C-3PA: Streaming Conformance, Confidence and
Completeness in Prefix-Alignments

Kristo Raun', Max Nielsen?, Andrea Burattin?, and Ahmed Awad!

! University of Tartu, Tartu, Estonia {kristo.raun,ahmed.awad}Qut.ee
2 Technical University of Denmark, Kgs. Lyngby, Denmark
s202785@student .dtu.dk,andbur@dtu.dk

Abstract. The aim of streaming conformance checking is to find dis-
crepancies between process executions on streaming data and the refer-
ence process model. The state-of-the-art output from streaming confor-
mance checking is a prefix-alignment. However, current techniques that
output a prefix-alignment are unable to handle warm-starting scenarios.
Further, no indication is given of how close the trace is to termination
— a highly relevant measure in a streaming setting.

This paper introduces a novel approximate streaming conformance check-
ing algorithm that enriches prefix-alignments with confidence and com-
pleteness measures. Empirical tests on synthetic and real-life datasets
demonstrate that the new method outputs prefix-alignments that have
a cost that is highly correlated with the output from the state-of-the-art
optimal prefix-alignments. Furthermore, the method is able to handle
warm-starting scenarios, and indicate the confidence level of the prefix-
alignment. A stress test shows that the method is well-suited for fast-
paced event streams.

Keywords: Streaming conformance checking - Prefix-alignments - Warm-
starting - Confidence - Data streams

1 Introduction

Every organization has processes that need to be executed in order to achieve the
organizational goals. Most contemporary processes are built on computer sys-
tems — every action leaves a footprint in a database or a log file. This kind of
data paves way for process mining, allowing for the discovery of process models,
process monitoring, and measurements of process executions based on organi-
zational data. A key component of process mining is conformance checking, i.e.
are processes executed as expected based on a given reference process model?

Traditionally, conformance checking is done in an offline setting: an event log
is constructed by filtering on events that occurred within a specified time range.
The event log cannot contain any events which occurred after the point of data
extraction. These limitations hide several important caveats.

Firstly, process executions commonly exhibit overlap and parallelism. This in-
dicates that some of the process executions from a specified time range are likely

2 K. Raun et al.

Current time
Completeness Start of Confidence
conformance A
e~ checking o
Streamin
9 Time >
case 1
[case 2)
case 4
(C__cases
- Time >
Offline
<——Event log—>

Point of N
extraction Current time

Fig. 1: Differences between streaming and offline conformance checking.

to have started before the time range, and some may not yet have concluded. In
some cases, this can be remedied by domain knowledge and data preprocessing,
e.g. filtering out cases that have not yet concluded. However, such preprocess-
ing induces data loss due to the removal of incomplete process executions and
consequently lowers the trustworthiness of the analysis.

Secondly, and more importantly, in an offline setting, the data used for analy-
sis, and the results, are obsolete by design. The longer it takes from data extrac-
tion to analysis to decision-making, the less valuable the data becomes. In certain
use cases, such as fraud detection, autonomous driving, or health monitoring,
making decisions based on stagnant data is impractical, except for high-level
trend analysis. Being unaware of discrepancies in individual ongoing process ex-
ecutions can have a broad impact on an organization. This is supported by recent
studies, indicating the need for moving towards stream processing and real-time
availability of data in process mining [9)].

In streaming conformance checking, data is observed as an unbounded stream
of events rather than a static event log [5]. The organization can receive indi-
cations of discrepancies in a continuous manner, as soon as these discrepancies
occur. This allows the organization to potentially remedy the negative impact
of observed discrepancies. In order to do that effectively, it is important to know
the exact locations of both, the wrongly executed and skipped activities.

In long-running processes, an issue that might occur is the warm-starting
scenario. That is, some process executions are ongoing before the conformance
checker is initiated, and are thus not completely observable. Examples of such
cases can be seen in Figure 1 with case 1 and 2. In most conformance checking
techniques, this causes a false positive, i.e., a discrepancy is indicated, even
if the process followed a conforming behavior. Completeness issues may lower
the trustworthiness of the conformance checking method, and require a grace

C-3PA: Streaming Conformance, Confidence and Completeness 3

period, after which a conformance checking method can be expected to output
the correct conformance.

