
I-PALIA: Discovering BPMN Processes with
Duplicated Activities for Healthcare Domains

Carlos Fernandez-Llatas1,3 and Andrea Burattin2

1 Universitat Politecnica de Valencia, Spain
2 Technical University of Denmark, Denmark

3 Karolinska Institutet, Sweden

Abstract. Process mining encompasses a range of methods designed to
analyze event logs. Among these methods, control-flow discovery algo-
rithms are particularly significant, as they enable the identification of
real-world process models, known as in-vivo processes, in contrast to an-
ticipated models. An obstacle faced by control-flow discovery algorithms
is their limited ability to recognize duplicated activities, which are activ-
ities that occur in multiple locations within a process. This issue is par-
ticularly relevant in the healthcare sector, where numerous instances of
duplicated activities exist in processes but remain undetected by conven-
tional algorithms. This article introduces a novel concept for a control-
flow discovery algorithm capable of effectively revealing duplicated ac-
tivities. The effectiveness of this technique is demonstrated through ex-
perimentation on a synthetic dataset. Moreover, the algorithm has been
implemented and its source code is available as open-source software,
accessible both as a ProM plugin and a Java Maven dependency.

Keywords: Process mining · Control-flow discovery · BPMN · Dupli-
cated activities.

1 Introduction

Process mining is the scientific discipline aiming at connecting process models
and recordings of activity executions [17]. In particular, control-flow discovery
techniques pertain to the synthesis of models which are capable of explaining in
a compact way all (or most of) the executions reported in an event log.

The ultimate goal of process mining techniques is to improve processes and
how these are actually deployed in the real world. Since these models are sup-
posed to improve actual processes it is essential that the models identified are
as reliable and good as possible.

When considering the control-flow discovery techniques, the main challenge
they need to face consists of extracting a model which is the most suitable rep-
resentation possible. Defining “most suitable representation” is a challenge in
itself and, in the literature, numerical approaches to quantify this dimension
have been proposed, in particular fitness, precision, generalisation and simplic-
ity [17]. Fitness indicates that a model should be able to replicate the log it has

2 Carlos Fernandez-Llatas and Andrea Burattin

been generated from; precision quantifies how much more behavior (w.r.t. the
starting log) the mined model permits; generalization tries to capture to what
extent behavior not observed in the log is present in the model; and, finally,
simplicity verifies that the model should be as simple as possible, to foster un-
derstandability. All these metrics should be maximized in order to obtain good
results.

While many algorithms for control-flow discovery have put a lot of focus
on optimizing fitness and precision [11,19,1], less emphasis has been put on the
simplicity dimension, in particular regarding the type of supported behavior.
Specifically, as mentioned in the Process Mining Manifesto [10] (as guiding prin-
ciple GP3), control-flow discovery algorithms should be able to identify basic
control-flow constructs [15,18], such as concurrency and choice. In many situ-
ations, a limiting factor towards better simplicity is the problem of duplicated
activities. This problem stems from the fact that most control-flow discovery al-
gorithms are not able to produce process models where the same activity occurs
more than once.

Within the healthcare sector, it’s common to encounter activities that oc-
cur repeatedly. Instances such as revisiting medical appointments, undergoing
assessment procedures like laboratory tests and medical imaging, or undergoing
cyclic treatments like dialysis or chemotherapy are recurrent events throughout
a patient’s journey within the care process. These activities carry significant
importance in representing the overall process. To illustrate, the sequencing of
treatments can vary significantly based on the timing of assessments. For in-
stance, in the context of cancer treatments, administering chemotherapy before
and/or after surgery can yield distinct results. The initial treatment aims to
shrink the tumor size and streamline the surgical procedure, while the subsequent
treatment focuses on preventing the proliferation of harmful cells, introducing
differing objectives and complexities that impact process delineation.

When applying conventional process discovery algorithms to this scenario,
the ability to differentiate between these distinct behaviors becomes compro-
mised. In this example, as well as in numerous other cases within the healthcare
sphere, the utilization of duplicated nodes becomes imperative. Not only do
they contribute to a lucid depiction of the process, but they also facilitate com-
prehension of the preparatory and follow-up stages surrounding these recurrent
activities.

