
Software Impacts 17 (2023) 100551

B

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

Beamline: A comprehensive toolkit for research and development of
streaming process mining
Andrea Burattin
Technical University of Denmark, Kgs. Lyngby, Denmark

A R T I C L E I N F O

Keywords:
Process mining
Streaming process mining
Apache Flink
Reactive programming

A B S T R A C T

Beamline is a software library to support the research and development of streaming process mining algorithms.
Specifically, it comprises a Java library, built on top of Apache Flink, which fosters high performance and
deployment. The second component is a Python library (called pyBeamline, built using ReactiveX) which
allows the quick prototyping and development of new streaming process mining algorithms. The two libraries
share the same underlying data structures (BEvent) as well as the same fundamental principles, thus making
the prototypes (built by researchers using pyBeamline) quickly transferrable to full-fledged and highly scalable
applications (using Java Beamline).

Code metadata

Current code version 1.0.3
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2023-314
Permanent link to Reproducible Capsule https://codeocean.com/capsule/6952422/tree/v1
Legal Code License Apache-2.0
Code versioning system used git
Software code languages, tools, and services used Python, Java
Compilation requirements, operating environments & dependencies PM4py, reactivex
If available Link to developer documentation/manual https://www.beamline.cloud
Support email for questions andbur@dtu.dk

1. Introduction

Process mining [1,2] is an established field that seeks to inte-
grate data science and process science to enhance processes and their
executions. Process mining encompasses several sub-tasks, including
‘‘control-flow discovery’’ [1], which focuses on deriving a control-flow
model based on the executions of the model itself. Another sub-task
is ‘‘conformance checking’’ [3], which aims to validate that process
executions align with a normative process description. In practical
scenarios, control-flow discovery can be applied to gain insights into
how a company manufactures or handles goods, with the aim of
understanding the actual processes in order to optimize them. On the
other hand, conformance checking finds applications in domains such
as clinical protocols, ensuring that the observed processes align with
the expected protocols. This enables the early detection of potential
mistreatment of patients.

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.

E-mail address: andbur@dtu.dk.

Traditional process mining techniques utilize event log files, which
are structured as XML files following the IEEE XES standard [4].
These files contain events associated with a specific time period, and
the process mining analyses are conducted within that timeframe. In
streaming process mining, instead of working with static files, the input
consists of an event stream [5]. Similar to event stream processing,
streaming process mining aims to analyze data in real time and update
the analysis promptly.

The field of streaming data analysis [6] imposes certain compu-
tational requirements that directly translate to the streaming process
mining discipline [7]. Furthermore, in the latter, the need to establish
conceptual connections between multiple data points observed at dif-
ferent timestamps (e.g., to be able to correlate events that belong to
the same process instance) introduces complexity associated with the
observation window (i.e., the time period during which the analysis
takes place) [8].
https://doi.org/10.1016/j.simpa.2023.100551
Received 29 June 2023; Received in revised form 16 July 2023; Accepted 20 July 2023

2665-9638/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2023.100551
https://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2023.100551&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2023-314
https://codeocean.com/capsule/6952422/tree/v1
https://www.beamline.cloud
mailto:andbur@dtu.dk
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:andbur@dtu.dk
https://doi.org/10.1016/j.simpa.2023.100551
http://creativecommons.org/licenses/by/4.0/


A. Burattin Software Impacts 17 (2023) 100551

w

t
i

2

s
i
t
d
i
a
r
T
c
s
n
c
F

s
c
o
r

B

2

R

Fig. 1. General overview of Beamline and pyBeamline and the corresponding design principles. While pyBeamline is meant for researchers, Beamline is meant for developers as
ell, so it is expected that after an algorithm is prototyped and tested in pyBeamline, it will then be ported to Beamline.

This paper introduces Beamline: a comprehensive toolkit designed
o support both researchers and developers in prototyping and deploy-
ng streaming process mining algorithms.

. Description

Beamline comprises two libraries: the first one is built in Java (for
implicity we refer to this version just as Beamline), and the second
s built in Python (called pyBeamline). The idea of the toolkit is that
he two libraries serve as a comprehensive toolkit for researchers and
evelopers of streaming process mining algorithms. While pyBeamline
s meant for researchers (thus emphasizing collaboration, code read-
bility, and fast development), the Java library is designed for both
esearchers and developers (thus emphasizing performance aspects).
he two libraries share their general objectives, data structures, naming
onventions, and programming principles and are devised to be used
equentially: first, an algorithm is prototyped by researchers on Python
otebooks using the pyBeamline; and once maturity is reached, a
omplete implementation is ported to the Java library, as depicted
ig. 1.

