
Supporting Provenance and Data Awareness in
Exploratory Process Mining

Francesca Zerbato[0000−0001−7797−4602]1, Andrea Burattin[0000−0002−0837−0183]2,
Hagen Völzer[0000−0003−3547−3847]1, Paul Nelson Becker2, Elia Boscaini2, and

Barbara Weber[0000−0002−6004−4860]1

1 University of St. Gallen, St. Gallen, Switzerland
{francesca.zerbato|hagen.voelzer|barbara.weber}@unisg.ch

2 Technical University of Denmark, Kgs. Lyngby, Denmark
{s194702|s194720}@student.dtu.dk, andbur@dtu.dk

Abstract. Like other analytic fields, process mining is complex and
knowledge-intensive and, thus, requires the substantial involvement of
human analysts. The analysis process unfolds into many steps, producing
multiple results and artifacts that analysts need to validate, reproduce
and potentially reuse. We propose a system supporting the validation,
reproducibility, and reuse of analysis results via analytic provenance and
data awareness. This aims at increasing the transparency and rigor of
exploratory process mining analysis as a basis for its stepwise maturation.
We outline the purpose of the system, describe the problems it addresses,
derive requirements and propose a design satisfying these requirements.
We then demonstrate the feasibility of the central aspects of the design.

Keywords: Process Mining · Exploratory Analysis · System Requirements and
Design · Analytic Provenance · Data Awareness · User Support

1 Introduction

Process mining comprises methods to analyze event data generated in infor-
mation systems during the execution of business processes. Process mining is
quickly growing in adoption, and so is its business impact [9].

Like other data science disciplines, process mining requires the substantial
involvement of humans, e.g., process analysts, to obtain insights from raw event
data [7]. Analysts often freely explore the data with the available tools to gain
a basic understanding of what it represents, investigate different scenarios, and
create hypotheses. Hypotheses can then be tested using best practices, but more
exploration is required if the test fails or the results are inconclusive [19]. Each
insight that emerges during the analysis informs which subsequent analysis steps
are chosen. On the one hand, the choices made during the analysis yield many
possible reasonable results that need to be assessed. On the other hand, such
choices might give rise to potential inconsistencies in the analysis process [14].

Due to its knowledge-intensive character and emergent course of action, an
exploratory analysis includes many manual and error-prone steps that are often

2

hard to pre-specify and can be challenging to track and validate over long periods
of time without tool support [3]. Existing process mining tools do not explic-
itly support analysts in tracking, validating, and communicating their analysis
process and their insights. As a result, analysts must carry out these activities
manually, which can quickly become impractical for extensive analyses [6,19].

Toward establishing a more rigorous and reliable analysis process, we suggest
increasing the transparency of the analysis process, as a first important step. To
this end, in this paper, we propose a system to support process analysts in track-
ing their analysis steps and the dependencies among them, as well as the results
and the goals of their analysis. This aims to support rigor in the analysis process
itself as well as communication in reviews, audits, and storytelling activities.
The corresponding components of the support system are a replayable history of
user interactions with a process mining tool and a provenance view, which are
inspired by reliable system engineering, viz. configuration- and change manage-
ment [4], and requirements tracing [18]. Moreover, we propose a novel integrated
data view. The data view aims to support analysts in maintaining awareness of
the current data selection, understanding the effect of the data transformations
applied to it, comparing the current data selection with previous “states” of the
analysis, and increasing the analyst’s confidence that each analysis step indeed
serves its intended goal or justifies its specified result.

The rest is structured as follows. Sect. 2 motivates our approach with a
realistic process mining scenario. Sect. 3 presents the requirements of the system,
while Sect. 4 describes its core components. Sect. 5 evaluates the system design.
Sect. 6 discusses related work. Sect. 7 closes with an outlook on future research.

2 Motivating Scenario

In this section, we present an example process mining analysis derived from be-
havioral data we collected in two observational studies with more than 50 expe-
rienced process analysts overall [21,22]. We will refer to this scenario throughout
the paper to illustrate the problems we address and the proposed solution.

An example process mining analysis. Rob is a process analyst in charge of an-
alyzing an event log recording instances, also known as cases, of a road fine
management process [5]. Tom, a member of the police acting as a business stake-
holder, asks him “What are scenarios in which offenders do not pay their fines?”
To answer this question, Rob applies many operations in a process mining tool.
Below we describe some steps of his analysis, which we also report in Fig. 1.

(A) Parameter sweeps. First, Rob familiarizes himself with the raw event log
(L0), i.e., the one provided by the police. With the goal in mind to reduce com-
plexity (G1), he removes infrequent behavior with a variant filter. He applies
the filter three times (cf. o1-o3 in Fig. 1) using the relative number of cases as
a parameter, i.e., 75%, 85%, and 90%. After applying the filter, he generates
descriptives to better understand the effect of the filter on the number of cases

3

(v1-v3). While the first two filter configurations remove too much process be-
havior, o3 results in a reasonable number of cases. Thus, he settles for o3 and
annotates his choice, also reporting the reasons for discarding the other filters.