In this paper we present a new algorithm capable of extracting process mod-
els, represented as BPMN [12]. The algorithm can identify all the basic workflow
patterns (i.e., sequence, parallel split, synchronization, exclusive choice, and sim-
ple merge) with the addition of duplicated activities.

The rest of the paper is structured as follows: Section 2 introduces the back-
ground and the state of the art of the proposed technique; Section 3 presents the
actual algorithm proposed in the paper; Section 4 describes the implementation
of the technique; Section 5 presents some performance results of the algorithm
against some extreme scenarios; and finally Section 6 concludes the paper.

Title Suppressed Due to Excessive Length 3

2 Background and State of the Art

In the literature on control-flow discovery [1] many algorithms have been devel-
oped able to identify all the basic workflow patterns. Among these, the Alpha
miner is typically recalled as one of the first algorithms explicitly tackling the
control-flow discovery problem. More advanced algorithms, such as the Heuristics
Miner, the Fuzzy Miner, the Split Miner, and the Inductive Miner, have gained
a lot of popularity due to the quality of the output they produce and their per-
formance. However, none of these is actually capable of producing duplicated
activities. The algorithms which are able to achieve this are very few, includ-
ing the α∗-algorithm [5] which nonetheless have very restrictive assumptions on
the event log. Fodina [5] can discover duplicated activities by pre-processing the
event log only based on some heuristics. Genetic Process Mining [6], ETM [2],
AGNES [9] are evolutionary algorithms that, in principle, can discover duplicated
activities at the expense of extreme computational complexity. Other algorithms
that exploit region theory are also capable of mining duplicated activities which
however SLAD [20] is another approach that post-processes the mined model
for duplicated activities. Also in this case, however, the algorithm exploits some
heuristics for simplifying the model by duplicating some behavior.

As a basis for the paper we should provide some definitions. Classic PALIA
algorithm [8,14] uses as a representation model, a Timed Parallel Automaton [7].
This model has an expressiveness equivalent to a safe Petri Net [13] and has a
Regular complexity [7] based on the concept of Parallel Finite Automaton [16].
For this paper a TPA is defined as follows:

Definition 1. A Timed Parallel Automaton(TPA) [7] is a tuple T ={N , Q, γ,
δ, S, F} where:

– N is a finite set of Nodes, where a Node n is a graphical representation of
the action a,

– Q is a finite set of states where q ⊆ N+∀q ∈ Q,
– γ : N+ → N+ is the Node Transition function, where γ = {(ns

0, .., n
s
i), (n

e
0, .., n

e
j)}.

Γ is the set of γ functions;
– δ : Q → Q is the State transition function where δ = {qs, qe}. ∆ is the set of

δ functions where (∀δ ∈ ∆ ∃ γ ∈ Γ | (ns
0, . . . , n

s
i) = qs ∧ (ne

0, . . . , n
e
i) = qe)

where γ is the associated transition of δ;
– S ⊆ N is the set of Starting Nodes;
– F ⊆ N is the set of Final Nodes.

A TPA has a double transition function, defining Nodes (N) and States
(Q). The transitions between nodes can be n to n multiple for defining par-
allelism. For example, a transition γ1 = {(n1), (n2, n3)} represents a parallel
split from the node n1 to the nodes n2 and n3. In the same way, a transition
γ2 = {(n1, n2), (n3)} represent a parallel synchronization from the nodes n1 and
n2 to the node n3. Exclusive Choice can be represented using several γ tran-
sitions. For example, having γ1 = {(n1), (n2)} and γ2 = {(n1), (n3)} we can
represent that, from n1 is possible to go to n2 or n3.

4 Carlos Fernandez-Llatas and Andrea Burattin

The view of States provides a regular language view over the interpretation
of the automaton. In the states view (∆ set), the parallelism is represented at
the state level, A State q is a set of Nodes that represents the actions that are
active in the state q in an analogous way to a Petri-Net marking. ∆ and Γ are
complementary. The state transitions (δ) keep the regular complexity due to their
simplicity (N to N) where the Node Transitions (Γ) represent parallel situations
(N+ to N+). In practice, there is only one state active in a moment in time,
which supposes that it could be several nodes active. Node transitions represent
the single pass from one node to another. This double transition function allows
representing complex workflow patterns, like milestones or interleaved parallel
routines [7]. There is an algorithm that given a Γ set it is possible to construct a
basic ∆ set of states [7]. The objective of the discovery algorithm of this paper is
to construct a TPA with a Γ set assuming that ∆ can be automatically inferred.

