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Abstract: Process mining analyzes events that are logged during the execution of a process, with
the aim of gathering useful information and knowledge. Process discovery algorithms derive
process models that represent these processes. The level of abstraction at which the process model
is represented is reflected in the granularity of the event log. When a process is captured by the
usage of sensor systems, process activities are recorded at the sensor-level in the form of sensor
readings, and are therefore too fine-grained and non-explanatory. To increase the understandability
of the process model, events need to be abstracted into higher-level activities that provide a more
meaningful representation of the process. The abstraction becomes more relevant and challenging
when the process involves human behavior, as the flexible nature of human actions can make it
harder to identify and abstract meaningful activities. This paper proposes CvAMoS, a trace-based
approach for event abstraction, which focuses on identifying motifs while taking context into account.
A motif is a recurring sequence of events that represents an activity that took place under specific
circumstances depicted by the context. Context information is logged in the event log in the form of
environmental sensor readings (e.g., the temperature and light sensors). The presented algorithm
uses a distance function to deal with the variability in the execution of activities. The result is a set
of meaningful and interpretable motifs. The algorithm has been tested on both synthetic and real
datasets, and compared to the state of the art. CvAMoS is implemented as a Java application and the
code is freely available.

Keywords: event abstraction; internet of things; context; human behavior process; process mining

1. Introduction

Process mining [1] analyzes events that are logged during the execution of a business
process, with the aim of gathering useful information and knowledge. Process discovery is
the task of generating a process model, starting from an event log, such that it represents
the process as it is collected in the event log. The main scope of the discovery is to obtain a
process model that is understandable by the experts and that can be used to verify if the
process executions are the expected ones. The quality of the process model is reflected in
the quality of the data used for the derivation.

When data in the event log are recorded in a too fine-grained fashion, the process
model becomes too complex and no longer interpretable, and is thus less effective in
extracting knowledge regarding the underlying process. For example, a process captured
by the use of sensor systems. Events collected by sensor systems correspond to changes
in the sensor states. Instead, the activities in a process model must be at a higher level of
abstraction in order to be interpreted as the execution of a behavior performed by a human
being rather than a sensory behavior. For this reason, sensor events cannot be interpreted
by process experts and need to be abstracted in form of higher-level activities that exist at
the process level.

When the process refers to human behavior, the abstraction problem becomes more
relevant and challenging. Sensor systems are a valuable means to automatically capture
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human-related processes. The way human beings behave can be intended as the execution
of a series of activities in order to accomplish a goal [2], that fits in the definition of a
business process [1]. However, there is a significant difference between a business process
and a human-related process [3]. The former is typically structured and composed of a well-
defined sequence of activities. The latter is unstructured [4], and activities are combined
based on the specific instance, i.e., they are case-dependent. Indeed, the process participant
decides the activities to be executed and their execution order, leading to a flexible structure
of the process [5]. As a consequence, the set of activities is not completely known ex-ante,
and the way the activities are combined varies from execution to execution and is influenced
by the context. The context is a set of measures that defines the circumstances under which
the process instance is executed. However, sensor systems provide environmental data
that can represent the context, such as the temperature or the weather. On the one hand,
we have information collected by sensor systems that are too fine-grained, while on the
other hand, there is complexity in aggregating the events and understanding the activities
performed. As mentioned above, including the context in the abstraction of activities is
crucial as it allows us to distinguish behaviors based on the changes in the context.

The ability to capture and analyze human-related processes represents a valuable
opportunity in many fields. One of the areas that can benefit from these techniques is
healthcare. Sensors can be used to monitor the treatment process of patients in hospitals
to improve the quality of service, or they can be used to track the surgery process inside
a hospital for better management [6]. Processes in hospitals are strongly influenced by
contextual factors such as the weather or particular events. A different use case in the
context of personalized healthcare is the analysis of the routine of patients suffering from
dementia, to monitor the course of the disease [7]. The integration between sensor systems
and process modeling is also recognized in other areas such as smart factories [8]. In
particular, the integration between event processing and process management enables the
monitoring and control of factory processes based on real-time data, where the process
refers to both machine and manual activities. However, all of the aforementioned cases
highlight the need to bridge the gap between the different levels of granularity at which the
data are collected and the expected process activities. Although this problem has received
substantial interest in the literature, there is a lack of approaches able to abstract activities
while considering other attributes, i.e., the context.

In this paper, we present CvAMoS, an event abstraction technique that aims to identify
recurring sequences of activities while also considering contextual variables. In partic-
ular, the approach works on the sensors that have detected the execution of an activity,
as well as environmental sensors that have recorded the state of the environment while
the activity was being performed. Our goal is to identify recurring patterns of sensor
events and interpret them as higher-level activities that can be represented at the process
level. The proposed method is an extension of a previous version [9] that only focused on
recognizing common sequences of activities that show a high-level of similarity among
traces. The research undertaken aims to tackle the following research questions.

RQ1 (Identification) Is the approach capable of identifying meaningful patterns of be-
havior starting from low-level events?

RQ2 (Context) Is the approach able to distinguish patterns based on their execution
context?

RQ3 (Filter) Is the approach capable of abstracting an event log by aggregating patterns?

RQ4 (Time) Is the algorithm applicable, from a computation time point of view? Is the
approach capable of abstracting the patterns in terms of time?

CvAMoS focuses on the identification of recurring patterns of behavior, at the trace
level, in the form of sub-traces that show a high-level of commonalities. The algorithm
considers environmental sensors while identifying the patterns, in order to distinguish
them based on the state of the environment. The approach generates a list of patterns, which
can then be used to abstract the original event log. The objective is therefore to recognize a
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series of activities that are common in most traces, under the same set of circumstances.
The sequences illustrate a specific configuration of sensor measurements that can be linked
to the execution of a higher-level activity. To better explain the functionalities of the
approach, let us consider the example of a person living in a smart apartment equipped
with presence sensors. The sensor system also produces continuous values on the weather
conditions. The sensors allow for capturing activities as well as contextual variables such
as the weather. Let us consider an environment in which it is snowing, and the person is
more likely to go to the window often to admire the view. Let us consider another day
when the weather is foggy and rainy, in this case going to the window often could be linked
to anomalous behavior (i.e., there is no apparent reason for such action, which is therefore
considered anomalous). Having information regarding the context allows distinguishing
between these two activities, which can be labeled as go to the window while it is snowing and
go to the window while it is foggy. The objective of CvAMoS is to recognize a series of activities
that are common in the traces, while taking into consideration continuous variables that
describe the context. The rest of the paper is structured as follows. Section 2 introduces
the related work. The solution is presented in Section 4 that is then evaluated in Section 5
including a discussion of the results, and the limitation of the approach. Section 7 concludes
the paper.

2. Related Work

Event abstraction is a well-known research problem, not only in the field of process
mining. There are numerous works that approach the problem from different angles and
tackle it with different techniques. A non-exhaustive review of the literature is presented by
van Zelst et al. [10] in which they propose a taxonomy of event abstraction methods. Addi-
tionally, Diba et al. [11] discuss the importance of bridging the gap between the granularity
at which data are recorded and at which they should be analyzed. They present all the
steps from event extraction and correlation to abstraction, and they review several related
approaches. This highlights the importance of developing effective methods to abstract
events in order to better understand and analyze processes. However, the abstraction is
still an open challenge. In the context of this paper, we only focus on approaches suitable
for the application to sensor data that describe human behavior processes.