While several non-functional requirements can be identified for
treaming process mining algorithms (such as constant computational
omplexity in the processing of a single event), from a functional point
f view, these algorithms are characterized by two fundamental aspects:
eactiveness and their configuration via data flows:

• Reactiveness indicates that the algorithms should operate in an
event-driven fashion in order to react to events in a responsive
and efficient manner. In these approaches, the flow of data is
represented as a stream of events that can be observed and
reacted to.

• Data flows are graphs that represent the flow of data within a
system: edges indicate the movement of data (in our case events)
and nodes represent the processes or components that handle
the data. An example of data flow could comprise connecting to
an event source, filtering out certain events, sending them to a
control-flow discovery algorithm, and finally storing the models
in a time series database.

oth these requirements are fulfilled in both Beamline and pyBeamline.

.1. pyBeamline (Python)

pyBeamline is a Python library that leverages the functionality of
eactiveX1 and its Python counterpart, RxPY.2 pyBeamline extends

the capabilities of RxPY by providing process mining operators that
facilitate the analysis of data streams in a reactive and event-based pro-
gramming environment. This means that process mining-specific func-
tionalities can be seamlessly integrated into the programming paradigm
provided by RxPY.

1 https://reactivex.io/
2 https://rxpy.readthedocs.io/

2.2. Beamline (Java)

The Java library Beamline [9] is built on top of Apache Flink3 [10],
which is a library designed for distributed stateful computations over
data streams. Apache Flink enables the creation of pipelines, that define
the transformations to be applied to each event within the stream.

Beamline extends the capabilities of Apache Flink by introducing
additional operations, particularly focused on process mining trans-
formations. These transformations include process-aware event filters
and flat-mappers, which are used for tasks such as process discovery
or conformance computation. As Beamline leverages Apache Flink, all
event transformations (both pre- and post-processing) and all the data
connectors implemented are accessible.

3. Impact

Beamline and pyBeamline are currently being used for research and
teaching purposes. The Java version of the library, which has been
available since 2022, has been successfully used in several publications
and teaching activities. pyBeamline is also currently being used as part
of research and education activities.

The Java library currently implements control-flow discovery [11–
15], conformance checking [16,17], and simulation [18] algorithms.4
When comparing the impact of implementing streaming process min-
ing algorithms using Beamline, as opposed to other process mining
Java platforms, the benefit of the proposed library becomes clear:
previous implementations, such as the Streaming Heuristics Miner’s
in ProM [19]5 required the specification of the entire event stream-
ing/event handling infrastructure [20] as all open-source process min-
ing frameworks assume that algorithms operate on static resources
(e.g., a finite event log).

The Python library implements control-flow discovery [11,13] and
conformance checking [16] algorithms. If we compare pyBeamline with
the only other process mining Python library, PM4Py [21], we can
appreciate that, despite a few streaming process mining algorithms
being implemented in PM4Py, these have essentially no support for
dataflow, nor for reactiveness or actual streams.

The other major process mining library, bupaR [22], designed for
the R language, has no support for streaming whatsoever.

Table 1 reports a comparison of the 3 major open source process
mining frameworks (ProM, PM4Py, and bupaR) with respect to the
objectives set for Beamline. As can be noticed, while some goals can
be partially achieved by other platforms, only Beamline has built-in
support for a proper streaming infrastructure.

3 https://flink.apache.org/
4 A non-exhaustive list of techniques implemented in Beamline is available

at https://www.beamline.cloud/implemented-techniques/.
5 This implementation is available as open source at https://svn.win.tue.nl/

repos/prom/Packages/StreamHeuristicsMiner/Trunk/.
2

https://reactivex.io/
https://rxpy.readthedocs.io/
https://flink.apache.org/
https://www.beamline.cloud/implemented-techniques/
https://svn.win.tue.nl/repos/prom/Packages/StreamHeuristicsMiner/Trunk/
https://svn.win.tue.nl/repos/prom/Packages/StreamHeuristicsMiner/Trunk/


A. Burattin Software Impacts 17 (2023) 100551

4

t
i
m
t
m
t
d
m
t
B
a
f
n
n

D

c
i

A

w

R

Table 1
Comparison among the main open source process mining libraries with respect to the objectives of a streaming process mining framework.
Library Streaming algorithms Stream as input Dataflow Reactiveness

ProM [23] ✓ Partial, ad hoc impl. × ×
PM4Py [21] ✓ × × ×
bupaR [22] × × Partial ×
Beamline (this paper) ✓ ✓ ✓ ✓

Beamline is licensed according to Apache-2.0 terms.