Following, we present the definitions of Event and Event Log:

Definition 2. An Event is a pair e = {a, π} where a ∈ A is the set of possible
actions in a process, π is the timestamp execution of the action.

Definition 3. An Event Log (L) is a set of traces L={t0, . . . , ti} , where a trace
is a sequence of events t={e0, . . . , ej}

An Event is the digital representation of an action in a moment in time. A set
of events referenced to the same user or the same execution instance is called
Trace.

3 Inductive PALIA (I-PALIA): The Algorithm

Within this document, we introduce an upgraded iteration of the PALIA algo-
rithm, specifically devised to uncover activity logs through the application of
Grammar Inference methods. Subsequently, the algorithm undertakes the task
of detecting parallel configurations within the inferred model. To facilitate this
process, we have established certain foundational definitions:

Definition 4. Given events e0 = {a0, π0}, e1 = {a1, π1}, e0 is equivalent to e1
(e0 ≡ e1) where a0 = a1.

Given event e = {a0, π} and a Node n representing the action a1, e0 is
equivalent to n (e0 ≡ n) where a0 = a1.

Given two Nodes n0, n1, they are equivalents (n0 ≡ n1) if they have the same
representing action.

Definition 5. Given two sets of nodes N0, N1 they are equivalent (N0 ≡ N1) if
|N0| = |N1| and ∃ni ≡ nj |∀ni ∈ N0, nj ∈ N1

Colloquially, Nodes and Events are equivalent when they refer to the same
action, and two sets of nodes are equivalent if each one of the nodes of each set
is equivalent to a node of the other set.

Title Suppressed Due to Excessive Length 5

Definition 6. Given two Node Transitions γ0 = {D0, R0}, γ1 = {D1, R1}, they
are equivalents (γ0 ≡ γ1) if their Domains (D0,D1) and Ranges (R0,R1) are
equivalent

In an analogous way, two Node Transitions are equivalent if their domains
and ranges are equivalent.

Definition 7. Given a TPA, and n0, n1 ∈ N, n0 is directly followed by n1 (n0 →
n1) if ∃ a node transition γ0 ∈ γ|n0 → n1.

γ0 is directly followed by γ1 (γ0 → γ1) if ne ∈ γ0 = nsγ1

Definition 8. Given a TPA, and n0, n1 ∈ N, n0 is eventually followed by n1,
(n0 ⇒ n1) where ∃ a sequence of node transition {γ0..γj} ∀0<i<j |γi → γi+1∧ns ∈
γ0 = n0 ∧ ne ∈ γj = n1

γ0 is eventually followed by γ1, (γ0 ⇒ γ1) if ne ∈ γ0 ⇒ ns ∈ γ1

The next definitions define when two node transitions are directly followed
(→) when the second transition can be immediately accessed from the first
one and eventually followed (⇒) when the second transition can be eventually
accessed from the first one.

Definition 9. A Prefix Acceptor Tree (PAT) is a tree-like TPA built from the
learning Log by taking all the prefixes in the sample as states and constructing
the smallest TPA which is a tree, strongly consistent with the Log.

The Prefix Acceptor Tree creates a TPA that represents a tree from left to
right with the events of the samples. The head of the tree is formed by the
nodes representing the starting events of the traces, and the leaves represent the
last events of the traces. Figure 1 shows an example of how this tree is created.
Should be noticed that although TPA is able to represent parallel situations, the
Prefix Acceptor Tree creates only non-parallel δ functions so this algorithm is
not able to represent parallelism.

