
LLMs and Process Mining: Challenges in RPA

Task Grouping, Labelling and Connector Recommendation

Mohammadreza Fani Sani1, Michal Sroka1, and Andrea Burattin2

1 Microsoft Development Center Copenhagen, Copenhagen, Denmark
2 Technical University of Denmark, Kgs. Lyngby, Denmark
{mfanisani, misroka}@microsoft.com, andbur@dtu.dk

Abstract Process mining is often used to identify opportunities for pro-
cess automation leading to improved efficiency and cost savings. Robotic
process automation (RPA) is a fast-growing area that provides tremen-
dous productivity growth to a growing number of companies across many
industries. RPA tools allow users to record their work and then propose
areas for automation, and produce scripts to automate work. Recording
how a process is conducted, coupled with process mining techniques, of-
fers the most detailed view of what process is followed, how well it is
followed, and whether there are areas for automation or improvement
in process or policies. However, the main challenge to deriving these in-
sights is the need for grouping fine-grained recorded tasks into events,
giving them names, and proposing how to automate those high-level
tasks. In this paper, we propose a framework for using large language
models (LLMs) to assist users in these steps, by leveraging their natural
language understanding and generation capabilities. We first address the
problem of event log generation, which is an input of automation tech-
niques, by using LLMs to group and label tasks based on their semantic
similarity and context. We then tackle the problem of connector recom-
mendation by using LLMs to recommend best plugins to automate tasks.
We evaluate our approach on a real publicly available dataset, and show
that it can improve the quality and efficiency of event log generation and
connector recommendation, compared to the baseline methods.

Keywords: Process Mining · Large Language Models, Robotic Process
Automation

1 Introduction

Process mining is a data science field that aims to discover, monitor, and im-
prove business processes based on event data produced by information systems
supporting process executions. Process mining consists of several tasks, such
as process discovery, conformance checking, and process enhancement. Process
discovery generates a process model from event logs, conformance checking com-
pares the logs and model, and process enhancement provides insights for im-
provement [1].

2 Mohammadreza Fani Sani et al.

Figure 1: Schematic view of process automation. We first need to gather an
event log from the users’ process recordings. Thereafter, detecting automation
opportunities for automation and select the corresponding connectors for rec-
ommendations. In blue, the activities tackled by this paper.

One of the applications of process mining is process automation, which aims
at increasing the performance and efficiency of processes by automating man-
ual and repetitive tasks. Process automation can increase business processes’
efficiency, quality, and reliability by using software robots or connectors that
can execute tasks automatically or semi-automatically. For example, in an in-
voice processing scenario, a connector can extract the relevant information from
a scanned document and store it in a database, or send an email notification
to the customer. To do that it is usually required to provide event logs that
capture the execution of the process instances and to select the corresponding
connectors that enable the integration of different services and applications in
the automation workflow.

Preparing event logs and selecting connectors are not trivial tasks, and often
involve manual effort and domain knowledge from users. For example, users need
to group their recorded tasks into activities, which are the basic units of analy-
sis in process mining, and label them with meaningful names that reflect their
semantics and goals. These steps are crucial for producing high-quality data
(necessary to obtain reliable results) yet can be challenging as, for example,
grouping tasks and labeling the activities can be inconsistent and error-prone,
especially for complex and heterogeneous processes that involve multiple users,
systems, and data sources. Moreover, users must select the most suitable con-
nectors for automating the activities, among the hundreds of available options,
depending on the functionality, compatibility, and security of the services and
applications involved. These steps can be time-consuming and may limit the
potential benefits of process automation.

Fig. 1 provides a schematic view of process automation. To automate a pro-
cess, we usually need to collect an event log which is usually done by several users
collaboratively. We record all the tasks that different users do. Afterward, the
users should group the tasks into activities, and label the activities by different
words. After that we obtain an event log. If we find some places for automation
we can recommend the connectors for each activity.

To overcome these challenges, in this paper, we propose a novel approach
incorporating large language models (LLMs) to assist users in task grouping, la-
beling, and connector recommendation. LLMs are neural network models trained
on massive amounts of text data. They can perform various natural language

LLMs and Process Mining: Challenges in RPA 3

understanding and generation tasks, such as answering questions, summarizing
texts, or generating sentences [2].We leverage the LLMs’ capabilities to analyze
the event data, generate meaningful labels, and recommend relevant connectors,
based on natural language prompts and queries. We use GPT 3.5 Turbo [3] and
GPT-4 [4] as an example of LLMs, but our approach can be generalized to other
LLMs as well.