Similarly, the ending of a process execution poses a challenge. Streaming
conformance checking methods give equal weight to the conformance of traces
that are at the beginning of traces, as they do for traces that are near the end
of their lifecycle. It can be argued that a conforming trace that has seen only
a few events has a higher probability of divergence than a conforming trace
that has seen most of the expected events. For example, if case 4 and case 5
in Figure 1 are both conforming, then case 5 has a higher chance of seeing
non-conforming behavior. This indicates the need for a confidence measure that
would complement the conformance so that organizations can be more alert for
traces that are just initializing, rather than the traces that are concluding.

The above challenges are especially relevant in the context of complex busi-
ness processes. When complex processes are deployed, a high level of automation
is needed from the computing side, while humans are typically in charge of super-
vision. In case of deviations, fast decision-making is crucial to keep the systems
up and running. To support fast decision-making in such systems, we pose the
following two research questions:

— RQ1: can we define a streaming conformance checking algorithm capable
of computing prefix alignments with confidence and completeness measure-
ments in warm-starting scenarios?

— RQ2: can the algorithm identified in RQ1 be used in real-world settings?

The paper is structured as follows. Section 2 describes the relevant back-
ground. Section 3 discusses the current state of the art. Section 4 introduces the
approach and the C-3PA algorithm for computing prefix-alignments enriched
with confidence and completeness measures. Section 5 shows the results of the
empirical testing, a comparison to existing methods, and a discussion of the
algorithm’s properties and its matching to the research questions. Section 6 con-
cludes the work and offers ideas for potential further research.

2 Background

In this section, we introduce the main components necessary for understanding
the theoretical background of the introduced approach. For further background
in process mining and conformance checking, we refer to [1] and [8], respectively.

In process mining terminology, a process model indicates the expected behav-
ior. A process model can be depicted with various semantics. Most conformance
checking methods assume the process model to be a Petri net. As is character-
istic of real-life processes, a Petri net may exhibit behavior such as sequences,
choices, parallelism, and loops [1]. The sequence of fired transitions in a Petri
net is an execution sequence m € B, where B is the set of behaviors allowed by
the Petri net. B is infinite when the model has loops because a loop can unfold
an unlimited number of times.

4 K. Raun et al.

Once the expected behavior is known, the conformance checker also needs
to know what is the actual observed behavior. In offline conformance checking,
the actual behavior is commonly found in an event log. An event e € E is a
tuple e = (¢, a,t) € C x A x T, referring to a case identifier ¢ € C, an associated
activity a € A, and a timestamp ¢t € T. An event log L € B(C x A x T) can be
considered a container of traces. A trace o is a finite sequence of events that can
be grouped together based on the case id. & refers to the prefix of a trace, e.g.
activities seen so far in an ongoing trace.

Streaming conformance checking is done on an event stream S: N>, — E.
Conceptually, a stream is not a collection of events but the natural occurrence
of events — at any given time, a new event may be seen, having either a known
or a previously unseen case id. An event stream is expected to be unbounded.

A process model and an event log/stream are inputs for a conformance
checker. The state of the art output is an alignment between a trace and a
model. More formally, an alignment v = ((1,91),--., (Zn, yn)) is a sequence of
pairs, where each pair (z,y) € (AU {>>}) x (AU {>}) links an activity of the
trace o, or the skip symbol >, to an activity of the execution sequence 7, or the
skip symbol, whereas a step (>>,>>) is illegal. Alignments allow for an intuitive
understanding of the nonconforming activities: they indicate the places where
activities match with the expected behavior of the process model (a synchronous
move), the places where an activity diverged (a log move), and also the places
where the activity expected by the model did not occur (a model move). We
denote a conformance cost of an alignment as 6(). While different costs can
be assigned to log and model moves (non-synchronous moves), in this paper we
assume a cost of 1 for these non-synchronous activities. An alignment can be op-
timal or suboptimal. An optimal alignment has the minimal cost, i.e. commonly
the least amount of non-synchronous moves between a trace and a model. One
trace can have multiple optimal alignments. In Petri nets, a silent transition 7
indicates a possible skip activity. In accordance with most other research in this
area, this paper assigns model moves on 7 transitions a cost of 0, i.e. if the model
allows for skips and the skip is done, then it is not penalized.