The first point to discuss regards the involvement of an expert in the abstraction. Expert
knowledge is crucial to obtain information on the process and on the activities carried
out. When the expert takes an active role in the abstraction, we talk about supervised
approaches. Supervised techniques require a deep understanding of the data by an expert,
who must be able to provide detailed information on the collected process. The recognition
process consists in the provisioning of an approximate mapping between events and labeled
activities, then the algorithm translates the actual observed events according to the map.
However, when the process to be analyzed refers to human behavior and is collected by
sensors, high variability and complexity characterize the data, making the intervention of
an expert unsuitable for the manual labeling of the activities. Nonetheless, the knowledge
of the expert is necessary to have information on sensory correlations, to identify groups of
sensors involved in the execution of a specific activity, for the evaluation and verification of
the correctness of the result. What is more, in a supervised approach, the set of activities
to identify is limited to the specified one. Consequently, researchers focused on other
methodologies to abstract events, oriented towards a “bottom-up approach”, where the set
of possible activities is elicited directly from the data, enabling the discovery of activities
that were not foreseen beforehand. If the abstraction starts from the data, the set of
identifiable activities is larger and more pertaining to the reality observed in the log. On the
other side, unsupervised approaches rely completely on the algorithm for the identification
of patterns. The main drawback is that they usually generate a massive amount of possible
patterns, without providing any additional information. Since the generation did not
leverage domain knowledge, many of the patterns could be not of interest, meaningless,
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or difficult to interpret. Given that, the role of the expert should be deemed a fundamental
part in the abstraction, but not the main driver.

Two categories of approaches can be identified in the literature, and are the model- and
trace-based abstractions. The model-based aims to identify activities in the form of process
models, while the trace-based focuses on the identification of activities at the trace-level.

2.1. Model-Based Approaches

A model-based approach is the one proposed by Leotta et al. [12], consisting in a
visual process map to discover habits in smart homes. The approach considers the log as a
complex sequence of events and aims to identify sub-sequences of events that correspond
to a specific action. These sub-sequences are then visualized as graphs on a floor-map.
Deriving meaningful activities from the sub-sequences is a daunting task as the algorithm
identifies very short paths. Consequently, the granularity of the abstraction remains too fine.

Mannhardt et al. [13] proposed a supervised event abstraction method that considers
not only the sequence of events, but also the temporal and resource relationships between
events. Given a set of activity patterns, they build an abstracted model. After that, they
use alignment techniques [14] to map low-level events in the event log to activities in the
abstraction model. The approach was later extended in an unsupervised version [15]. The
extended version makes use of Local Process Model [16] (LPM) to represent the set of
patterns. A set of LPMs is derived from the log, and each model represents a high-level
activity. LPMs describe small patterns, composed of four to five transitions. Pruning
functions are then applied to the set, and the resulting models are used for the abstraction
using the method proposed in the previous version. Additionally, LPMs can suffer from
the over-generalization problem. A process model is a representation of the behavior
collected in the log, meaning that the model should generalize and not be strict to the
behavior observed in the log. This can lead to the criticism that the model overgeneralizes
the activity, therefore the same LPM could be matched by potentially infinite different
sequences of low-level events.

2.2. Trace-Based Approaches

On the other hand, trace-based approaches focus on the identification of commonalities
between traces. Lu et al. [17] propose a semi-supervised event abstraction technique, based
on an interactive approach. To overcome the generalization problem, traces in the event
log are visualized in a dotted chart format instead of a process model format. The user
can detect and extract patterns of interest from the visualized log. The occurrences of
these patterns can then be highlighted in the visualization in order to be explored and
compared to other occurrences. The patterns can also be modified and extended using
contextual knowledge. Another solution is proposed by de Leoni et al. [18], a technique
that aims to divide traces into batch sessions. Each trace is seen as a sequence of sessions of
events. The sessions are then converted into vectors which abstract the behavior observed
inside the sessions. The sessions are clustered based on similarity in order to identify
common patterns and group similar activities together. The centroids of the clusters are
visualized on a heatmap and used for naming the activity. Finally, they use the results of
the clustering to abstract the original log by aggregating the events in each cluster into
higher-level activities. Domain knowledge is used to adjust and support clusters labeling
and to create an abstracted log. The approach has the drawback of relying on the choice of
the session threshold parameter for trimming sessions, which can have significant impacts
on the analysis by potentially leading to incorrect activity identification. Furthermore,
the heatmap visualization does not clearly represent the activities, making the labeling
process difficult.

Despite advances in this field, the main problem of event abstraction remains. In partic-
ular, there is no dominant trend between model- and trace-based approaches. Although sev-
eral studies have shown good results, there has been limited consideration of the level
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of granularity in the data source. Only a few studies in the literature have been able to
effectively handle low-level sensor data (e.g., the work of Mannhardt et al. [15]).

A first attempt to tackle this problem was made in an earlier version of the work
presented in this paper. The work [9] aims to identify recurring sequences of events in the
traces. The approach takes into account the variability of behaviors and the generalization
problem, by implementing a distance function to verify the patterns. In addition, the dis-
tance function is enriched by a cost map that allows us to define the dependency degree
between sensor identifiers. The approach is inspired by the bioinformatics field, from the
well-known problem of protein sequence classification [19]. The protein sequence classi-
fication aims at identify the family of a given protein sequence based on its composition.
However, the sequence does not always provide a clear indication of its family, and can be
very large and complex. Similarly, in process mining, event abstraction involves simplifying
large sequences of events by the identification of patterns in order to improve and under-
stand the process. Nonetheless, none of the approaches mentioned above consider the
context as part of the abstraction. In some works, the context is interpreted as the attributes
of an activity in the event log, such as the time or the resource. Instead, the context is a
broader dimension [20], which includes, among other things, the environment. Therefore,
we propose an event abstraction technique that considers the state of the environment
when the patterns were collected.

3. Background

In this section, we provide the basic notions that will be used for the rest of the paper.
Please note that all definitions presented in this section are already utilized in the process
mining community and we use them according to standard literature.

Definition 1 (Event). Let us call the set of case identifiers C, let A be the set of possible activity
names, and let X = N ×V be the set of extra attributes, each of which comprises a name (N is the
set of all possible names) and a value (V is the set of all possible values). The set of all possible events,
also known as event universe, is E = C ×A×P(X ) (Here, P indicates the powerset, i.e., the set
of all sub-sets). An event e = (c, a, X) ∈ E is an element from the event universe.

In the context of this paper, the set A contains activity names at the finest granularity
level, e.g., the sensors being triggered. The set of all possible sequences of events is
E∗. When multiple events share the same case identifier, we group them together into a
sequence: s = 〈(c1, a1, X1), (c2, a2, X2), . . . 〉 ∈ E∗ (with c1 = c2 = . . . ).

Definition 2 (Trace). For each sequence of events sharing the same case ID, we consider the activities
these events refer to and we call this trace. For example, given s = 〈(c1, a1, X1), (c2, a2, X2), . . . 〉 ∈
E∗, such that all events in s have the same case ID (i.e., c1 = c2 = . . . ), the trace is 〈(a1, X1),
(a2, X2), . . . 〉.