Our approach consists of three main steps:

1. Task grouping: We use LLMs to cluster the tasks into activities, based on
their similarity in terms of data, system, and user. We describe the tasks’
attributes, their time, and their order in a natural language prompt and ask
the LLM to assign a cluster label to each task. We then aggregate the tasks
with the same cluster label into an activity.

2. Labeling: We use LLMs to generate meaningful labels for the activities, based
on their cluster labels and task attributes. We use LLM to generate a short
and descriptive label for the activity.

3. Connector recommendation: We use LLMs to recommend the most suit-
able connectors for automating the activities, based on their labels, task
attributes, and available connectors.

We evaluate our approach on a real publicly available dataset, which contains
event logs from 50 different business processes [5]. We compare our approach
with the baseline method, based on traditional clustering, string matching, and
ranking algorithms leveraging process discovery and conformance checking [6].
We measure the quality and efficiency of our approach in terms of accuracy,
completeness, consistency, and time. We show that our approach can improve the
quality and efficiency of task grouping, labeling, and connector recommendation,
compared to the baseline method.

The contributions of this paper are as follows:

– We propose a novel approach to use LLMs for task grouping, labeling,
and connector recommendation in process mining, which can assist users
in preparing event logs and selecting connectors for process automation.

– We evaluate our approach on a real, publicly available dataset, and show that
it can improve the quality and efficiency of the process automation steps,
compared to the baseline methods.

The rest of the paper is organized as follows. Section 2 reviews the related
work on process mining, process automation, and LLMs. Section 3 describes the
preliminaries and the notation used in the paper. Section 4 presents the proposed
approach for task grouping, labeling, and connector recommendation. Section 5
reports the evaluation results, then, Section 6 discusses the limitations and the
future work of our approach and finally, Section 7 concludes the paper.

2 Related Work

Several research has been done in the areas of recommender systems and pro-
cess automation in process mining. A comprehensive survey of these systems is
available in [7].

4 Mohammadreza Fani Sani et al.

In [8], the authors present a process mining technique to enable effective RPA
activities toward process improvement. Moreover, [9] discusses the capabilities
of processes-based techniques with RPA and proposes an automatable indicator
system as well as RPA activities to maximize the automation investment.

In [10], a survey on task mining has been reported and several applications
and challenges in front of this research are represented. The authors in [11],
present an unsupervised approach for task recognition from user interaction
streams. Moreover, [12] has proposed a tool to record the interactions with user
interfaces and to generate an event log that can be used to bridge the gap
between process mining and RPA by detecting the tasks that can be automated.
Furthermore, in [6], we propose to use process models and their conformance for
recommending connectors. This approach requires some training event logs and
discovers models for each connector. Thereafter, for each process instance, we
recommend the connectors that their models are fitted more to it.

Several recent works analyzed the interaction of LLMs and process mining.
For example, in [13] authors focused on conversation agents; [14] focus on specific
prompt strategies similarly to what is reported in [15] (where the focus is also
on abstraction). Other work focused on explainability of prediction results in
process mining [16]. Authors of [17] identify six research directions where LLMs
can be useful tools in BPM.

3 Preliminaries

In this section, we formalize the main concepts necessary to define a task, a
recording, a grouping of tasks, labeling, and connector recommendation.

To capture how a process is executed by different users, they record the
required tasks regarding that process. For each task, different information is
captured such as the tools that are used, the input data, the action that is done,
etc. In the following, we formally define a task.

Definition 1 (Task). A task s=(a1, a2, . . . , an, τ) is a tuple of attribute values,
with domains ai∈dom(ai) and τ∈T where T is the time domain with discrete
time units. Let T K be the universe of tasks and s∈T K be a task. The projector
operator π can be used to access specific components of the tuple: πi(s)=ai returns
the attribute value of attribute Ai and πτ (s) returns the execution time of s.

Given a set S of elements, we apply the Kleene operator to it S∗ to indicate all
possible sequences comprising all elements of S. An element S=⟨s1, . . . , sm⟩∈S∗

is therefore a sequence of elements each of which belongs to A. As shortcuts,
we use the length operator |S|=m; indexes: Si=si; and Sfirst=s1, S

last=sm. The
concatenation of two sequences s1 and s2 is defined as s1·s2.