As described in [17], in a streaming setting, an alignment overestimates the
cost of divergence. Thus, the prefix-alignment (¥) is preferred, as the alignment
is not forced to complete the execution sequence on the model. In the rest of the
paper, complete alignment is used to refer to the alignments from the previous
paragraph and to distinguish them from prefiz-alignments.

While various techniques exist for optimizing the calculation of an optimal
alignment, it is still an exponentially hard problem to solve. Thus, approximation
methods have been introduced to speed up the calculation. In this paper, the
trie data structure is used. A trie T' = (N, E, root,l, F, min, max) where N is a
finite set of nodes, E C N x N is a set of edges, root € N is the root of the trie,
l: N — (AU{Ll}) is a labeling function for nodes, 7 C N indicates leaf nodes,
and min, max : £ — N are relations assigned to an edge showing the minimum
and maximum distance to reach a leaf node when traversing that edge.

C-3PA: Streaming Conformance, Confidence and Completeness 5

A trie serves as the process model instead of, for example, a Petri net. Im-
portantly, if a Petri net includes a loop, then the Petri net can generate infinite
behavior, however a trie needs to be finite. Thus, the behavior B’ allowed by the
trie is a subset of the behavior in the Petri net B’ C B. Similarly to a Petri net,
a trie can be constructed by giving the model constructor an event log - i.e., a
prozxy log. Unlike the Petri net, a trie allows for all of the behavior in the proxy
log, but no behavior that is outside of it.

A state s € S'is a tuple (n,9, (%), €(%), v(¥), dt), where n is the current node
in the trie, 4 is the current prefix-alignment, 0(¥) is the alignment cost of the
current state, e(y) € N is the completeness measure, quantifying the behavior not
seen at the beginning of the trace,v(4) € N is the confidence measure, indicating
the amount of behavior not yet seen, and dt is the associated decay time of the
state used for releasing states from memory. A state buffer BS : C — P(S5) is a
mapping of case ids to the powerset of states. The state buffer is important for
keeping track of the latest states of each seen case.

3 State of the art

One of the first methods for offline conformance checking was token-based replay
[13]. The goal is to replay the traces on top of the Petri net. While the method
is computationally efficient, it has some important shortcomings: it does not
handle well 7 transitions nor duplicate labels, and it is not highly informative in
terms of the occurred discrepancies.

The alignment-based technique from [2] has been widely accepted as the state
of the art for some years. The main benefits of alignments over token-based replay
are the deterministic and concise representation of both conforming and non-
conforming activities. An unfavorable quality of alignments is the computational
complexity — in order to calculate optimal alignments, commonly a synchronous
product net is built between the Petri net model and a model representation of
the observed trace. Then, a search algorithm such as Ax is used for finding
the shortest path that minimizes the conformance cost. While methods have
been introduced to improve the computation time, it is generally still considered
impractical to use alignments in large real-life logs and it remains an active
research area to improve the computation complexity of alignments [8].

As mentioned in Section 2, complete alignments generally overestimate the
cost in a streaming setting, because the methods force the moves on the model
to a final state. Prefix-alignments, originally introduced in [3] and adapted to
a streaming setting in [17], alleviate the problem by not penalizing traces that
have not concluded according to the model. The method introduced in [17] cal-
culates prefix alignments on top of event streams. Further, the method includes
a window parameter, allowing for a trade-off between computational complexity
and approximation error. A window size of 1 has the least computational com-
plexity, but the highest possible error, as it only builds on top of the previously
calculated prefix-alignment. An infinite window size allows for the computation
of optimal alignments at the cost of increased computation time.

6 K. Raun et al.

Further work in prefix-alignments has mostly attempted to improve the mem-
ory footprint of the calculation [14, 16]. Recently, [12] introduced an approximate
streaming algorithm on top of the trie data structure for calculation of prefix-
alignments that is able to outperform previous methods for prefix-alignment
computation. However, similarly to previous prefix-alignment methods, it is un-
able to handle the warm-starting scenario and does not indicate the confidence
of the prefix-alignment.

One of the first computationally efficient streaming conformance checking
methods was introduced in [6]. While the method is efficient, it only indicates
whether the trace is conforming to the model or not. Thus, an extension was
introduced in [7] where the terms completeness and confidence were introduced
for quantifying the warm-starting and trace conclusion, similarly to this paper.
More recently, a Hidden Markov Model (HMM) based approach was introduced
in [10] that supports warm-starting, but not quantifying the confidence.

