proposed library becomes clear:
previous implementations, such as the Streaming Heuristics Miner’s
in ProM [19]5 required the specification of the entire event stream-
ing/event handling infrastructure [20] as all open-source process min-
ing frameworks assume that algorithms operate on static resources
(e.g., a finite event log).

The Python library implements control-flow discovery [11,13] and
conformance checking [16] algorithms. If we compare pyBeamline with
the only other process mining Python library, PM4Py [21], we can
appreciate that, despite a few streaming process mining algorithms
being implemented in PM4Py, these have essentially no support for
dataflow, nor for reactiveness or actual streams.

The other major process mining library, bupaR [22], designed for
the R language, has no support for streaming whatsoever.

Table 1 reports a comparison of the 3 major open source process
mining frameworks (ProM, PM4Py, and bupaR) with respect to the
objectives set for Beamline. As can be noticed, while some goals can
be partially achieved by other platforms, only Beamline has built-in
support for a proper streaming infrastructure.

3 https://flink.apache.org/
4 A non-exhaustive list of techniques implemented in Beamline is available

at https://www.beamline.cloud/implemented-techniques/.
5 This implementation is available as open source at https://svn.win.tue.nl/

repos/prom/Packages/StreamHeuristicsMiner/Trunk/.
2

https://reactivex.io/
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Table 1
Comparison among the main open source process mining libraries with respect to the objectives of a streaming process mining framework.
Library Streaming algorithms Stream as input Dataflow Reactiveness

ProM [23] ✓ Partial, ad hoc impl. × ×
PM4Py [21] ✓ × × ×
bupaR [22] × × Partial ×
Beamline (this paper) ✓ ✓ ✓ ✓

Beamline is licensed according to Apache-2.0 terms.

. Conclusion

As the field of process mining continues to advance, the ability
o analyze data in real time and adapt to dynamic changes becomes
ncreasingly crucial. Streaming process mining offers the potential to
onitor and analyze processes as they unfold, enabling organizations

o make timely interventions and optimizations. Indeed, a key require-
ent for advancing the field is the availability of a robust platform

hat enables researchers to rapidly develop new algorithms and allows
evelopers to efficiently implement them with reliability and perfor-
ance. This is precisely the objective that Beamline was designed

o achieve. By providing a comprehensive and user-friendly platform,
eamline aims to lower the barriers to entry for both researchers
nd developers in the realm of streaming process mining. It offers a
ramework that facilitates the creation, implementation, and testing of
ew algorithms, thereby accelerating the innovation and adoption of
ovel techniques in this evolving field.
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