A record is a sequence of tasks that are sorted based on their execution times.

Definition 2 (Record). Let T K be the universe of tasks, I be the universe
of recording ids, and T be the time domain with discrete time units. A record
r = (id, S) is a tuple where id ∈ I is the recording identifier for this sequence

LLMs and Process Mining: Challenges in RPA 5

and S ∈ T K∗ is a finite sequence of tasks which are ordered by execution time:
∀i,j∈{1,...,|S|}i < j =⇒ πτ (si) ≤ πτ (sj).

In task grouping, the goal is to convert low-level behavior to higher-level. To
achieve this, we segment and group the tasks of each record. In the following,
we formally define task grouping.

Definition 3 (Task grouping). Let R be the universe of records achievable
from the universe of tasks T K and the universe of recording ids I; then let
(id, S) ∈ R be a record. We can define TG : R → P(T K∗) 1 as a task grouping
function. This function receives a record and returns a set of sequences of tasks
such that, given a record r = (id, S) and the resulting grouping g = TG(r) we
have that g1 · g2 · . . . · g|G| = S and

∀i,j∈{1,··· ,|g|}

(
πτ (g

first
i) < πτ (g

first
j) =⇒ πτ (g

last
i) < πτ (g

first
j)

)
∧(

πτ (g
first
i) > πτ (g

last
j) =⇒ πτ (g

first
i) < πτ (g

last
j)

)
In other words, the task grouping splits a sequence of tasks into several

subsequences of its tasks. However, the concatenation of all subsequences should
recreate the original sequence and, for any two subsequences Si and Sj , all the
tasks Si should be executed before all the tasks of Sj , or all of them should be
executed after the tasks in Sj .

After grouping the tasks, we must also provide a descriptive name for each
group. We call this part labeling and define it in the following.

Definition 4 (Labeling). Let I be the universe of recording ids, T K be the
universe of tasks, and A be the universe of activity names (to an abstraction
level that is meaningful to the end-user). We define L : T K∗ → A as a labeling
function that assigns an activity name to a sequence of tasks.

Using the labeling function, we can generate an event log from the record-
ings. The procedure of converting task attributes to event log attributes with
high-level activities is out of the scope of the paper. However, in the following,
we formally define an event log, following the typical definitions found in the
literature.

Definition 5 (Event log). Let C be the universe of case identifiers, A the
universe of activity names, and X = N × V the set of extra attributes (each
comprising a name in N and a value in V). The event universe E = C×A×P(X)
is the set of all possible events. From the event universe, it is possible to extract
traces as sequences of events that share the same case identifier. An event log is
then a multi-set of traces.

It is possible to see a direct mapping from the concepts in record, tasks
(grouping), and labeling into the definition of event log. Specifically, the record-
ing ids (of records) are the case identifiers (of event logs) which are producing

1 With P(A) we indicate the powerset of A: the set of all possible subsets of A.

6 Mohammadreza Fani Sani et al.

traces (of event logs), and tasks in records are grouped and labelled, and these
labels are activity names (in event logs).

After generating an event log and finding the automation opportunities, we
may need to select some connectors for the automation. As there could be many
available connectors, having a connector recommender that suggests the ideal
recommender is valuable. In the following, we formally define a connector rec-
ommender.

Definition 6 (Connector recommender). Let A denote the universe of ac-
tivity names and let Γ be the universe of connectors. We define CR : A∗ → P(Γ)
as a connector recommender that receives a sequence of activities and returns
a set of connectors that could replace the sequence of activities. Finally, we can
use CRk to denote a recommender that returns exactly k connectors.

4 Using LLM for Task Grouping, labeling, and connector
recommendation

In this section, we aim to explain how, by using LLMs, we are able to group
the tasks, label appropriate activities to each group, and recommend some con-
nectors for each trace. We aimed to design a workflow that requires business
knowledge. Consequently, the designed workflow can be used for different busi-
ness recordings.

The schematic view of the proposed workflow is shown in Fig. 2. We separate
the proposed method into Preparation and Application phases. In the prepara-
tion phase, the goal is to generate a template for the future prompts. The key
to high quality results from LLM is a process of improving this template called
prompt engineering [18]. In the prompt, we should describe the assignment (i.e.,
the role of LLM), what are inputs, and how we expect to have outputs. Depend-
ing on the assignment, we can have zero to few examples to let LLM understand
the task more.