We refer to |t| as the length of trace t. To access the i-th element of trace t, we use
the notation t(i) ∈ A × P(X ). Given two traces t1 =

〈
(a1

1, X1
1), (a1

2, X1
2), . . . , (a1

n, X1
n)
〉

and t2 =
〈
(a2

1, X2
1), (a2

2, X2
2), . . . , (a2

m, X2
m)
〉
, it is possible to concatenate them such that

t1 · t2 =
〈
(a1

1, X1
1), . . . , (a1

n, X1
n), (a2

1, X2
1), . . . , (a2

m, X2
m)
〉
.

Definition 3 (Sub-trace operator). Given a trace t = 〈(a1, X1), . . . , (an, Xn)〉, we can use the
sub-trace operator t[i, k] to extract the sequence of events in the trace such that
t[i, k] = 〈(ai, X1), (ai+1, Xi+1), . . . , (ai+k, Xi+k)〉 where 1 ≤ i < n and 0 < k ≤ n− i. Please
note that the result of the application of the sub-trace operator is a trace.

Definition 4 (Event-log). An event log EL : A∗ → N is a multi-set of traces where, for each
trace, we can know how often it is actually observed in the data.
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To know the multiplicity of a trace t in the event log EL, we use the notation EL(t).
The notation t ∈ EL indicates that trace t appears at least once in EL (i.e., EL(t) > 0).
With |EL|, we indicate the number of traces in the log, including their multiplicity.

4. Approach

The approach proposed in this paper aims at identifying recurring sequences of
activities within a low-level event log (e.g., where activities refer to sensor data), which can
be abstracted and interpreted as higher-level activities. The proposed algorithm, called
CvAMoS, is a motif search algorithm that focuses on the identification of recurring and
variable patterns while considering contextual attributes. CvAMoS is implemented as a
Java application and the code is freely available (See the Data Availability Statement for the
details).

The origin of the algorithm can be traced to the biology field, more specifically to the
quorum Planted Motif Search [21] (qPMS). qPMS is a method for finding motifs (recurring
patterns) in biological sequences of proteins. The algorithm searches for instances of
the pattern in the sequences provided as input, such that each motif occurs in most of
the sequences, up to a given distance. We have implemented a first extension of this
algorithm (called vAMoS [9]) that is able to deal with an event log and the concept of traces,
together with a more accurate mechanism for the identification and verification of the
motifs. CvAMoS is an extension of vAMoS, which is enriched with contextual variables.
The objective of CvAMoS is to identify sequences of events that occur frequently in the traces,
but introducing the notion of context in the motifs construction. vAMoS was different from
qPMS in a few respects, but in particular for the introduction of the concept of cost. The cost
can be expressed as the similarity, e.g., given two traces and a maximum cost, it is possible
to identify common parts of the traces that are similar (up to the cost). The improvement of
CvAMoS with respect to vAMoS is the distinction between events and contextual events.
Contextual events are attributes of a motif, and describe the state of the environment while
the motif was recorded.

4.1. Overview

The approach is divided into two phases, the first consists of the identification and
verification of the motifs, while the second step consists of the replacement of the sub-
traces containing the motifs in the original event log (i.e., the abstraction). An overview
of the approach is illustrated in Figure 1. To obtain the motifs, we first need to construct
a set of candidate motifs, and then verify them. The construction of the set of candidate
motifs is a crucial part of the approach, as the verified motifs will be a subset of this
set. For the construction of the set of candidate motifs, different lines of thought were
considered. The first involves the construction of all possible sequences of activities (i.e.,
A∗, cf. Definition 1), but this would be unfeasible, especially since most of the candidates
would be completely irrelevant (being very different from any trace on the event log).
The second one (i.e., the one implemented in vAMoS) considers a two-step approach: it
firstly identifies small sub-traces that compose the “alphabet”, and then combines the
elements of the alphabet in order to populate the set of candidate motifs. To some extent,
the approach followed in vAMoS is powerful, as it allows us to construct a larger set of
candidate motifs that is populated also by non-observed sequences. This means that the
algorithm is more tolerant of the variability as there are more and different candidates
to evaluate. Furthermore, the way the set of motifs is constructed, and the fact that the
approach also considers sequences that never appeared in the log, causes an explosion
in the generation of the candidate motifs. To overcome this problem, we opted to focus
only on observed sequences. In CvAMoS, the set of candidates is based only on observed
sequences, while the variability is still guaranteed by the distance function. The verification
of the candidate motifs verifies whether a given motif is observed in a minimum number
of traces, up to a certain dissimilarity. The similarity checking verifies both the motif and
the corresponding set of attributes. Hence, a list of verified motifs is returned. The second
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step consists of the filtering of the verified motifs in the event log, in order to obtain the
abstracted event log. As indicated in Figure 1, the second step checks the verified motifs in
the log, and filters them by replacing the instance in the trace with the activity label. In the
rest of the section, we provide a detailed description of all the components of the approach,
along with a formal definition for each of them. In particular, the two steps of the proposed
approach are explained in detail.

Compute the set of
candidate mo�fs

c1
c2

c3

t1

t2

t3

Step 1

c1 < , >

c2 < , >

c3 < >

¨¨

Aggregate the
a�ributes

Verify the candidate
mo�fs

Raw event log

Abstracted
event log

Step 2

Set of verified
mo�fs

Iden�fy the mo�fs
in the log

Filter the mo�fs

t2

t1

t3

Mo�f length
A�ribute map
Cost map
Distances
Quorum
Thread

t1

: “act1”

: “act2” …

t1

,

c1 < , >

c2 < , >

c3 < >

¨¨

,

v1 < , >

v2 < , >

¨¨

v1 < , >

v2 < , >

act1 act2

act2

act1

Figure 1. Overview of the CvAMoS approach.

4.2. Step 1: Construction of the Set of Motifs

The first step of the approach consists of the construction of the set of motifs that will
be then verified. In this paper, a motif is not only a sequence of events, but also considers
the context. In the event log, we can distinguish between events referring to the execution
of an activity, and events that are referring to the state of the environment, usually in the
form of continuous measurement (e.g., temperature, noise level). The former is part of the
motif, while the latter belongs to the set of attributes of the given motif (i.e., the context).
The information regarding which attributes should be considered as environment and
which refer to the execution of activities should be provided by the user in the form of
an “attribute map”. Additionally, the attribute map should contain aggregation operators
(which indicate how environment attributes are aggregated) as well as the maximum
tolerance from the aggregated value.

Definition 5 (Attribute map). An attribute map is a tripletR : N → (O, σ), whereN is the set
of all attribute names (cf. Definition 1), O ∈ {mean, min, max, equal} is an aggregation operator,
and σ is the maximum approximation tolerance (which is a scalar value). We indicate withRN the
set of all attribute names ofR, withRn

O the aggregation operator associated with attribute name n,
and withRn

σ the σ tolerance associated with attribute name n.

For example, given an activity temp ∈ N , the attribute map could beR = {(temp, (mean, 2))}
which means that the attribute label temp should be aggregated using the mean, and values
with distance 2 from such a mean should be considered as equal.

Therefore, a candidate motif can be defined as follows:

Definition 6 (Candidate Motif). Given a trace t = 〈(a1, X1), (a2, X2), . . . , (an, Xn)〉, a starting
index i, a target motif length lm such that 1 ≤ lm ≤ n− i, and an attribute map R, a candidate
motif c is defined as a tuple (t[i, lm],AT ) where t[i, lm] is the sub-trace, and AT is the relation
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mapping all attribute names contained inR to the corresponding aggregated values (according to
the respective aggregation function inR) computed over t[i, lm].

Considering again the example from the previous definition, the AT component of a
candidate motif would contain the mean value of all the temp attribute values computed on
all events in the sub-trace.