Astart

B C

D

E F

Fig. 1: Prefix Acceptor Tree of Log ={ABC,ABD,AEF}

Algorithm 1 shows the pseudocode of the presented algorithm. The first ac-
tion is to compute the Prefix Acceptor Tree that represents the Log. Using

6 Carlos Fernandez-Llatas and Andrea Burattin

Algorithm 1 Inductive PALIA Algorithm
Require: L
Ensure: T
1: T ← PrefixAceptorTree(L)
2: for all γ : (ns, ne) ∈ Γ) do
3: if ns ≡ ne then Merge(ns, ne)
4: end if
5: end for
6: for all n0, n1 ∈ F |n0 ≡ n1 do Merge(n0, n1)
7: end for
8: while T has changes do
9: for all γx ⇒ γy | γx = {dx, rx}, γy = {dy, ry} ∈ Γ do

10: if γx ≡ γy then
11: Merge(dx, dy)
12: Merge(rx, ry)
13: end if
14: end for
15: end while
16: T ← ParallelMerge(T) ▷ See Algorithm 2

the Prefix Acceptor Tree as a basis, Inductive PALIA will perform some gen-
eralizations over the algorithm using Grammar Inference techniques. First, the
algorithm merges equivalent consecutive nodes, generalizing all the transitions
from one node to itself. Second the algorithm merges all the final nodes that are
equivalent. Finally, the algorithm Merge the domains (dx, dy) and ranges (rx, ry)
of each couple of γ in Γ that are eventually followed (γx ⇒ γy) and are equivalent
(γx ≡ γy). This action is performed until the TPA T has no new merges. This
algorithm allows an ordered merging of the nodes that prevent their massive
merging like in other basic algorithms such as Directly Follows Graphs (DFG).

Until this moment, the algorithm has discovered a process structure Discov-
ering with sequences, splits, and loops, assuming no parallelism, but differenti-
ating repeated non-consecutive nodes. The next step is to identify the parallel
sequences with the Algorithm 2: Parallel Merge. In this algorithm, the paral-
lelism has been defined as:

Definition 10. Given n0, n1 ∈ N , n0 and n1 are parallel (n0∥n1) where:

n0 ⇒ n1 ∧ n1 ⇒ n0 (1)

!n0 ⇔ n1∧!n1 ⇔ n0 (2)

Colloquially, two nodes are parallel (n0∥n1) if both are eventually followed
between themselves and these nodes are not acting as a loop, that means, not
exist a path of transitions that contains n0 ⇒ n1 and n1 ⇒ n0 in the same path
(n0 ⇔ n1), and vice-versa. With that definition, the Parallel Merge (Algorithm 2)
defines the Parallel Regions for discovering the parallel situations:

Title Suppressed Due to Excessive Length 7

Definition 11. Given a TPA T and node nSplit, A Parallel Region is a set of
nodes R where nSplit ⇒ nx ∧ ∃ny : nx∥ny|∀nx, ny ∈ R

A Parallel Region is a set of nodes that occurs after a split node nSplit and
have parallelisms between themselves.

Definition 12. Given a TPA T , a node nSplit, and a Parallel Region R, a Syn-
cronization Node is a node nSyncro where ni ⇒ nSyncro|∀ni ∈ R and ∀nx|nSplit ⇒
nx ∧ nx ⇒ nSyncro|nx ∈ R

A Synchronization Node nSyncro is a node that occurs immediately after
the Parallel region. nSplit and nSyncro delimits the Parallel Region and are the
nodes that will define the start and the end of parallelism. According to that,
the Algorithm 2 Discover and create the Parallel structures.

Algorithm 2 Parallel Merge
Require: T
Ensure: T
1: for all nSplit ∈ N do
2: R← GetParallelRegions(T , nSplit)
3: for all p ∈ R do
4: nSyncro ← GetSyncroNode(T , nSplit, R)
5: seq ←IdentifyParallelSequences(T , R) ▷ See Algorithm 3
6: T ←CreateParallelTransitions(T , nSplit, nSyncro, R, seq)
7: end for
8: end for

The Parallel Merge Algorithm tries to discover parallel regions after each
node on the TPA (representing this node the nsplit of the Parallel Region).
Once a Parallel Region is detected, the subsequent task involves pinpointing
the synchronization node that marks the boundaries of said Parallel Region.
Subsequently, the algorithm proceeds to determine the parallel sequences within
the identified Parallel Region. This specific process is detailed in Algorithm 3.