(B) Focus on a subset of the log. Then, Rob focuses on the question (G2),
starting from cases corresponding to unpaid fines. He applies an activity filter to
the previously filtered log to select cases with a credit collection (CC) activity
(o4), which he hypothesizes correspond to unpaid fines (H1). He then creates
and inspects the process map of these cases (v4). From the map, he notices that
some cases still include a payment (P) activity; thus, his hypothesis was not
precise. He makes a new hypothesis that unpaid fines do not include P (H2) and
applies the corresponding filter (o5) to create a new process map (v5).

(C) Test hypotheses and compare results. Afterward, Rob focuses on partially
paid fines. He hypothesizes that these are complete cases that include either P
and some outstanding amount or both activities P and CC (H3). To check
his hypothesis, he removes incomplete cases (o6), selects cases that include P
(o7), and adds a derived attribute to filter for cases with a positive outstanding
amount (o8-o9). He also mistakenly re-applies o7. After inspecting the results, he
continues with the second part of H3. He applies an activity filter that works on
the conjunction of both conditions (o10). However, he is unsure about the logic
implemented by the filter in o10 because he finds it difficult to understand the

U Id Operation I/O Timestamp User Annotations Goals and Hypotheses

(A
)

R o1 variantFilter(cases, keep, 75%) L0 L1 07/10/22 10:01:18 filtered too much

G1: Reduce
complexity

R v1 nCases() L1 #cases 07/10/22 10:01:50
R o2 variantFilter(cases, keep, 85%) L0 L2 07/10/22 10:02:03 filtered too much
R v2 nCases() L2 #cases 07/10/22 10:02:32
R o3 variantFilter(cases, keep, 90%) L0 L3 07/10/22 10:03:11 good trade-off
R v3 nCases() L3 #cases 07/10/22 10:03:29

(B
)

R o4 activityFilter(cases, keep, "CC") L3 L4 07/10/22 10:15:02 G2: Answer Question
H1: Unpaid fines
include CCv4 processMap() L4 M1 07/10/22 10:15:57 there is still P

R o5 activityFilter(cases, remove, "P") L4 L5 07/10/22 10:18:32 unpaid fines H2: Unpaid fines do
not include PR v5 processMap() L5 M2 07/10/22 10:18:56

(C
)

R o6 filterIncompleteCases(cases, remove) L0 L6 07/10/22 10:25:10
paid fines with an
outstanding
amount

H3: Partially paid
fines are fines that
include P and some
outstanding amount
or include both P
and CC

R o7 activityFilter(cases, keep, "P") L6 L7 07/10/22 10:26:45
R o8 addDerivedAttr(amountDue) L7 L8 07/10/22 10:29:02
R o9 attrFilter(cases, keep, amountDue>0) L8 L9 07/10/22 10:29:49
R o7 activityFilter(cases, keep, "P") L9 L10 07/10/22 10:29:49
R o10 activityFilter(cases, keep, "P ∧ CC") L6 L11 07/10/22 10:31:36 fines with P+CC
R o7 activityFilter(cases, keep, "P") L6 L12 07/10/22 10:33:18 G3: Validate

combined filterR o4 activityFilter(cases, keep, "CC") L12 L13 07/10/22 10:33:44 filter is correct

R o11 activityFilter(cases, remove, CC) L12 L14 07/10/22 10:36:51
H4: Some partially
paid cases do not
include CC

(D
) R Show results to business stakeholders and auditors G4: Storytelling

(E
) J

o5 activityFilter(cases, remove, "P") L3 L15 14/10/22 08:33:17 order of filters
checked

G5: Internal auditing
o4 activityFilter(cases, keep, "CC") L15 L16 14/10/22 08:33:46

FINAL WITH GOALS

Fig. 1. The operations applied by Rob and Julie over time. U is the user, i.e., (R)ob or
(J)ulie. Id is an identifier for each operation of the Operation column. I/O shows the
input resp. output of an operation. Timestamp is the timestamp of the operation. The
last two columns show User Annotations and analysis (G)oals and (H)ypotheses.

4

effect of nested operations, and he knows that, in some cases, filters are sensitive
to their order. Thus, Rob decides to validate the filter (G3) by applying two
separate filters and checking each one of the conditions in o10 individually. He
documents this check by taking notes. As a result of his analysis, he rejects H3
because the two results don’t match as he had expected. Thus, he filters for
partially paid cases that do not include CC (o11) as he hypothesizes that the
credit collection agency does not handle some partially paid fines (H4).