To generalize, two main paths for streaming conformance checking can be
observed. Metrics-based approaches, where additional information is embedded
on top of the conformance. The main benefits of these methods are generally a
fast computation time and a more holistic view of a trace via the completeness
and confidence measures. The downside is the vagueness of the conformance
metric, which is well-suited for alerting purposes, but lacks a clear indication
of the discrepant activities. The other path is the prefix-alignment based ap-
proaches. Diametrically, these approaches benefit from a clear representation of
both the unexpected and skipped activities. However, they generally exhibit a
longer computation time, especially for finding the optimal prefix-alignments.
More importantly, they are unable to handle warm-starting nor explain the con-
fidence of the conformance cost.

This paper attempts to bridge this gap by next introducing a method for
incorporating the completeness and confidence measures into prefix-alignments.

4 Conformance, confidence and completeness

In this section, we introduce the C-3PA algorithm that is able to consider con-
formance, confidence, and completeness, while outputting prefix-alignments. We
first discuss the approach on a high level and introduce how confidence and com-
pleteness measures are contrived. Then, we look at the execution steps of the
algorithm. Finally, we discuss the space and time complexity of the approach.

4.1 Approach

As discussed in Section 2, in order to do conformance checking it is needed
to know the allowed behavior. In order to be computationally more efficient,
the method introduced here uses the trie to represent the allowed behavior. The
approach builds upon [4] and [12], with the contribution of this paper highlighted
in Figure 2. Importantly, unlike any previous approach, the prefix-alignments
are augmented with confidence and completeness measures. To the best of our

C-3PA: Streaming Conformance, Confidence and Completeness 7

A\

O

>>(c
alb|c

Incoming event stream

Stream

10G JIA
—Build a trie>»

Enrich trie with completeness
Offline and confidence information

—Output>
Confidence
Completeness

Fig.2: Approach overview with contributions of this paper highlighted.

knowledge, this is the first method that outputs prefix-alignments while handling
warm-starting scenarios and computing confidence and completeness.

Confidence shows how much of the trace is expected to still arrive. For this
purpose, the nodes of the trie have been supplemented with information about
their confidence cost. To calculate the confidence measure the approach looks
at all the paths that go from the current node until a leaf node and takes the
average of the minimum paths. An example is shown in figure 3a. The calculation
gives equal weight to all possible paths from the current node and is thus a
good indicator for the likelihood of a trace’s conclusion. Alternative methods
are discussed at the end of Section 5 as they are out of scope for this paper.

Completeness quantifies the warm-starting of a seen trace. In other words,
how much of the behavior of the trace occurred before the conformance checker
was able to observe it. In order to achieve this, the construction of the trie is
augmented by creating edges from the root node to every other node in the trie.
Essentially, it is a mapping of activities to potential warm-starting nodes. Every
known activity has a map of costs associated with warm-starting, which point
to the set of nodes with that particular cost and activity label. An example is
shown in Figure 3b.

4.2 C-3PA algorithm

The pseudocode for the C-3PA algorithm is shown in Algorithm 1. The algorithm
takes as input an event, the trie, and a state buffer. Based on the case ID of the
arrived event, the algorithm checks from the state buffer whether the case has
previously been seen or not. If a case has not been seen previously, then a new
state is instantiated from the root node of the trie.

The algorithm iterates over each state associated with this case, and if pos-
sible then makes a synchronous move on the current activity. If a synchronous
move is not possible, then a cost limit is instantiated — a new event cannot in-
crease the cost of the trace by more than 1. Three types of moves are attempted:

8 K. Raun et al.

(a) Confidence annotation. (b) Completeness annotation.

Fig. 3: Trie enrichments.

a log move, model moves, and warm-starting moves. The warm-starting moves
use the edge augmentation of completeness cost, as shown in Figure 3b, to try to
jump to the currently seen event from the root node. Importantly, the guiding
cost function then determines the best states, considering both the conformance
and completeness. The completeness cost is stored separately from the confor-
mance cost, allowing to quantify the impact of the warm-starting scenario and
paving way for future work in terms of preferring either warm- or cold-starting.