. Conclusion

As the field of process mining continues to advance, the ability
o analyze data in real time and adapt to dynamic changes becomes
ncreasingly crucial. Streaming process mining offers the potential to
onitor and analyze processes as they unfold, enabling organizations

o make timely interventions and optimizations. Indeed, a key require-
ent for advancing the field is the availability of a robust platform

hat enables researchers to rapidly develop new algorithms and allows
evelopers to efficiently implement them with reliability and perfor-
ance. This is precisely the objective that Beamline was designed

o achieve. By providing a comprehensive and user-friendly platform,
eamline aims to lower the barriers to entry for both researchers
nd developers in the realm of streaming process mining. It offers a
ramework that facilitates the creation, implementation, and testing of
ew algorithms, thereby accelerating the innovation and adoption of
ovel techniques in this evolving field.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgment

The author would like to thank Magnus Frederiksen who helped
ith porting some algorithms from Beamline to pyBeamline.

eferences

[1] W.M. van der Aalst, Process Mining, Springer, ISBN: 9783662498507, 2016,
http://dx.doi.org/10.1007/978-3-662-49851-4.

[2] I.T.F. on Process Mining, Process Mining Manifesto, in: F. Daniel, K. Barkaoui, S.
Dustdar (Eds.), Business Process Management Workshops, Springer-Verlag, 2011,
pp. 169–194.

[3] J. Carmona, B. van Dongen, A. Solti, M. Weidlich, Conformance Checking,
Springer International Publishing, 2018, http://dx.doi.org/10.1007/978-3-319-
99414-7.

[4] C.W. Günther, E.H.M.W. Verbeek, XES Standard Definition, 2009, URL http:
//www.xes-standard.org/.

[5] A. Burattin, M. Eigenmann, R. Seiger, B. Weber, MQTT-XES: Real-time telemetry
for process event data, in: CEUR Workshop Proceedings, 2020, URL http://ceur-
ws.org/Vol-2673/.

[6] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, MOA: Massive Online Analysis
Learning Examples, J. Mach. Learn. Res. 11 (2010) 1601–1604.

[7] A. Burattin, Streaming Process Discovery and Conformance Checking, in: S.
Sakr, A.Y. Zomaya (Eds.), Encyclopedia of Big Data Technologies, Springer
International Publishing, 2018, pp. 1–8, http://dx.doi.org/10.1007/978-3-319-
63962-8_103-1.

[8] A. Burattin, Streaming Process Mining, in: W.M. van der Aalst, J. Carmona (Eds.),
Process Mining Handbook, Springer, 2022, pp. 349–372, http://dx.doi.org/10.
1007/978-3-031-08848-3_11.

[9] A. Burattin, Streaming process mining with beamline (extended abstract), in:
CEUR Proceedings of the ICPM Demo Track 2022, CEUR-WS.org, 2022, pp.
75–79.

[10] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, K. Tzoumas, Apache
Flink™: Stream and Batch Processing in a Single Engine, in: Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, 2015, pp. 28–38.

[11] A. Burattin, Process Mining Techniques in Business Environments, in: Lecture
Notes in Business Information Processing, vol. 207, Springer International Pub-
lishing, Cham, ISBN: 978-3-319-17481-5, 2015, p. 220, http://dx.doi.org/10.
1007/978-3-319-17482-2.

[12] A. Burattin, M. Cimitile, F.M. Maggi, A. Sperduti, Online Discovery of
Declarative Process Models from Event Streams, IEEE Trans. Serv. Comput.
(ISSN: 1939-1374) 8 (6) (2015) 833–846, http://dx.doi.org/10.1109/TSC.2015.
2459703.

[13] A. Burattin, A. Sperduti, W.M. van der Aalst, Control-flow Discovery from Event
Streams, in: Proceedings of the IEEE Congress on Evolutionary Computation,
IEEE, ISBN: 9781479914883, 2014, pp. 2420–2427, http://dx.doi.org/10.1109/
CEC.2014.6900341.

[14] A. Burattin, Streaming Process Discovery and Conformance Checking, in: S. Sakr,
A. Zomaya (Eds.), Encyclopedia of Big Data Technologies, Springer International
Publishing, 2018, http://dx.doi.org/10.1007/978-3-319-63962-8_103-1.

[15] A. Burattin, H.A. López, L. Starklit, Uncovering change: A streaming ap-
proach for declarative processes, in: M. Montali, A. Senderovich, M. Weidlich
(Eds.), Process Mining Workshops, Springer Nature Switzerland, Cham, ISBN:
978-3-031-27815-0, 2023, pp. 158–170.