One aspect that should be considered in the preparation phase is that dif-
ferent LLMs may need different prompt engineering styles. In this paper, we
consider consider GPT-4-32K-0314 and GPT-3.5-Turbo-16K models.

In the application phase, we use the designed template and fill it with the
values of inputs for the new cases. The filled template is given to LLM and it
returns the expected output.

The proposed workflow, can be used for different assignments and in this
paper, we used it for task grouping, labeling, and connector recommendation.

5 Evaluation

We applied these methods on a public dataset reflecting real life scenarios, con-
taining 50 processes labelled by humans [5]. For each process, we have at least
3 cases manually labelled. The labels include how tasks should be grouped and
named. The dataset includes ids of step, process, and recording and label event

LLMs and Process Mining: Challenges in RPA 7

Figure 2: The schematic view of process workflow to use LLMs for RPA.

names. It also contains some columns like StepName which is the name of the
step that can be from one of 19 different options, e.g., Press button in window.
StepDescription, which is a more detailed description of the step, e.g., Button
’New Tab’ in Window ’Process-Microsoft Edge’, or ApplicationProcessName,
which is the process name, taken from the opened application, e.g., msedge.
For details, we refer the reader to [19]. Moreover, a filtered version of this
dataset is preprocessed and labeled for evaluating the connector recommenda-
tion2. The prompt templates that we used for the experiments can be found in
https://github.com/mfanisani/LLM4RPA.

We utilized LLMs for task grouping, labeling, and connector recommendation
assignments. Thus, we provided a prompt template for each assignment, and we
used two configurations of OpenAI as the LLMs, i.e., GPT-3.5-Turbo (GPT3.5
in short) [3] and GPT-4 [4]. In the following, for each assignment, we first explain
the experimental metrics. Then, for each task, we provide the evaluation results.
Because the LLM output is non-deterministic, we repeat the experiments for
each assignment 6 times.

5.1 Task Grouping Experiments and Results

To evaluate the quality of the proposed task grouping, we compared the groups
suggested by the LLM method with human labels from the dataset. A metric
widely used for measuring how the quality of clusters compares with expected
clustering is Normalized Mutual Information (NMI) [20]. It is based on the mu-
tual information measure, which quantifies how much information is shared by
two random variables. NMI normalizes the mutual information by some function
of the entropy of the two clustering, so that the score ranges from 0 to 1. NMI
is often used to evaluate the performance of clustering algorithms when the true
labels are known.

We can compute the NMI using the following formula

NMI(U, V)=
2× I(U, V)

H(U)+H(V)
(1)

where U and U are two clustering outputs for the same data set, I(U, V) is the
mutual information between U and V , and H(U) and H(V) are the entropy of

2 The dataset and its filtered version are available via https://github.com/

microsoft/50BusinessAssignmentsLog and https://github.com/nikraftarf/

Recommender-System-Based-on-processMining/tree/main/Data, respectively.

https://github.com/mfanisani/LLM4RPA
https://github.com/microsoft/50BusinessAssignmentsLog
https://github.com/microsoft/50BusinessAssignmentsLog
https://github.com/nikraftarf/Recommender-System-Based-on-processMining/tree/main/Data
https://github.com/nikraftarf/Recommender-System-Based-on-processMining/tree/main/Data

8 Mohammadreza Fani Sani et al.

Table 1: NMI scores for different grouping methods. Where the Error column
represents the margin of error at 1.984 confidence coefficient.
Grouping Method Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Mean Error*

ApplicationProcessName 0.36 0.36 0.36 0.36 0.37 0.36 0.36 0.0016
ApplicationParentWindowName 0.55 0.54 0.54 0.54 0.54 0.54 0.54 0.0023
GPT3.5 Turbo 0.58 0.59 0.56 0.61 0.59 0.59 0.59 0.0123
GPT4 0.75 0.76 0.75 0.76 0.74 0.74 0.75 0.0060

U and V, respectively. A higher NMI indicates a better agreement between the
clustering ’s outputs, while a lower NMI indicates a worse agreement.

As a baseline we consider grouping tasks when the user changes their focus.
The change of focus can manifest itself in changing of the window in focus, or
changing the window name. The former is represented in the dataset as changes
of ApplicationProcessName column, and the latter as ApplicationParentWin-
dowName.