The guiding cost function does not consider the confidence measure. Confi-
dence is looking into the future and paths that conclude earlier have a higher
confidence value. Thus, using confidence as part of the equation would guide the
algorithm to favor the shortest paths through the trie. This may lead to subop-
timal paths and is thus not a natural part of what should steer the algorithm.
However, there may be use cases where confidence, with alterations, could be
used as part of the cost function. This is discussed at the end of Section 5.

The most recent state of a case in the state buffer contains information about
the prefix alignment, completeness, and confidence of the trace.

4.3 Complexity

The trie construction happens offline and thus mainly impacts the space com-
plexity. Based on [12], the trie is commonly O(log(|L|) to the size of the prozy
log used to generate the trie. Adding the confidence measure requires a single
traversal over all the nodes of the trie, O(NN). Warm-starting expects an edge
from the root node to every node in the trie. Thus, adding the edges during the
construction of the trie is also O(N).

Synchronous moves and log moves can be done in O(1). The biggest impact
on the time complexity, thus, comes from handling model moves and warm-
starting. Both of these depend on the branching factor of the trie. The branching
factor is in the worst case the number of traces in the prozy log O(lo € LJ).

C-3PA: Streaming Conformance, Confidence and Completeness 9

Algorithm 1 C-3PA
Input: quc7 a), T,B

1. S«

2: S’Lnterim — @

3: if c € B then

4: S « Bl(c)

5: else

6: S <+ {Sroot} > Initialize state with root node
7: for each s € S do

8: if s.syncPossible(a) then > Attempt to make a sync move on activity a
9: Sinterim < Sinterim U {Snew} > Store a new state with synchronous move
10: if noSyncMovesDone then
11: costiim < minCost(S) + 1 > Assign a cost limit for non-sync moves
12: for each s € S do
13: Stog < makeLogMove(s,a) > New state with log move
14: Smodel < makeModel Moves(s,a) > A set of new states with model moves
15: Sws + makeWarmStart(s, a) > A set of new warm-starting states
16: for each Stemp € {Siog} U Smodet U Sws do
17: if Stemp-0(7y) + Stemp-€(7) <= costiim then
18: Stnterim < Stnterim U Stemp
19: S < manageStates(S) > Update decay time, remove old states

20: for each Stemp € Sinterim do
21: S+ Su Stemp

22: B.S«+ S

The depth of the search is dependent on the length of the currently seen prefix
O(]6]). The complexity is thus O(|o € L| x |6]). In a process model, this would
indicate behavior that allows any activity to occur as the first activity, followed
by an infinite loop of a single unique activity. Thus, the amortized complexity is
more likely O(log(Jo € L|) x log(|6])). L is finite and can thus be considered a
constant, leaving the complexity as O(log(|G|)), i.e., increasing logarithmically
with the size of the trace prefix.

In conclusion, this means that the computation should only be hindered if
the trace lengths become very large, making it suitable for most streaming use
cases. This answers RQ1 from Section 1. Next, we will look at the empirical
evaluation to answer RQ2.

5 Experiments

In this section, we look at the empirical tests conducted to validate the algo-
rithm’s® output and to compare it to existing algorithms. First, we look at the
experiments related to the warm-starting scenario. Specifically, the goal is to val-
idate whether the algorithm is able to handle warm-starting and what are the
possible implications of enabling warm-starting under different settings. Second,
we investigate the conformance result of the algorithm, both in terms of the cor-
rectness of the prefix-alignment, and correlation with other methods. Then, we
look at the computation speeds of various methods and conduct stress testing

3 https://github.com/MaxTNielsen/ConformanceCheckingUsingTries/tree/current_branch

10 K. Raun et al.

on the new algorithm to validate its applicability for streaming settings. Finally,
we end with a discussion of the results obtained, the strengths and weaknesses
of the introduced algorithm.

For running the experiments, the real-life event logs from BPI challenges in
2012% and 2017° were used. Additionally, synthetic datasets® were included as
the datasets include a log and a pre-defined Petri net reference model. In total,
14 original logs were used. Event logs were used to validate the entire behavior
of C-3PA and allow for equal comparison against other methods, without impact
from networking or other outside factors.

For the BPT logs, the Inductive Miner [11] was used with a noise threshold
of 0.95 to discover a Petri net model. To build the tries used by the C-3PA
algorithm, logs were simulated on top of the Petri net models using the method
from [15] with 2000 generated traces, random path simulation and a looping
factor of 3. For warm-starting validation, the logs were pre-processed by filtering
out 20% or 50% of the starting activities of each trace in each log, resulting in
an additional 28 logs.