[16] A. Burattin, S.J. van Zelst, A. Armas-Cervantes, B.F. van Dongen, J. Carmona,
Online conformance checking using behavioural patterns, in: M. Weske, M.
Montali, I. Weber, J. vom Brocke (Eds.), Business Process Management - 16th
International Conference, BPM 2018, Sydney, NSW, Australia, September 9-14,
2018, Proceedings, in: Lecture Notes in Computer Science, 11080, Springer,
2018, pp. 250–267, http://dx.doi.org/10.1007/978-3-319-98648-7_15.

[17] A. Burattin, Online soft conformance checking: Any perspective can indicate
deviations, 2022, arXiv:2201.09222.

[18] A. Burattin, PLG2 : Multiperspective Process Randomization with Online and
Offline Simulations, in: Online Proceedings of the BPM Demo Track 2016,
CEUR-WS.org, 2016.

[19] A. Burattin, A. Sperduti, W.M. van der Aalst, Heuristics Miners for Streaming
Event Data, 2012, ArXiv CoRR URL http://arxiv.org/abs/1212.6383.

[20] S.J. van Zelst, A. Burattin, B. van Dongen, E.H.M.W. Verbeek, Data streams in
ProM 6: A single-node architecture, in: CEUR Workshop Proceedings, vol. 1295,
(ISSN: 16130073) 2014.

[21] A. Berti, S.J. van Zelst, W.M. van der Aalst, Process Mining for Python (PM4Py):
Bridging the Gap between Process-and Data Science, in: Proc. of ICPM Demo
Track, 2019.

[22] G. Janssenswillen, B. Depaire, M. Swennen, M. Jans, K. Vanhoof, bupaR: Enabling
reproducible business process analysis, Knowl.-Based Syst. 163 (2019) 927–930.

[23] E.H.M.W. Verbeek, J. Buijs, B. van Dongen, W.M. van der Aalst, ProM 6: The
Process Mining Toolkit, in: BPM 2010 Demo, 2010, pp. 34–39.
3

http://dx.doi.org/10.1007/978-3-662-49851-4
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb2
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb2
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb2
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb2
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb2
http://dx.doi.org/10.1007/978-3-319-99414-7
http://dx.doi.org/10.1007/978-3-319-99414-7
http://dx.doi.org/10.1007/978-3-319-99414-7
http://www.xes-standard.org/
http://www.xes-standard.org/
http://www.xes-standard.org/
http://ceur-ws.org/Vol-2673/
http://ceur-ws.org/Vol-2673/
http://ceur-ws.org/Vol-2673/
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb6
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb6
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb6
http://dx.doi.org/10.1007/978-3-319-63962-8_103-1
http://dx.doi.org/10.1007/978-3-319-63962-8_103-1
http://dx.doi.org/10.1007/978-3-319-63962-8_103-1
http://dx.doi.org/10.1007/978-3-031-08848-3_11
http://dx.doi.org/10.1007/978-3-031-08848-3_11
http://dx.doi.org/10.1007/978-3-031-08848-3_11
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb9
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb9
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb9
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb9
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb9
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb10
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb10
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb10
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb10
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb10
http://dx.doi.org/10.1007/978-3-319-17482-2
http://dx.doi.org/10.1007/978-3-319-17482-2
http://dx.doi.org/10.1007/978-3-319-17482-2
http://dx.doi.org/10.1109/TSC.2015.2459703
http://dx.doi.org/10.1109/TSC.2015.2459703
http://dx.doi.org/10.1109/TSC.2015.2459703
http://dx.doi.org/10.1109/CEC.2014.6900341
http://dx.doi.org/10.1109/CEC.2014.6900341
http://dx.doi.org/10.1109/CEC.2014.6900341
http://dx.doi.org/10.1007/978-3-319-63962-8_103-1
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb15
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb15
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb15
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb15
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb15
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb15
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb15
http://dx.doi.org/10.1007/978-3-319-98648-7_15
http://arxiv.org/abs/2201.09222
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb18
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb18
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb18
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb18
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb18
http://arxiv.org/abs/1212.6383
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb20
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb20
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb20
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb20
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb20
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb21
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb21
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb21
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb21
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb21
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb22
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb22
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb22
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb23
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb23
http://refhub.elsevier.com/S2665-9638(23)00088-X/sb23

	Beamline: A comprehensive toolkit for research and development of streaming process mining
	Introduction
	Description
	pyBeamline (Python)
	Beamline (Java)

	Impact
	Conclusion
	Declaration of competing interest
	Acknowledgment
	References