Definition 7. Given an event log EL, a motif length lm, and an attribute map R, we call
C(EL, lm,R) the set of all candidate motifs that can be seen on all traces part of EL. To com-
pute all motifs an iterative approach can be adopted, by iterating all traces and extracting all possible
motifs for each trace (i.e., all possible sub-traces of length lm).

During the construction of a candidate motif, several attributes sharing the same
attribute name are identified. However, the following verification task requires a single
value for each attribute name. The aggregation operator, defined in the attribute map
(see Definition 5), serves this purpose. Hence, these attribute values are aggregated ac-
cording to the attribute map. A candidate motif, therefore, includes the attribute values
already aggregated.

The candidate motifs now need to be verified. The verification establishes whether a
candidate motif can be considered an actual motif, by checking the requirements of distance,
activity cost, attribute cost, and quorum. The motif must appear in a given percentage of
traces (quorum), up to a certain dissimilarity (distance), according to the interchangeability
relations provided by the user (costs), and according to the context defined by the attributes.

The activity cost is a relation indicating the similarity (or dissimilarity) between pairs
of activities: the cost value can be used to indicate whether two activities can be performed
interchangeably or not (i.e., whether one is an acceptable replacement of the other).

Definition 8 (Activity Cost Relation). The relation costact : A × A → [0, 1] indicates the
extent of the interchangeability of two activities. For example, given two activities a1, a2 ∈ A if
costact(a1, a2) is close to 0, then a1 and a2 are interchangeable (i.e., they are equivalent); if the value
is close to 1 it means they are not.

The cost relation is expected to be provided by the user since it is heavily domain
dependent. If the user does not specify a cost for a certain pair of activities, a cost of 1
is assumed.

The capability of setting activity costs is particularly relevant every time an activity
is mapped by, for example, two proximity sensors that are physically very close to each
other. In this setting, these will usually be triggered simultaneously and therefore could
be considered interchangeable. Another example of how this concept can be applied is to
consider two activities that are completely unrelated and cannot be performed in the same
context. In this case, it would be appropriate to assign a cost value close to 1 to reflect that
these activities cannot be interchanged.

The cost relation is used to compute the distance. The distance function quantifies the
similarity between two traces. The distance is firstly computed in terms of activities and
then in terms of attributes. The activity distance can be defined as follows:

Definition 9 (Activity distance). Given two traces t1 and t2 with the same length (i.e., |t1| = |t2|)
and given the costact relation, the activity distance between t1 and t2 is defined as the sum of the
costs for each pair of activities of the respective traces:

distact(t1, t2, costact) =
|t1|

∑
i=0

costact(t1(i), t2(i)).
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To check the similarity between the activities in the motif and the activities in the sub-
trace, CvAMoS implements the Hamming distance as a distance function, by computing the
number of positions at which the corresponding activities are different. The cost map is used
by this function to evaluate the similarity. The activity distance tackles the problem of the
variability of the behaviors, meaning that there could be a slightly different configuration
in how the same behavior appears in different instances, and this difference is tolerated by
the distance. If the activity distance is within an acceptable threshold, the attribute distance
is checked.

Definition 10 (Attribute Distance). Given two traces t1 and t2 and given an attribute map
R : N → (O, σ). Let us call o(n, t) with o ∈ O and n ∈ N the application of operator o on the
attribute values names n of trace t. The attribute distance between the two traces is defined as:

distattr(t1, t2,R) = ∑{|Rn
O(n, t1)−Rn

O(n, t2)| | ∀n ∈ RN .|Rn
O(n, t1)−Rn

O(n, t2)| > Rn
σ} (1)

The attribute distance between two traces is calculated by comparing the values of
their set of attributes, and quantifying the difference between these values. To simplify,
the distance between two attribute values, sharing the same attribute name, is computed as
the absolute difference between these values, but considering the maximum approximation
tolerance. Accordingly, the attribute distance between two traces is the sum of these
differences. Only differences that exceed the tolerance value are included in the attribute
distance calculation.

Definition 11 (Overall Distance). Given two traces t1 and t2, given an attribute mapR : N →
(O, σ), an activity cost costact, a maximum activity cost dact, and a maximum attribute cost dattr,
the distance between the two traces is defined as:

dist(t1, t2,R, costact, dact, dattr) =

{
0 if distact(t1, t2, costact) ≤ dact ∧ distattr(t1, t2,R) ≤ dattr

1 otherwise

It follows from the above that two traces can be considered similar if their activity
distance is less than the given threshold dact and their attributes must match too (according
to the tolerance) within the respective distance dattr.

We can slightly adapt this definition to compare traces and candidate motifs too:

Definition 12. Given a trace t and a candidate motif c = (tc,AT ), given the attribute map R
used to construct c, the activity cost costact, a maximum activity cost dact and a maximum attribute
cost dattr, we can verify whether the candidate motif is verified by the trace with the following:

verify(t, (tc,AT ),R, costact, dact, dattr) =

{
1 if ∃ i.dist(t[i, |tc|], tc,R, costact, dact, dattr) = 0
0 otherwise

The last concept to be discussed is the quorum. The quorum is the minimum relative
amount of traces in which the candidate motif must appear in order to be considered as
an actual motif. Since the objective is to look for recurrent sequences, the quorum value
allows defining how recurrent the motif should be to be considered relevant. With this, we
can now define a motif:

Definition 13 (Motif, or verified motif). Given an event log EL and candidate motif c ∈ C(EL, lm,R),
a maximum activity cost dact and attribute cost dattr, an activity cost relation costact, and a quorum
q, we call c motif (or verified motif), if(

∑
t∈EL

EL(t) · verify(t, c,R, costact, dact, dattr)

)
≥ q · |EL|.



Future Internet 2023, 15, 113 10 of 22

In other words, to verify whether a candidate motif is indeed a motif, we check
in all the traces of the event log if there is at least one sub-trace (of the same length as
the motif) that matches it in terms of both activities and attributes, according to the two
distance thresholds provided dact, dattr (as described in Equation (1)). If the amount of
traces containing the motif satisfies the quorum q, the candidate motif is returned as a
motif.

Definition 14 (Set of motifs). We call M(EL, lm,R, dact, dattr, costact, q) ⊆ C(EL, lm,R) the
set of all motifs. This set comprises all candidate motifs that are verified (cf. Definition 13).

Algorithm 1 describes in detail the procedure for the verification of a set of candidates
motifs: for each candidate motif the number of traces where it appears is computed
(lines 4–9) by checking each possible sub-trace (with same length as the candidate motif) of
each trace in the log (lines 4–5). If the candidate motif is contained in a trace (i.e., its activity
distance is less than a parameter, cf. line 6), then their attributes are verified (line 7). If the
distance between the attributes is less than the attribute distance parameter, a counter is
incremented by the multiplicity of the trace in the log (line 8) and the procedure can skip
to the next trace (line 9). If the number of traces containing the candidate motif satisfies
the quorum, then the candidate motif becomes verified and hence it is added to the list of
motifs to be returned (lines 11–12).