5.1 Warm-starting

To validate the warm-starting capability of the algorithm, the algorithm was ini-
tialized with the following three settings: warm-starting enabled from all states,
warm-starting enabled only from the root state, warm-starting disabled. The
three variations were executed on the 28 logs pre-processed for warm-starting.
The average conformance costs of these executions are shown in Figure 4a.

The conformance cost improvements for warm-starting enabled only from
the root state (ws_from_root) is moderate compared to the variation with no
warm-starting (ws_none): across all the datasets, the improvement is 7.3%. An
apparent reason for this is that the root state needs to be in memory, and thus
once the root state is out of the buffer, warm-starting is no longer an option.
An implication of this option is that any chosen warm-starting scenario will be
equal to doing model moves on the unseen prefix.

For warm-starting from all states (ws_from_all), the change in the confor-
mance cost is much more noticeable. Across all datasets, the improvement is
17.1%. This comes, though, at the cost of execution time. As shown in Figure
4b the warm-starting across all states is taking noticeably longer. This makes
sense, because warm-starting is costly, and with the warm-starting enabled for
all states, the warm-starting will be visited for each non-synchronous move. How-
ever, the benefit of warm-starting is one of the focal points of the algorithm, and
thus in the following experiments the option with warm-starting enabled from
all states will be used.

* https://doi.org/10.4121 /uuid:3926db30-712-4394-aebc-75976070e91f
® https://doi.org/10.4121 /uuid:5f3067df-f10b-45da-b98b-86ac4c7a310b
5 https://github.com/PADS-UPC/RL-align/tree/master/data/originals/M-models

C-3PA: Streaming Conformance, Confidence and Completeness 11

M10

) —————S—— —_

M8 =

M6

M5

M4 e

= _

M1E= B ws none =
BPI2017 &==— ws_from_root e
BPI2012 E=— s _from_all ——

0 10 20 30 40 101 10° 10!
Conformance cost Time (ms)
(a) Alignment costs. (b) Execution time (logarithmic scale).

Fig. 4: Warm-starting experiments.

5.2 Comparison to existing methods

The algorithm introduced in this paper is an approximate algorithm. Thus, it
is important to validate that the algorithm is actually outputting the correct
conformance. In the following, we will investigate how precise the algorithm is
for indicating conformance issues by building a confusion matrix with optimal
prefix-alignments as the baseline, and then analyzing the Spearman correlation
of non-conforming results.

Confusion matrix To assess the correctness, the first step is to evaluate
how often the algorithm reports conformance when actually non-conformance
should have been reported and vice-versa. For this comparison, the optimal
prefix-alignments from [17] are used as the ground truth. The derived confusion
matrix across all 12 original datasets is shown in Figure 5a. The confusion ma-
trix shows that almost all traces are correctly classified, with most traces being
non-conforming to the process models. 243 traces are false positive — C-3PA
indicates a compliant trace, while actually non-conformance is shown by optimal
prefix-alignments. 8 traces are false negatives, indicating that C-3PA classified
the trace as non-conforming while actually, it was conforming.

The interpretation is that generally, the algorithm can classify non-conformant
traces well. As the algorithm is dependent on the trie data structure, a potential
improvement for the classification could be achieved by increasing the size of the
trie. For the purposes of this paper, such an investigation is out of scope. Another
thing to note is that there is a high proportion of non-conformant traces present
in the datasets. Still, as the ultimate goal for a conformance checker should be
to detect non-conformant behavior, this skewness is considered acceptable.

Correlation Spearman correlation was used to validate that the output from C-
3PA behaves similarly to the output from previously existing algorithms. Table

12 K. Raun et al.

o o 12000 1.0
E = 10000 08
s © 8000 ..
25 6000 3 06
)) =<
o Y 4000 9 04
o c a * .
zZ F 2000 02 o \W-inf
' C-3PA
False True
C-3PA 0 25 50 75 100 125 150 175 200
Not conforming Conformance cost
(a) Confusion matrix (b) Cumulative distribution function

Fig. 5: Warm-starting experiments.

. OCC occC
Correlations HMM BP W-1 Woinf
Conformance 0.28 0.52 0.95 0.98
Completeness 0.66 0.35 - -
Confidence - 0.44 - -

Table 1: Spearman correlations against other methods.