Task grouping is the first task in the pipeline as indicated on the diagram in
Fig. 1. The quality of task grouping strongly depends on the considered input
data as described in Definition 3. For grouping and labelling, we use the following
columns: StepId, StepName, StepDescription, ApplicationProcessName, and Ap-
plicationParentWindowName. then, for each step, we concatenate the mentioned
values into a concatenated string as the representative of the step.

Thereafter, we formulate a prompt template including instructions, knowl-
edge about task grouping, and a few examples to understand the response and
the expected outputs. As a result, for each row of input data representing a task,
we obtain a predicted label. If multiple consecutive tasks are assigned the same
label, we consider them as a group, i.e., a high-level event.

Table 1 shows the results of comparing human-assigned and LLM-generated
groups. We run the experiments 6 times and report the average values and
Error∗. The results indicate that ApplicationProcessName as a baseline performs
the poorest with an average score of 0.36, and ApplicationParentWindowName
gives a much better estimate with an average NMI score of 0.54. The results
from GPT 3.5 Turbo, are better than both baselines and offer a stable increase in
quality across all experiments. We achieved the best results by using GPT4 that
outperforms all others by a large amount, obtaining an average NMI score of 0.75.
It indicates that using LLMs improves the quality of task grouping assignment.

5.2 Group Labelling Experiments and Results

To evaluate the quality of the label generated for each event, i.e., a group of tasks,
we are using three metrics to measure different types of similarities. To check
for syntactical similarity, we used BLEU score [21] and normalized Levenstein
distance [22]. Moreover, to assess semantic similarity, we used the cosine sim-
ilarity between the embedding generated using text-embedding-ada-002 model
for both the generated and expected labels.

LLMs and Process Mining: Challenges in RPA 9

Table 2: Examples of labels given by human experts and generated by GPT4.
Id Label Cosine Similarity BlEU Normalized Levenstein
1 Human: Open the attendance sheet 0.96 0.71 0.16

GPT4: Open Attendance Sheet
2 Human: Go to approval app 0.95 0.5 0.44

GPT4: Search for Approval App
3 Human: Open email app. 0.86 0 0.71

GPT4: Access Gmail
4 Human: Create a report 0.86 0.5 0.53

GPT4: Create Power BI report
5 Human: Create a tasks through roadmap app. 0.82 0 0.68

GPT4: Add task to project
6 Human: Find the email notification regarding 0.84 0.12 0.71

daily attendance and verify it
GPT4: Get email notification

Table 3: The Similarity of labels that are assigned by humans and the ones
predicted by GPT.

Label Similarity Metric Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Avg Stdev Error

BLEU
GPT3.5 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.0 0.0
GPT4 0.41 0.41 0.41 0.43 0.43 0.41 0.42 0.0103 0.0168

Cosine Similarity
GPT3.5 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.0012 0.0010
GPT4 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.0005 0.0004

Normalised Levenstein
GPT3.5 0.87 0.89 0.88 0.85 0.87 0.85 0.87 0.0141 0.0114
GPT4 0.86 0.88 0.87 0.86 0.87 0.86 0.87 0.0062 0.0050

The comparison of the human assigned labels and LLM-generated labels us-
ing different measures is presented in Table 3. The high cosine similarity scores
indicate that, using LLM models, we provide activity labels that are semantically
similar to the ones that were assigned by humans. It should be noted that by us-
ing the proposed approach, we can save a considerable amount of post-processing
time as different users may assign different labels to a group. Note that using
LLM lets us have labeling in a central way. It is also worth to mention that
the syntactical similarity is relatively low. By investigating the labels, we found
that it is mainly because of humans and GPT models may use different words to
name the same activity. Selected examples of human and LLM-generated labels
are presented in Table 2. For example, in the sixth example, the human and
LLM-based labels are semantically very close; however, their syntactical similar-
ity is quite low due to the chosen wordings. Moreover, the results indicate that
GTP3.5 and GPT4 generated comparable quality of labels for the events.

5.3 Connector recommendation Experiments and Results

In the last assignment, to recommend connectors, we use crk with different k-
values from 1 to 5 (cf. Definition 6). To evaluate the accuracy of the connector
recommendation, we have used the following formula:

RetrieveRate =
|{Labeled Connector} ∩ {Recommended Connectors}|

|{Recommended Connectors}|
(2)

The higher value means a more accurate recommendation.

10 Mohammadreza Fani Sani et al.

Table 4: Comparing the retrive rate of using process discovery [6] and LLM
methods when different number of connectors are recommended.