Algorithm 1: Verification of candidates motifs.
Input: EL: the event log

C: a set of candidate motifs
dact, dattr: the max distance values
costact: the activity cost relation
R: the attribute map
q: percentage of traces that contain the motif

Output: the set of verified motifs M
1 M← ∅
2 foreach c ∈ C do
3 k← 0 . Counter of traces with the motif

4 foreach t ∈ EL do
5 foreach i ∈ [1, |t| − |c|] do
6 if distact(t[i, |c|], c, costact) ≤ dact and
7 distattr(t[i, |c|], c,R) ≤ dattr then
8 k← k + EL(t) . Increment by the multiplicity of the trace in the log

9 break . The motif has appeared once, the trace count for reaching the quorum, continue with

the following trace, line 4

10 if k ≥ q · |EL| then
11 M← M ∪ {c} . The candidate is verified, hence we can consider it

12 return M

The algorithm has linear complexity, meaning that the amount of time required for
the algorithm to complete increases in direct proportion to the size of the input data. In this
case, it is given by the number of events in the event log times the size of the set of candidate
motifs. The current implementation of CvAMoS exports the list of verified motifs in an
XES file.

4.3. Step 2: Replacement of the Motifs in the Event Log

Once obtained a list of verified motifs, i.e., a list of candidate motifs that fulfill the
requirements of the parameter provided such as distances, quorum, cost, and attribute
maps, they can be replaced in the event log. The replacement of the motifs allows the
abstraction of the events in the log into more abstract structures. Each motif can be labeled
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with an activity name. In order to replace a verified motif, we need to check all the
instances of the motif inside the traces (still considering the distances, the cost relation,
and the attribute map). Once the instance is identified and verified, it is replaced by the
abstracted activity label. A simplified version of the algorithm is reported in Algorithm 2.
Please note that the index handling in line 8 is simplified for space reasons, but should
handle the case of multiple motifs on the same trace as well as multiple instances of one
motif on the same trace.

Additionally, in this case, the algorithm has linear complexity, given by the number of
events in the event log multiplied by the size of the set of verified motifs. The complexity of
this algorithm can be considered acceptable for offline processing of the data. The current
implementation of CvAMoS allows saving the abstracted event log as an XES file.

Algorithm 2: Replacement of verified motifs.
Input: EL: the original event log

M: a set of verified motifs
dact, dattr: the max distance values
costact: the activity cost relation
R: the attribute map
abs: the name of the activity to abstract

Output: the log with the motifs M replaced
1 Define E′L as empty multiset
2 foreach c ∈ C do
3 foreach t ∈ EL do
4 t′ ← t . A copy of the original trace is acquired

5 foreach i ∈ [1, |t| − |c|] do
6 if distact(t[i, |c|], c, cost) ≤ dact and
7 distattr(t[i, |c|], c,R) ≤ dattr then
8 t′ ← t′[0, i] · 〈abs〉 · t′[i + |c|, |t| − i− |c|] . Replace the events of the verified motif

with the activity abs. Actual indexes should handle multiple motifs on the same trace, omitted

here for simplicity

9 E′L ← E′L ∪ {t′} . The union of multiset is applied in this context, i.e., if the element is already in E′L ,

then frequency incremented

10 return E′L

To recap, CvAMoS is an event abstraction technique able to handle contextual variables
during the identification of the motifs. A motif is a recurrent pattern inside the event log
and it is composed of a list of events and a list of attributes that characterize the execution.
The procedure for the identification of the motifs takes into account several parameters
provided by the user. The parameters include a maximum distance value for the activities,
a maximum distance value for the attributes, a cost map to define the interchange cost
between activities, an attribute map to define the aggregation operator and the tolerance
value for the attributes, and a quorum value. The approach first derives a set of candidate
motifs starting from the observed sub-traces. Each sub-trace is then verified and eventually
returned as a verified motif. The verified motif can be labeled and replaced in the event log.
In this last phase, the instantiation of each motif is verified in the traces and, when found, it
is replaced with the activity label.

5. Evaluation

To evaluate the approach introduced in this paper, we decided to opt for a two-fold
validation. The first one is based on synthetic data and well-defined configurations, while
the second one is based on the application on a real data set. The objective of the evaluation
is to be able to reply to the research questions introduced in Section 1. Using synthetic
data for the first evaluation allows us to verify the functioning of the approach, as well as
manipulate the different parameters, such as the attributes, the motif length, the distances
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and the cost. On the other hand, using a real dataset for the second evaluation allows us
to assess the performance of the approach in a more realistic scenario, and to measure
its ability to recognize motifs in a real dataset as well as to verify the computation time
required by the algorithm. All the evaluations are made by comparing our solution against
another approach in the literature, the event abstraction using LPMs [15] (referred to as
LPM).

5.1. Evaluation on Synthetic Datasets

The objective of the event abstraction is to recognize motifs referring to activities in a
log, hence the first goal of the evaluation is to verify the performance of the algorithm in
identifying a list of predefined patterns (i.e., RQ1). To accomplish this goal, we identified a
series of eight patterns that both CvAMoS and LPM had to recognize. The patterns were
devised starting from real behavior referring to possible human routines and patterns,
followed by a careful scrutiny of existing datasets [22,23] in order to find a match. For each
pattern, we constructed an event log, composed of four traces and about 150 events. Each
trace contains one or more sub-traces that match the pattern. The patterns are presented in
Table 1, and a process model is drawn for each of them.

Table 1. Set of patterns and corresponding explanation.

Pattern Explanation

P1
A sensor is triggered several times in a row, meaning that a person is executing an
activity for a certain amount of time and which is captured by a single sensor, e.g.,
〈AAAAAA〉.

P2
The pattern involves two sensors that are in sync, and thus alternating. Usually, sensors
in close proximity are synchronized, e.g., a person is executing an activity in a limited
space and causes the activation of two sensors, such as 〈AB AB AB AB〉.

P3 The pattern involves two sensors, that are not in sync. The situation is the same as P2,
but the sensors can trigger in any order, e.g., 〈AB BA BA AB〉.

P4

The pattern involves several sensors and the execution starts and ends with the same
being triggered. In between, any other sensor can be fired in any order, e.g., entering
a room, moving, and leaving: the first and last triggers are door sensors, resulting in
〈A BCD A〉.

P5
The pattern involves three sensors, that are in sync. The execution starts and ends with
the same sensor, e.g., entering a room, executing an activity that involves two sensors,
and leaving the room: 〈AA BBCC AA〉.

P6 The pattern involves a set of sensors. The set is limited, but there is no order. The situa-
tion is similar to P4, but without boundaries, e.g., 〈ABCDEFGH〉.

P7 The pattern is composed of a movement in a direction and then backward, e.g., walking
down a corridor and then coming back: 〈ABC CBA〉.

P8
The pattern involves a constant sensor that is activated in sync with the alternation
of others sensors, e.g., while executing two activities in parallel such as watching the
television and moving around the room, 〈AB AC AD AE〉.

Patterns P1, P2, P3, P6, P7, and P8 have an extended version that includes a noise
activity in the corresponding sub-trace. The extra activity is added to test the algorithms’
ability to handle noise when identifying a pattern.

The second goal of the evaluation is to verify if the algorithm is able to deal with
contextual variables (RQ1), i.e., to recognize motifs and distinguish them according to the
state of the environment. To achieve the goal, we created a second version of the above-
mentioned logs, which includes context. Each trace in the log contains multiple instances
of the same pattern. The events related to the environment temperature are added to the
event logs. The temperature is collected in the form of continuous measurements. In the
first half of each trace, there are events related to a thermometer whose temperature is
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10 degrees, while in the second half, a thermometer continuously collects a temperature of
20 degrees. As a consequence, the algorithm should be able to identify the defined patterns
under the two contextual perspectives. This last case is not compared to LPM, as LPM is
not able to deal with the context.