Algorithm 3 Identify Parallel Sequences
Require: T , R
Ensure: SeqMap
1: for all r ∈ R do
2: SeqMap(r)← (r, S) where S ⊂ R ∧ si ∦ r|∀si ∈ S
3: end for

The algorithm Identify Parallel Sequences segregates the nodes within the
Parallel Region into distinct groups, classifying those that do not exhibit par-
allelism in relation to the rest. This methodology serves to discern the parallel
sequences contained within the defined Parallel Region.

8 Carlos Fernandez-Llatas and Andrea Burattin

Fig. 2: The PaliaProM plugin showing the result of a mining session.

Upon successful identification of the parallel sequences, the Parallel Merge
Algorithm (Algorithm 2) allows the creation of the ascertained parallel structure.
This involves establishing connections between each parallel sequence and the
Split node at the beginning, as well as the Synchronization node at the conclusion
of the respective sequences.

4 Implementation

I-PALIA has been implemented in Java and as a Maven project as well as a
ProM plugin4. Having the code available as stand-alone Java project simpli-
fies its embedding into new projects (the code can easily be imported into any
Maven/Gradle/Ivy project5). The PaliaProM package, which imports the Maven
dependency, allows us to easily benefit from the algorithm leveraging the infras-
tructure made available by ProM. The package contains two plugins, one called
“Palia Miner” which takes an XES log object as input and produces a standard
BPMN object as result. The second plugin made available in the PaliaProM
package is a visualizer for BPMN called “Graphviz BPMN visualisation” which
exploits Graphviz to display any BPMN process model. A graphical representa-
tion of the latter is reported in Fig. 2.

5 Evaluation and Discussion

In order to evaluate the effectiveness of the algorithm, we decided to compare
the models resulting from the mining of the process using the state of the art
algorithms and tools for control-flow discovery. We designed a process (available
in Fig. 3) specifically expressing the challenges of duplicated activities, in the
case of the process it is activity A. In addition to that, we incorporated behavior
coming from the most common workflow patterns [18]: sequences, parallel split,
synchronization, exclusive choice, and simple merge.
4 The Maven project is available at https://github.com/delas/palia. The ProM

package, called PaliaProM, is available at https://github.com/delas/PaliaProM.
5 See https://jitpack.io/#delas/palia.

https://github.com/delas/palia
https://github.com/delas/PaliaProM
https://jitpack.io/#delas/palia

Title Suppressed Due to Excessive Length 9

A C

D

B1

A

E1

F

A

B2

E2

Fig. 3: The reference process we used for our simulation

We simulated the process using the tool Purple [4]6, configuring the tool
for the rediscoverability purpose, which led to an event log with 990 traces and
8415 events. We mined this log with I-PALIA as well as with Fluxicon Disco7,
Celonis8, Apromore9 and the Inductive Miner [11]. The results are available in
Fig. 4. While the model mined with I-PALIA matches perfectly the expected one,
all other mining tools and algorithms fail at extracting a model that resembles
the original one. The main issue, as expected, is the duplication of activity A
which is observed at the beginning, in the middle, and at the end of the process.
This causes all models to show unstructured behavior, quite similar for each
mining algorithm: the process can start with activity A and finish immediately,
or can have repetitions of the combinations of the other activities (the part before
and after the A in the middle).

In another battery of tests we aimed at learning something about the com-
putational performance of the I-PALIA implementation. For this purpose, we
generated a random process model using PLG2 [3] (cf. Fig. 5). With this model,
we generated 6 event logs with 100, 500, 1000, 2000, 5000, and 10000 traces.
These logs were mined with I-PALIA and we monitored the execution time.
The tests were performed on a standard laptop, equipped with Java 1.15(TM)
SE Runtime Environment on Windows 10 Enterprise 64bit, an Intel Core i7-
7500U 2.70GHz CPU and 16GB of RAM. Results are reported in Fig. 6. As the
plot shows, the time required to process is not negligible and could grow quite
quickly. Considering the biggest log we had 10000 traces, 58713 events, and our
implementation of I-PALIA took almost 7 seconds for the actual mining.