Retrive Rate
K=1 K=2 K=3 k=5

Connector Records# PD GPT3.5 GPT4 PD GPT3.5 GPT4 PD GPT3.5 GPT4 PD GPT3.5 GPT4

Approvals 7 57 100 86 71 100 100 71 100 100 100 100 100

googlecalendar 6 50 50 17 50 67 67 67 67 67 100 83 83

Microsoftforms 5 60 60 100 60 60 100 80 60 100 100 60 100

Office365users 4 75 100 100 75 100 100 100 100 100 100 100 100

onenote 4 25 50 100 25 50 100 50 50 100 50 50 100

Outlook 5 60 0 80 60 60 80 80 60 100 80 60 100

Planner 5 60 60 100 80 60 100 80 60 100 100 60 100

rss 4 0 25 50 0 25 50 0 25 50 25 25 50

Sendmail 5 20 60 60 80 100 60 80 100 100 100 100 100

Sharepoint 4 40 75 100 40 100 100 60 100 100 60 100 100

To generate the prompt template for the connector recommendation assign-
ment, we only used StepName, StepDescription, ApplicationProcessName, Ap-
plicationParentWindowName columns of all steps that belong to a record as the
inputs. We gave all the mentioned data as a concatenated string for each record.
The results of using LLM for connector recommendation are presented in Ta-
ble 4. Here, we compared the result of the proposed approach with the method
that is presented in [6](i.e., PD). In most cases, we have a higher Retrieve Rate
using LLM models. Specifically, for k<3, LLM could be considered as the best
method. However, by increasing k, we do not have that much improvement.

Note that to use the method that is proposed in [6], we need some training
recordings, and adjusting process models using different parameters of process
discovery algorithms that can be time consuming. However, using LLMs, we do
not need to have any labeled data, and the only requirement is having the list of
available connectors for the recommendation. Moreover, using the method that
is presented in [6], we only benefit from control-flow information, however, using
LLM, we benefit from more data attributes.

6 Discussion

The results of experiments indicate that we can use LLMs for automating many
process mining and automation activities. The task grouping and labeling that
are covered in this paper can be challenging and error-prone. Different users,
may group tasks with different granulates and use different labels. Note that
even small difference in the labels (e.g., “send email” and “sending email”) leads
to having more than one activity in the event log.

Although the results indicate that we have high accuracy in the given tasks,
it is suggested not to remove the users from the process. We recommend to use
LLMs as a method to recommend grouping, labels, and connectors, and the user
selects to confirm them. The initial exploration of the baseline Process Discovery
(PD) method has yielded results not exceptionally off compared to those of the
LLM, particularly evident with higher K values (cf. Table 4) by incorporating
additional top connectors. Delving into the realm of explainability, it’s essential

LLMs and Process Mining: Challenges in RPA 11

Figure 3: The process model (in the Petri net description) discovered on projected
event log of Office365users connector.

to consider the differences in how the two approaches convey their results. The
Process Models generated through the PD Method offer a level of explainabil-
ity and the capability of comparing the models underlying different connectors,
which contrasts with the self-explanation of the GPT model. Though it is possi-
ble to ask GPT models for an explanation of the results, their actual effectiveness
remains to be assessed. For example, Fig. 3 presents the process model that will
be used for the Office365users connector. For the process instances that belong
to this connector, we usually have similar results using both approaches.

Additionally, the Process Discovery method is capable of computing the con-
formance of execution with respect to the reference model, thus providing a
measure of the “confidence” of the trace to the reference. While the PD method
has already demonstrated good performance from this point of view, LLMs are
fundamentally incapable of expressing any confidence level for the results they
provide, thus challenging their trustworthiness with their human operators.

An interesting point of comparison arises in terms of data ingestion capabil-
ities. The GPT model possesses the capacity to assimilate a broader spectrum
of information, as opposed to the process discovery, which can ingest only event
logs (i.e., data referring to the control-flow). This aspect opens the discussion
on the varying degrees to which each approach can accommodate and incor-
porate the available data. From this point of view, LLMs outperform process
mining-based systems and certainly can serve as inspiration to improve process
discovery algorithms.