1 shows the correlations, with 1 indicating complete positive correlation, —1
indicating complete negative correlation, and 0 indicating no correlation.

As discussed in Section 3, the HMM [10] and BP [7] methods are able to
output additional measures in addition to conformance, but they do not com-
pute the prefix-alignments. Thus, the conformance correlation is moderate with
these methods. Interestingly, the completeness correlation with HMM is rela-
tively strong, while it is much weaker with the BP method. The confidence is
also moderately correlated with the output from BP. All in all, it seems that C-
3PA is giving output similar to these methods, but due to operational differences,
the algorithms are not too strongly correlated.

In comparison with the prefix-alignments with window size 1 (OCC W-1) and
optimal prefix-alignments (OCC W-inf) from [17], the conformance correlation
is very strong. For further investigation, cumulative distribution functions were
constructed as shown in Figure 5b. The resulting plots indicate a high similar-
ity between the distributions, exhibiting almost identical curves. This indicates
that despite the underlying approximations, the C-3PA algorithm is suitable for
outputting prefix-alignments describing process deviations.

5.3 Stress test

Important characteristics of streaming conformance checking are event process-
ing time and memory consumption. The events may arrive in a very fast manner,
and it is important to calculate the conformance quickly. At the same time, the
stream is unbounded, but the memory of the conformance checker is not. Thus,
the method needs to have a good handling of memory.

C-3PA: Streaming Conformance, Confidence and Completeness 13

OCC OcCcC

C-3PA " i - HMM BP
BPI2012 2.66 48.95 2.94
BPI2017 2.14 40.32 3.02
M1 8.61 B LS5
M2 53.94 17.67
M3 - - - -
M4 164.96/3311387 220 -
M5 - - - -
M6 - - - -
M7 - - - -
WE 121 | 5.67 1.10

Table 2: Average processing time per event (ms).

The event processing time of the C-3PA algorithm and other methods is
shown in Table 2. To be noted, the results need to be interpreted with some
reservations: HMM implementation is in Python, while all other methods are
implemented in Java. Further, such a direct comparison may be influenced by
factors deriving from implementation, rather than an algorithm’s actual poten-
tial. Regardless, it is currently the best indication available for showing the
applicability of the various methods in a streaming setting.

Based on the results, C-3PA outperforms OCC, in some cases by an order
of magnitude, while simultaneously being able to handle warm-starting and in-
dicating the confidence of the prefix-alignments. The results are in most cases
notably slower than that of BP, but this is expected as BP does not output the
prefix-alignments, but rather just gives a trace-level measurement of the confor-
mance. A dash (-) indicates that no response was received within 30 minutes.
This includes the pre-processing time, which is the main factor for HMM and
BP (building reachability graphs), and algorithm execution time, which is the
main factor for OCC. In the worst case, for dataset M6, the trie generation took
949 ms and algorithm execution total time was 842 seconds for C-3PA.

The memory consumption of C-3PA is shown in Figure 6. The memory con-
sumed per event does not increase as the stream progresses, as indicated by the
red line. The total memory consumption does increase, as an increasing number
of cases are kept in memory. In the current implementation, the user can define
how many individual cases can be stored in the memory before the case together
with its states is released. In general, the approach is memory efficient while
permitting either a smaller or larger memory configuration depending on the
organizational needs.

5.4 Discussion and limitations

The C-3PA is a conformance checking algorithm that outputs prefix-alignments,
can handle warm-starting scenarios and presents a confidence level of the prefix-
alignment. The results indicate that the algorithm is suitable for real-life situ-

14 K. Raun et al.

—— Memory usage - SMA (10000)
Space + Memory usage per event - SMA (10000) Space

(IVIB) —— Memory usage per event - polynominal fit (deg=1) (IVIB)
2000 0.3
1500 0.2
0.1
1000 0.0
500 -0.1
0 -0.2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

leb
Events

Fig. 6: Memory consumption across 2 million events.

ations, answering RQ2, handling fast-paced event streams and correlating well
with optimal prefix-alignments.