While the algorithm shows very promising results, it still suffers from impor-
tant issues. The most important ones are the current lack of robustness to noise
and its computational complexity. Regarding the lack of robustness to noise, this
is certainly a problem that makes the algorithm not mature enough for many
industrial settings, however, we believe this is an issue that can easily be ad-

6 See http://pros.unicam.it:4300/.
7 See https://fluxicon.com/disco/.
8 See https://www.celonis.com/.
9 See https://apromore.com/.

http://pros.unicam.it:4300/
https://fluxicon.com/disco/
https://www.celonis.com/
https://apromore.com/

10 Carlos Fernandez-Llatas and Andrea Burattin

540

270

180

495

495

495

495

225

270

495

225

270

270

225

270

180

270

270

495

225

270

495

990

990

A

2,970

B1

990

C

990

D

990

B2

990

F

495

E1

495

E2

495

(a) Model discovered with Disco (b) Model discovered with Celonis

(c) Model discovered with Inductive Miner (d) Model discovered with Apromore

(e) Model discovered with I-PALIA

Fig. 4: Results of the mining of the log using different techniques

dressed by considering frequencies of the direct following relations and applying
some threshold on those before applying the rest of the computation. A more
fundamental challenge regards the complexity of the algorithm. Right now, sev-
eral steps and needed in order to reach the goal, and each of these contribute
substantially to the complexity. For small logs the mining time is acceptable,
but it grows quickly as the numbers of traces and events grow. Optimizations
can be employed also in this case, both in terms of implementation (e.g., multi-
threading) as well as more conceptual ones.

6 Conclusion and Future Work

In this paper we presented I-PALIA, a process mining algorithm for control-flow
discovery. The algorithm is capable of synthesising BPMN process models con-
taining all basic workflow patterns (i.e., sequence, parallel split, synchronization,
exclusive choice, and simple merge) as well as duplicated activities. The algo-
rithm, which has a publicly available implementation as both ProM package as
well as a Java Maven dependency has been tested and evaluated both qualita-
tively (against state of the art tools) as well as quantitatively on logs of different
sizes.

Title Suppressed Due to Excessive Length 11

Start
Activity A

End

×

Activity T

× Activity B

variable_a = igq4cjnam5a5e

Activity U

Activity V

Activity C

×

Activity W

Activity D variable_b = ppcfbhjlrkrhv

Activity M Activity N

variable_e = k33l2cg79ab5h

Activity E

Activity F

variable_c = 1f6g2t00pgugm

Activity O

×

+

Activity G

Activity H

Activity P

Activity Q

+Activity R

Activity I +

Activity S variable_g = 543gg7eh4t6np

Activity J
Activity K +

Activity L variable_d = kaaeuhviturih

variable_h = vpd1s13lrqrsf

variable_i = sgr2kl5j25bvu

variable_f = c56ae86vphfbj

Fig. 5: Random model generated for the stress test

575
2995

5941

11865

29507

58713

69 106 228
135

991

6812

0

1000

2000

3000

4000

5000

6000

7000

8000

0

10000

20000

30000

40000

50000

60000

70000

100 500 1000 2000 5000 10000

Ex
ec

u
ti

o
n

 t
im

e
o

f
I-

P
A

LI
A

 (
m

s)

N
u

m
b

er
 o

f
ev

en
ts

 o
f

th
e

lo
g

Number of traces of each log

Events Time (ms)

Fig. 6: Stress test on the algorithm against log with different sizes

Future work for I-PALIA certainly includes the extension of the algorithm to
become noise tolerant, for example employing frequencies. Additionally improv-
ing the performance and the computational complexity of the approach certainly
represents a fundamental step towards wider adoption.

Acknowledgements This research has been supported through projects MINE-
GUIDE(PID2020-113723RB-C21) funded by MCIN/AEI/10.13039/501100011033
and LIFECHAMPS(Grant Agreement No 875329) under European Union’s Hori-
zon 2020 research and innovation program.

References

1. Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, Fab-
rizio Maria Maggi, Andrea Marrella, Massimo Mecella, and Allar Soo. Automated
Discovery of Process Models from Event Logs: Review and Benchmark. IEEE
Transactions on Knowledge and Data Engineering, 31(4):686–705, 2019.