7 Conclusion and Future work

In this paper, we proposed to use LLMs for assisting users in process mining and
automation tasks, such as task grouping, event labeling, and connector recom-
mendation. We showed that LLMs can leverage their natural language under-
standing and generation capabilities to produce high-quality and semantically
coherent outputs, based on the recorded data of user activities. We evaluated our
approach on a real publicly available dataset, and compared it with the baseline
method. We found that by using LLMs we are able to improve the quality and
efficiency of task grouping and event labeling, as well as provide accurate and
relevant connector recommendations.

Looking towards future prospects, the idea of combining the strengths of
both process mining and LLMs emerges as a compelling avenue. This fusion
could potentially yield results that surpass the capabilities of each method in
isolation. A noteworthy distinction lies in the nature of the dataset: the wealth
of textual information available can be harnessed by the LLM but not as readily

12 Mohammadreza Fani Sani et al.

by process mining. This discrepancy underscores the unique advantages and
considerations of each approach.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer Berlin Heidelberg (2016)

2. Kasneci, E., et al.: ChatGPT for good? On opportunities and challenges of large
language models for education. Learning and Individual Differences 103 (2023)

3. OpenAI: Gpt-3.5 turbo: A large language and code model with function calling
data. https://platform.openai.com/docs/models/gpt-3-5 (2023)

4. OpenAI: GPT-4 technical report. CoRR abs/2303.08774 (2023)
5. Sroka, M., Fani Sani, M.: Recording of 50 business assignments (2023)
6. Fani Sani, M., Nikraftar, F., Sroka, M., Burattin, A.: Behavioral recommender

system for process automation steps. In: Proc. of DATA, Scitepress (2023)
7. Eili, M.Y., Rezaeenour, J., Fani Sani, M.: A systematic literature review on process-

aware recommender systems. CoRR abs/2103.16654 (2021)
8. Geyer-Klingeberg, J., Nakladal, J., Baldauf, F., Veit, F.: Process mining and

robotic process automation: A perfect match. In: Proc. of co-located events with
BPM. Volume 2196 of CEUR Workshop Proceedings. (2018) 124–131

9. Wanner, J., Hofmann, A., Fischer, M., Imgrund, F., Janiesch, C., Geyer-
Klingeberg, J.: Process selection in RPA projects - towards a quantifiable method
of decision making. In: Proc. of ICIS, Association for Information Systems (2019)

10. Mayr, A., Herm, L., Wanner, J., Janiesch, C.: Applications and challenges of task
mining: A literature review. In: Proc. of ECIS. (2022)

11. Rebmann, A., van der Aa, H.: Unsupervised task recognition from user interaction
streams. In: CAiSE 2023, Spain, Proceedings. Volume 13901 of Lecture Notes in
Computer Science., Springer (2023) 141–157

12. Choi, D., R’bigui, H., Cho, C.: Enabling the gab between RPA and process mining:
User interface interactions recorder. IEEE Access 10 (2022) 39604–39612

13. Jessen, U., Sroka, M., Fahland, D.: Chit-chat or deep talk: Prompt engineering for
process mining. CoRR abs/2307.09909 (2023)

14. Berti, A., Qafari, M.S.: Leveraging large language models (llms) for process mining
(technical report). CoRR abs/2307.12701 (2023)

15. Berti, A., Schuster, D., van der Aalst, W.M.P.: Abstractions, scenarios, and prompt
definitions for process mining with llms: A case study. CoRR abs/2307.02194
(2023)

16. Stevens, A., Smedt, J.D.: Explainable artificial intelligence in process mining:
Assessing the explainability-performance trade-off in outcome-oriented predictive
process monitoring. CoRR abs/2203.16073 (2022) Withdrawn.

17. Vidgof, M., Bachhofner, S., Mendling, J.: Large language models for business pro-
cess management: Opportunities and challenges. CoRR abs/2304.04309 (2023)

18. White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A.,
Spencer-Smith, J., Schmidt, D.C.: A prompt pattern catalog to enhance prompt
engineering with chatgpt. arXiv preprint arXiv:2302.11382 (2023)

19. Sroka, M., Fani Sani, M.: 50 business assignments log. (2022)
20. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley (2006)
21. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic

evaluation of machine translation. In: Proc. of ACL. (2002) 311–318
22. Yujian, L., Bo, L.: A normalized levenshtein distance metric. IEEE transactions

on pattern analysis and machine intelligence 29(6) (2007) 1091–1095

https://platform.openai.com/docs/models/gpt-3-5

	LLMs and Process Mining: Challenges in RPA