One of the limitations of the algorithm comes from the use of the trie as the
underlying process model — a trie may not be ideally suited for large models
with a lot of concurrent behavior and several loop cycles. Also, for handling
warm-starting, a grace period may still be required as currently, the algorithm
would attempt to warm-start infinitely, which is not practical. Finally, in terms
of confidence, further activities within the case could still theoretically occur, i.e.,
the quantification of confidence may be misleading in some instances. Ultimately,
based on the scope of this paper they do not undermine the results achieved.

6 Conclusion

This paper introduced a novel approximate algorithm for streaming conformance
checking. It is knowingly the first algorithm that fuses together the representabil-
ity of prefix-alignments, allows for warm-starting scenarios, and is able to quan-
tify the confidence of a prefix-alignment with regard to the conclusion of the
trace. Extensive empirical testing was conducted to show the algorithm’s ability
to handle warm-start scenarios, show its correlation to existing streaming con-
formance checking methods, and to stress test the algorithm under latency and
memory constraints. Future research directions would be to investigate whether
confidence could also be integrated into the cost function, for example by uti-
lizing a known stochastic distribution of branches in the trie. Furthermore, a
more extensive study could be done in terms of datasets and trie construction,
in order to achieve equality with optimal prefix-alignments.

Acknowledgement

This work was supported by the European Social Fund via "ICT programme”
measure, the European Regional Development Fund, and the programme Mo-
bilitas Pluss (2014-2020.4.01.16-0024).

C-3PA: Streaming Conformance, Confidence and Completeness 15

References

10.

11.

12.

13.

14.

15.

16.

17.

. van der Aalst, W.M.: Process mining: a 360 degree overview. In: Process Mining

Handbook, pp. 3-34. Springer (2022)

Adriansyah, A.: Aligning observed and modeled behavior (2014)

Adriansyah, A., Van Dongen, B.F., Zannone, N.: Controlling break-the-glass
through alignment. In: 2013 International Conference on Social Computing. pp.
606-611. IEEE (2013)

Awad, A., Raun, K., Weidlich, M.: Efficient approximate conformance checking
using trie data structures. In: 2021 3rd International Conference on Process Mining
(ICPM). pp. 1-8. IEEE (2021)

Burattin, A.: Streaming process mining. pp. 349-372. Springer (2022)

Burattin, A., Carmona, J.: A framework for online conformance checking. In: In-
ternational Conference on Business Process Management. pp. 165-177. Springer
(2017)

Burattin, A., Zelst, S.J.v., Armas-Cervantes, A., Dongen, B.F.v., Carmona, J.: On-
line conformance checking using behavioural patterns. In: International Conference
on Business Process Management. pp. 250-267. Springer (2018)

Carmona, J., van Dongen, B., Weidlich, M.: Conformance checking: foundations,
milestones and challenges. In: Process Mining Handbook, pp. 155-190. Springer
(2022)

Kipping, G., Djurica, D., Franzoi, S., Grisold, T., Marcus, L., Schmid, S., Brocke,
J.v., Mendling, J., Roglinger, M.: How to leverage process mining in organizations-
towards process mining capabilities. In: International Conference on Business Pro-
cess Management. pp. 40—46. Springer (2022)

Lee, W.L.J., Burattin, A., Munoz-Gama, J., Sepilveda, M.: Orientation and con-
formance: A hmm-based approach to online conformance checking. Information
Systems 102, 101674 (2021)

Leemans, S.J., Fahland, D., Van Der Aalst, W.M.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: International
conference on business process management. pp. 66-78. Springer (2013)

Raun, K., Awad, A.: I will survive: An online conformance checking algorithm
using decay time. arXiv preprint (2022)

Rozinat, A.: Process mining: conformance and extension (2010)

Schuster, D., Zelst, S.J.v.: Online process monitoring using incremental state-space
expansion: an exact algorithm. In: International Conference on Business Process
Management. pp. 147-164. Springer (2020)

Vanden Broucke, S., De Weerdt, J., Vanthienen, J., Baesens, B.: An improved
process event log artificial negative event generator. Available at SSRN 2165204
(2012)

Zaman, R., Hassani, M., Van Dongen, B.F.: Efficient memory utilization in
conformance checking of process event streams. In: Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing. pp. 437-440 (2022)

van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B.F., van der Aalst, W.M.: On-
line conformance checking: relating event streams to process models using prefix-
alignments. International Journal of Data Science and Analytics 8(3), 269-284
(2019)