2. J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst. Quality
Dimensions in Process Discovery: The Importance of Fitness, Precision, General-
ization and Simplicity. International Journal of Cooperative Information Systems,
23(01):1440001, 3 2014.

12 Carlos Fernandez-Llatas and Andrea Burattin

3. Andrea Burattin. PLG2 : Multiperspective Process Randomization with Online
and Offline Simulations. In Online Proceedings of the BPM Demo Track 2016.
CEUR-WS.org, 2016.

4. Andrea Burattin, Barbara Re, Lorenzo Rossi, and Francesco Tiezzi. A purpose-
guided log generation framework. In Proceedings of BPM (To Appear), 2022.

5. T. Calders, Christian W. Günther, Mykola Pechenizkiy, and Anne Rozinat. Using
minimum description length for process mining. In Proceedings of the 2009 ACM
symposium on Applied Computing - SAC ’09, pages 1451–1455, New York, New
York, USA, 2009. ACM Press.

6. Ana Karla Alves de Medeiros. Genetic Process Mining. PhD thesis, Technische
Universiteit Eindhoven, 2006.

7. Carlos Fernandez-Llatas, Salvatore F. Pileggi, Vicente Traver, and Jose M. Benedi.
Timed parallel automaton: A mathematical tool for defining highly expressive for-
mal workflows. In 2011 Fifth Asia Modelling Symposium, pages 56–61, 2011.

8. Carlos Fernández-Llatas, Teresa Meneu, Jose Miguel Benedí, and Vicente Traver.
Activity-based process mining for clinical pathways computer aided design. In
2010 Annual International Conference of the IEEE Engineering in Medicine and
Biology, pages 6178–6181, 2010.

9. Stijn Goedertier, David Martens, Jan Vanthienen, and Bart Baesens. Robust Pro-
cess Discovery with Artificial Negative Events. The Journal of Machine Learning
Research, 10:1305–1340, 2009.

10. IEEE Task Force on Process Mining. Process Mining Manifesto. In Florian Daniel,
Kamel Barkaoui, and Schahram Dustdar, editors, Business Process Management
Workshops, pages 169–194. Springer-Verlag, 2011.

11. Sander J. J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst. Discover-
ing Block-Structured Process Models from Event Logs Containing Infrequent Be-
haviour. In Business Process Management Workshops, pages 66–78, 2014.

12. OMG. Business Process Model and Notation (BPMN) - Version 2.0, Beta 1. 2009.
13. James L. Peterson. Petri Nets. ACM Computing Surveys (CSUR), 9(3):223–252,

1977.
14. Eric Rojas, Carlos Fernández-Llatas, Vicente Traver, Jorge Munoz-Gama, Marcos

Sepúlveda, Valeria Herskovic, and Daniel Capurro. Palia-er: Bringing question-
driven process mining closer to the emergency room. In 15th International Con-
ference on Business Process Management (BPM 2017), 2017.

15. Nick Russell, Arthur H.M. ter Hofstede, Wil M.P. van der Aalst, and Nataliya
Mulyar. Workflow Control-flow Patterns: A Revised View. BPM Center Report
BPM-06-22, BPMcenter. org, 2006.

16. P David Stotts and William Pugh. Parallel finite automata for modeling concurrent
software systems. Journal of Systems and Software, 27(1):27–43, 1994.

17. Wil M.P. van der Aalst. Process Mining. Springer Berlin Heidelberg, second
edition, 2016.

18. Wil M.P. van der Aalst, Arthur H.M. ter Hofstede, Bartek Kiepuszewski, and
Alistair P. Barros. Workflow Patterns. Distributed and Parallel Databases, 14(1):5–
51, 2003.

19. Wil M.P. van der Aalst, Ton A. J. M. M. Weijters, and Ana Karla Alves
de Medeiros. Process Mining with the Heuristics Miner-algorithm. BETA Working
Paper Series, WP 166, 2006.

20. Borja Vázquez-Barreiros, Manuel Mucientes, and Manuel Lama. Enhancing dis-
covered processes with duplicate tasks. Information Sciences, 373:369–387, 2016.

	I-PALIA: Discovering BPMN Processes with Duplicated Activities for Healthcare Domains