To interpret the result of the algorithms, and obtain a valuable evaluation, we defined
two metric values. To explain the metrics, a parallelism with precision and recall can be
made. In the first metric, Q1, we identify the verified motifs (precision), i.e., the ability of
the algorithm to produce a motif that perfectly fits the given pattern. The second metric,
Q2, verifies that the number of verified motifs is the expected one (recall), i.e., it checks
if the algorithm produces at least one trace that cannot be explained by the pattern. For
simplicity reasons, we made Q1 and Q2 produce values of 1 or 0. The combination of these
two values, which we call quality rate (QR), follows the idea of accuracy:

QR =
∑patterns Q1

∑patterns Q1 + ∑patterns Q2
.

We designed the metric so that QR has a value of 1 if exactly the expected patterns are
identified as verified motifs and no extra ones; a value of 0 would indicate that none of
the expected patterns are reflected in the verified motifs. Please note that we tested on all
patterns, and for 6 of them, we have their version including noise, thus ending up with
14 total patterns (8 + 6 extended with noise).

We also computed the total time required to conduct the experiments. The values have
been calculated on an Intel Core i7-10710U 1.61 GHz CPU and 16 GB of RAM, equipped
with Windows 10 Professional and Java 16.0.1, and the times are the result of the average of
the time taken for each execution (i.e., for each pattern).

Once the evaluation criteria were defined, we set three different configurations for the
algorithms to be compared (R1–R3). To create fair configurations, we elicited similarities
between the parameters of LPM and CvAMoS: the max number of transitions in LPM can
be associated with the motif length in CvAMoS; the min occurrence in LPM can be related
to the quorum in CvAMoS; the min non-fitting events instead result in the activity distance.
The attribute distance is not considered in these configurations as the focus is only on the
activities. The detailed configurations for R1, R2, and R3 are shown in Table 2.

Table 2. Algorithm configurations for the identification evaluation.

R1 R2 R3

LP
M

Max transitions 4 5 5
No. of LPMs 1 5 10
Min occurrences 4 4 3
Min determinism 0.5 0.5 0.5
Min non fitting ev. F 2 2
Projection None Markov Markov
Duplicate trans. F F T

C
vA

M
oS Motif length 6 6 12

Quorum 1 1 0.8
Max activity distance 0 1 2

In the first run (R1), we used the default settings for LPM, in which the max number
of transitions is set to four out of five. In CvAMoS, the motif length is equal to the length of
the patterns to be identified. The number of results to produce is limited to one in LPM,
in order to investigate the algorithm’s capability to identify a perfect match on the first
try. For the occurrences we had to make an assumption: in LPM, the value refers to the
frequency of occurrence in the entire log, while the quorum refers to the percentage of traces
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in which the pattern appears. Hence, min occurrences is set equal to the amount of traces in
each log. The non-fitting events and the activity distance are both set to zero.

The following run (R2) foresees relaxation in the settings. In LPM, a higher number of
models is produced. In addition, the projection is changed to the Markov clustering as the
authors in the paper claim it has better performance in terms of computational complexity.
On the other hand, CvAMoS increases the activity distance value.

The third run (R3) has parameters set toward optimization for both algorithms.
The LPM can now represent duplicate transition, as well as the number of expected models
is doubled. CvAMoS has longer motifs and consequently motif length as well. Distance and
quorum are relaxed too.

The two additional runs (R4, R5) are only applied to CvAMoS. The objective of these
is to verify that motifs with attributes are correctly identified. The settings are shown in
Table 3. The motif length is set to the length of the motif to be recognized. In this case,
the attribute distance is crucial. The activity distance and the attribute distance are both set to
zero in R4 to verify the precision, and they are increased in R5 to verify the behavior of the
algorithm in handling noise.

Table 3. Algorithm configuration for the evaluation with context.

R4 R5

C
vA

M
oS

Motif length 6 6
Quorum 0.7 0.7
Max activity distance 0 1
Max attribute distance 0 1

The outputs of the runs are evaluated according to the metrics defined above, i.e., Q1,
Q2, as well as the time.

The first point to discuss regards the evaluation of the first three runs: R1, R2, and
R3. The main difference in the results of the two algorithms in these three configurations
lies in the precision in recognizing the given pattern. The values of Q1 are shown in
Figure 2a: considering the three runs, with a total of 42 executions for each algorithm
(8 + 6 patterns * 3 configurations), Q1 holds only 7 times for LPM, but 32 times for CvAMoS.
Therefore, LPM was able to derive a model representing the given pattern only in a limited
number of cases with respect to the other algorithm. The performance of Q2 instead is
affected by the number of outputs to produce for LPM and the activity distance for CvAMoS
(it allows us to return motifs with d non-matching activities). However, the combination
of 0 for Q1 and 1 for Q2 means that the algorithm is not only unable to identify the
given pattern, but identifies more than one non-fitting trace. Figure 2b plots the values
of QR. The third metric evaluated is the computation time. There is no evidence that an
increase/decrease in the computation time influences the performance of the algorithms.
The time, in a logarithmic scale, is shown in Figure 3. For both algorithms, the computation
time rises for each run, partly due to the considerable expansion of the number of candidate
motifs/models. Although a greater number of candidates is synonymous with greater
precision in the results for CvAMoS, this is not observed for LPM.

The second point to discuss regards the evaluation of R4 and R5. In this case, only
CvAMoS is applied, and the capability of the algorithm to deal with contextual variables
is tested. The result of the runs is shown in Table 4, which reports the QR values for each
application. In R4, four cases returned a perfect result, meaning that the algorithm was
able to identify instances of the same pattern, but with different attributes, and that it
did not generate non-fitting patterns (QR is 1). In four cases, no motif was found (QR is
0). However, this last information does not refer only to this case; in fact, the algorithm
was never able to identify, even in the previous runs, the patterns P4 and P6, due to their
variability. In the last run, R5 has better results in the identification of the patterns, as the
algorithm failed in only two cases (still P4 and P6). However, in all the remaining cases, the
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value of QR is 0.5, as Q2 is always true, meaning that the algorithm was able to identify the
target patterns, but also generated non-fitting sequences.

(a) (b)

Figure 2. Q1 and QR metrics for the three configurations (higher is better). (a) Q1 for the executions
R1, R2, and R3. (b) Aggregated QR for R1, R2, and R3.

Figure 3. Computation time for R1, R2, and R3 (lower is better, logarithmic scale).

To summarize, the results obtained using a synthetic dataset show that:

• Considering the first three runs (R1–R2–R3), in R1, CvAMoS showed better perfor-
mances in terms of time and QR compared to LPM. In fact, it recognized the highest
amount of patterns (QR is 0.48) in a short period of time (440 ms). In the same run,
LPM showed the highest QR score, that is 0.26.

• In the last two runs (R4–R5), CvAMoS alone performed better in the run R4 rather than
in R5, showing a higher value of QR (0.53 vs. 0.46 as shown in Table 4). Furthermore,
in R4 CvAMoS recognized 10 patterns out of 14, while in R5 it correctly identified 12
out of 14 patterns.

Table 4. QR metrics for the two runs R4 and R5 on CvAMoS.

P1 P1–Pn P2 P2–Pn P3 P3–Pn P4 P5 P5–Pn P6 P7 P7–Pn P8 P8–Pn

R4 1 0.5 0.5 0.5 1 0 0 0.5 0.5 0 1 1 1 0 0.526316
R5 0.5 0.5 0.5 0.5 0.5 0.5 0 0.5 0.5 0 0.5 0.5 0.5 0.5 0.461538

5.2. Evaluation on a Real Dataset

The evaluation on a real dataset compares the results of the two approaches CvAMoS
and LPM. We select the CASAS dataset [23] for this task. The dataset contains sensor
data collected in a smart apartment, where a single person is living. The log is labeled
(i.e., high-level activities), but no information is given on how and when the activities
are performed. Therefore, we decided to not consider the actual labeling and just use the
real raw data for our experiment. We first selected 15 cases, composed of 95,000 events
(generated starting from 39 sensors). As the resident did not have guidelines to follow, it
cannot be assumed that the behaviors were recurrent. To be able to handle the dataset and
to understand the daily behaviors, it was necessary to preprocess the dataset and reduce
its size. The first filter applied aims to reduce the recording interval, keeping only events
from 08:00 to 12:59. Then, sensor readings not necessary for the recognition of activities
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(i.e., OFF values) were filtered out. The last step was to merge duplicate consequent events.
The resulting log consists of 15 cases, 12,977 events, still with 39 sensors involved.

The event log is used as input for the two abstraction algorithms. The key of CvAMoS
is its ability to work with the context. Therefore, temperature sensors in the dataset are
considered as contextual attributes and included in the attribute map. A tolerance value of
4, and the mean as an aggregation operator are set for all of the unique attribute identifiers.
In the end, a total of 2151 events in the log are classified as contextual events. CvAMoS
can be applied in an iterative way, meaning that for each run it returns a set of motifs,
which can be filtered in the event log, and then the algorithm can be re-applied to identify
further motifs. For each run, we defined a specific setting for the parameters. We started
by searching motifs from a certain motif length and with low distances values, and then
in subsequent iterations, when the algorithm could no longer identify verified motifs, we
steadily increased the distances parameters and reduced the quorum. After each run,
the returned set of verified motifs is analyzed and eventually separated into different files
to be labeled in the log with different higher-level activity labels. To visualize the motifs,
we used the Process Mining ToolKit [24], while the selection process was supported by the
use of the floor-map of the environment. A list of verified motifs describing a behavior
involving the same set of sensors placed close together in the environment was most
likely labeled with the same activity label. An example is reported in Figure 4, where
the algorithm returned four motifs that show a high level of similarity. The three sensors
involved are placed in the same area in the environment, and their behavior describes the
same sequence, thereby they can be interpreted as the same activity.

M018 M019 M015 M019 M015 M019 M015 M019 M015 M018 M019

M019 M015 M019 M015 M019 M018 M019 M018 M019 M015 M019

M019 M015 M019 M015 M019 M018 M019 M015 M019 M015 M019

M019 M015 M019 M015 M019 M015 M019 M015 M018 M019 M015

Figure 4. Verified motifs to which the same activity label has been assigned (Picture obtained from
the Process Mining ToolKit).

A total of 61 patterns are identified after 27 iterations. The abstraction did not cover
the entire event log, but it considerably reduced the number of events. Table 5 shows the
results of the abstraction. In each row, the top bar depicts the events (and their duration)
for the trace in the original event log. Each activity identifier is plotted using a different
shade of purple. The second bar highlights in yellow shades the abstracted motifs (and
their duration), in the corresponding abstracted trace. The other columns of the table report
the amount of events for each trace in the original event log, and the amount of events
not abstracted. The last column shows the percentage of the events in each trace that is
abstracted in motifs.

As can be noticed from the table, more than 50% of each trace is abstracted, in only
61 motifs, meaning that there is a recurrence of the motifs in the event log. C5 instead
presents a low percentage of events abstracted, that is the 21.7%. However, even if the
percentage seems low, the initial amount of events was very big, resulting in around
450 events grouped into motifs. In C12, the highest number of events have been abstracted,
i.e., 595, while C14 is the most abstracted trace with only 90 events left as not abstracted.
The last perspective to consider is the computation time. Table 6 reports the time needed for
each run, in milliseconds. In each run, we divided the work between seven and nine threads.
The total amount needed by the algorithm to run all the configurations is around 9.5 min.
The findings suggest that there is no correlation between the computation time and the
number of patterns returned as there are other variables to consider, comprising the motif
length and distances, but mainly the attributes set. Algorithm 1 explains that a candidate
motif is first checked per se, and then the attributes are verified. If a candidate motif does
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not contain any attributes, this second step is skipped, reducing the computation time.
In addition, the size of the attribute set also impacts the processing times. It is important to
note that the computation time reported in the table only includes the time the algorithm
takes to identify and verify the motifs. The manual work of the expert, that is to go through
the motifs, filter, and split them is not taken into account, but still remains in the range of
minutes for each execution. The filtering of the motifs in the log, i.e., the replacement, is
not monitored, as it always takes less than 2 s.

Table 5. CASAS dataset before and after abstraction.

ID Scarf-Plot # EVS Before # EVS Not Abstracted % Abstacted EVS

C4 718 276 61.6%

C5 2109 1652 21.7%

C6 866 384 55.7%

C7 813 411 49.4%

C8 702 284 59.5%

C9 782 308 60.6%

C10 335 119 64.5%

C11 647 246 62.0%

C12 931 336 63.9%

C13 841 340 59.6%

C14 275 90 67.3%

C15 365 147 59.7%

C16 570 198 65.3%

C17 319 117 63.3%

C18 553 214 61.3%

Each activity identifier is represented by a different shade of purple. Yellow shadows represent abstracted motifs.

Once obtained the results with CvAMoS, we tuned the parameters for the application of
LPM accordingly. The LPM algorithm is included in the ProM tool (See https://promtools.
org/ (accessed on 1 December 2022)). The abstraction consists of two steps: firstly, the
plugin Search for Local Process Models is used to derive the models, then each model needs to
be converted from an Accepting Petri Net to a Petri Net and replaced in the log by the use of
the Log abstraction plugin. The searching algorithm was set to produce 61 models, with the
number of transitions set to the maximum (i.e., 5). The minimum number of occurrences of
each LPM in the log is set at 7, to allow the algorithm to discover a larger set of recurring
and less recurring patterns. The algorithm took 19.5 min to execute and produce the result.
The time only includes the identification of the models. The second step, which includes
the verification, labeling, and filtering in the log, is not included. Even if the objective of
LPM is to represent small patterns, between three and five activity nodes (i.e., transitions),
the majority of the identified patterns are represented by the alternation between two
sensors, thereby it is challenging to interpret them in the form of higher-level activities.

We decided not to show the two abstracted event logs in the form of process models
as the resulting model is strongly influenced by the choice of the discovery algorithm.
As discussed in other works [3,25] there is a lack of modeling languages able to faithfully
represent human-related processes. Consequently, we focus the comparison only on the
visualization of the obtained motifs/models. As mentioned above, the models obtained by
LPM are short and difficult to interpret, while the motifs obtained by CvAMoS are more
meaningful. For simplicity, only one clear example is reported in Figure 5. The figure
compares a motif obtained by CvAMoS with the patterns obtained by LPM, referring to the

https://promtools.org/
https://promtools.org/
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same behavior. Figure 5a shows a motif identified by CvAMoS, that can be explained as the
behavior of going from the kitchen to the bedroom. The motif has a length of 12 and can be
identified in 8 out of 15 traces, with one occurrence per trace. To make a fair analogy with
the results obtained by LPM, we tried to reconstruct the same behavior using the obtained
models. As highlighted in Figure 5b, none of the models covered the path between the two
rooms, but only the alternation between three couples of sensors is identified.

Table 6. Computation time for the experiments with CvAMoS.

Run ID Motifs Verified Time (ms)

conf1 37 34,714

conf2 9 26,945

conf3 1 35,080

conf4 23 31,702

conf5 5 26,520

conf6 28 26,601

conf7 2 26,677

conf8 3 13,948

conf9 100 10,792

conf10 2 19,458

conf11 442 16,110

conf12 7 25,207

conf13 2 18,949

conf14 2 22,433

conf15 47 24,468

conf16 16 26,584

conf17 1 25,848

conf18 11 25,995

conf19 1 18,761

conf20 57 10,017

conf21 2 6039

conf22 7 8694

conf23 3 17,204

conf24 15 31,006

conf25 7 15,599

conf26 2 13,793

conf27 41 12,599

Total time (ms) 571,743
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Figure 5. Comparison between a motif obtained by CvAMoS and a tentative to reconstruct it by using
the patterns obtained by LPM. (a) Motif obtained by CvAMoS. (b) Patterns obtained by LPM.

To summarize, the results obtained using a real dataset show that:

• CvAMoS, after 27 iterations, abstracted 52% of the total original event log, with a
maximum of 67.30% in C14 and a minimum of 21.7% in C5.

• The abstraction is computationally faster compared to LPM: it took 9.5 min in total,
with an average execution time of 21 s. LPM needed in total 19.5 min to execute.

• The identified motifs appear to be meaningful and can be interpreted as higher level
activities, i.e., they can explain and describe a behavior. An example is shown in
Figure 5.

6. Discussion

The approach presented in the paper aims at abstracting activities that are recorded in
an event log in the form of raw sensor data. Activities are recurring sequences of events,
which are distinguished by the state of the environment when they are performed. The al-
gorithm is compared to another approach from the literature, the event abstraction using
LPM. In order to reply to the research questions introduced in Section 1, two evaluations
are performed: the first on a synthetic dataset and the second one on a real dataset.

The evaluation using synthetic data consists of a controlled experiment with the
objective of verifying the ability of the approach to identify significant sequences of events,
which also include the context. In the first experiment, the findings revealed that CvAMoS
was able to recognize almost the entire set of the target patterns even if the precision was
not perfect as the algorithm also identified non-expected motifs. On the contrary, LPM
identified a very small percentage of the target patterns. In the second experiment on
the synthetic dataset, only CvAMoS was applied. Additionally, in this case, the algorithm
correctly recognized the target patterns, distinguishing them by the context. Unlike the
previous experiment, the algorithm was very precise. In particular, it perfectly recognized
the patterns in five cases out of fourteen, without producing other non-fitting motifs. This
is an important finding in the evaluation of the approach, as it demonstrates the capability
of the algorithm in identifying motifs based on the context. The correct identification of the
patterns leads to a positive response for RQ1, which questions the approach with respect
to its ability to identify meaningful patterns. In this case, the meaningful patterns are the
given target patterns. What is more, the algorithm correctly distinguished the patterns
based on their context, confirming the ability of the algorithm to deal with the context,
i.e., RQ2.

As a second evaluation, we assessed the performances of the algorithm on a real
dataset, i.e., the CASAS dataset. Since no ground truth is given regarding the context, we
cannot draw any conclusions about RQ2, even if the verified motifs returned by CvAMoS
show different contextual attributes. Table 5 depicts the result of the abstraction. Given the
possibility to filter the identified patterns in the event log, we can obtain an abstracted log
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which contains all the aggregated patterns. The abstraction generated 61 different activity
labels obtained in 27 iterations. As can be noticed from the colored bars, a considerable
part of the original event log is abstracted in motifs, meaning that recurring sub-traces are
simplified and replaced with an activity label. Considering that the algorithm replaced
the identified patterns with activity labels, obtaining an abstracted event log, RQ3 can be
positively answered. Furthermore, the obtained motifs are explicable and can be interpreted
as higher-level activities. When comparing our results to those obtained by LPM, it is clear
the difference in the expressiveness of the patterns. In fact, LPM only identified models
representing the alternation between two or three sensors, and part of them are duplicates.
Overall, these findings are in accordance with the drawbacks of the LPM algorithm [26].
The result validates the capability of CvAMoS to satisfy RQ1 as well.

The last aspect to consider is the computation time. The time collected in both cases
relates only to the execution of the algorithm and does not include the time required for an
expert to supervise the results, filter, and label them. What is more, the computation time
also depends on the number of candidates to be evaluated. In this version of CvAMoS, we
tried to reduce this set by considering only observed sequences. As a consequence, the time
needed for the verification of the candidate motifs is reduced. Even so, it is important to
note that in this experiment, the set of candidates is still in the tens of thousands for each
run, and the maximum time a run takes to execute is 35 s. This last experiment shows that
the implemented algorithm is able to withstand a high event load on a standard laptop.
In addition, since the motifs obtained by CvAMoS were more explanatory, the abstraction
task was not complex, hence not time consuming. On the other hand, LPM needs twice the
time to run. Furthermore, by considering LPM an unsupervised approach, thus avoiding
the manual verification and labeling of the models, greatly reduced the total processing
time. All things considered, CvAMoS can be applied on a real dataset, requiring low
processing time, and positively answering RQ4 as well.

7. Conclusions and Future Work

In this paper, we present a trace-based approach to perform event abstraction. The nov-
elty of the approach lies in its ability to deal with the context during the identification of
the patterns. CvAMoS is able to identify common sequences of events in an event log, up to
a certain dissimilarity, and distinguish them based on contextual attributes. Contextual
information is obtained using sensors that capture the state of the environment while the
activity in the pattern is being performed. This information is already included in the raw
event log, usually in the form of continuous sensor values (e.g., the temperature sensor).
The performance of the algorithm is verified by a dual assessment, the first based on a
synthetic dataset and the second on a real dataset. The findings revealed that the algorithm
is capable of identifying a set of candidate motifs, without providing prior knowledge.
The identified motifs are structured enough to be self-explainable or that can be easily
interpreted (RQ1). What is more, the key factor of this paper is the ability of the algorithm
to discriminate motifs based on contextual attributes (RQ2). In fact, the algorithm con-
structs the set of candidate motifs by considering contextual variables, and then considers
the context also in the evaluation of the set of motifs. The verified motifs can be filtered
in the event log to obtain an abstracted event log (RQ3). Lastly, the algorithm showed
good time performance in both evaluations, especially when applied to a real dataset.
The algorithm has linear complexity, meaning that the time required to execute increases
according to the size of the event log and to the size of the set of candidate motifs. Despite
this, the algorithm can be employed on large datasets and maintain reliable performance
(RQ4). All things considered, the experiments and the comparison suggest that CvAMoS is
a valid technique that can be used in the processing of event logs, to translate low-level
events into higher-level meaningful activities, while considering the context.

As a future work, we plan to include a visualization tool for the algorithm, as it
simplifies the abstraction as well as reduces the processing time of filtering and labeling.
The visualization can also support the evaluation of the context. Moreover, a more refined
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way to check the contextual attribute distance may be implemented, since it now supports
only a few aggregation operators. In addition, it would be interesting to investigate the
performances of the approach in different application scenarios.
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