(D) Storytelling. After the analysis, Rob presents his results to Tom (G4).
For each result, Rob points to the supporting evidence from his analysis. In a
deeper discussion, he explains to Tom how he obtained the results, including
steps that did not directly contribute to the final outcomes but accounted for
analysis decisions. For example, when Tom asks why he focused on 90% of the
raw event log, Rob shows all the parameter values he had tested in (A) and uses
his annotations to share the reasoning behind the decisions he made.

(E) Internal auditing. A week later, Julie looks at Rob’s analysis with the
goal of auditing it (G5). She inspects Rob’s results and runs some validation
steps using a different process mining tool. For example, she swaps the filters
that Rob applied in (B) to see if their order has any effect on the final result.
Indeed, she knows that the semantics of filter operations is often implicit or
not communicated unambiguously and that different process mining tools might
implement different filter semantics. She also notices that one filter (o7) does not
have any effect on the result and, as such, could be removed in a future step.

Scenario conclusion. Rob’s analysis (A)-(C) reflects typical process mining anal-
ysis steps, where multiple operations are combined to analyze different subsets of
the event log. Such steps reflect the knowledge-intensive and ad-hoc character of
exploratory process mining analysis, which develops based on emerging insights,
as shown by the observational study in [21]. While process mining tools allow
realizing such steps, they lack support for analysts to track their analysis steps
and goals (cf. (A)-(C)), e.g., to maintain a resource of “reflection in action” [20],
and to conduct other meta-analysis activities, such as storytelling, validation
and auditing (cf. (D)-(E)). However, such activities are crucial to increase the
rigor of the analysis and make it more reliable and less prone to errors that
can, for example, derive from combining and nesting operations with different
or ambiguous semantics. This is the main driver of our paper.

3 Requirements

To support reviews, audits, and other validation activities for process mining
analysis, we derived the following non-exhaustive set of requirements for a system
supporting the process of process mining. Such a support system is thought of
as complementing an existing process mining tool, not of replacing it.

(R1) Maintain Provenance Information. The support system should enable
analysts to capture and browse provenance information about their analysis
process and its results.

5

Provenance information includes the analysis operations performed, their
input and output data, as well as dependency information about which results
depend on which operations. With the help of provenance information, analysts
can reproduce their analysis for validation, storytelling, and auditing.

(R2) Trace Analysis Goals and Insights. The support system should enable
analysts to trace which analysis operations were performed to achieve which
analysis goals and which insights were obtained from which operations.

The tracing of goals and insights clarifies to the analyst and the stakeholders
why a certain analysis operation or set thereof has been performed, support-
ing validation, storytelling, and auditing. It also supports the identification of
ineffective explorations and helps identify candidates for reuse.

For the next requirement, we note that the user interface of many process
mining tools is designed in such a way that multiple UI elements, e.g., the process
map or the variant inspector, operate on a specific selection of the event log
that is defined through active filters and transformations. Whenever the active
selection changes, all UI elements change accordingly. In these rapidly-changing
settings, it is often challenging to keep track of which data selection was used to
generate any (intermediate) result or artifact produced during the analysis.

(R3) Increase Data Awareness. The support system should help analysts to
be aware of the data selection and properties of the data that the process mining
tool interfaces are operating on. This should apply not only to the current step
of the analysis but also to all previous steps, favoring the comparison among the
results produced throughout the analysis from different data selections.

Data awareness, i.e., the awareness of the data selection on which the current
analysis step is operating, supports the assurance of the effectiveness of the data
selection, as well as the understanding of the effects of the operations performed
in each step and the comparison among different data selections over time.

4 A System to Support the Analysis Process

In this section, we describe the design, intended use, and underlying assumptions
of the support system. The system consists of three main components: (i) a
replayable history comprising the sequence of all the performed operations, as
well as two complementary kinds of linked views: (ii) a provenance view, which
captures provenance information about the analysis process, and (iii) multiple
data views, which capture how the working event log is transformed during the
analysis at different levels of abstraction.

4.1 Replayable History of Interactions

The proposed support system integrates with an existing process mining tool
through a replayable history of interactions. That is an append-only record of all
interactions of the process analyst with the tool. Columns 3-6 of Fig. 1 represent
such a replayable history, i.e., we use the operations, their input and output

6

and their ordering given by the timestamp. It must be replayable, meaning that
it contains enough information to reproduce the state of the process mining
analysis. Based on the design of most process mining tools, we assume that the
core part of that state is a working event log, i.e., the initially loaded event log,
that was transformed through various process mining operations, e.g., filtering,
aggregation, and data enrichment. Some operations, which we refer to as view
operations (cf. Sect. 2), will also produce additional artifacts, e.g., a process map,
and consume additional artifacts, e.g., a normative process model, but our main
focus within this paper is on the working event log. We discuss the extension of
our approach to more complex process mining analysis settings in Sect. 7.

Let L0 denote the event log initially loaded in the process mining tool in a
given session. A replayable history is a sequence op1, op2, . . . of operations on
the working event log, where an operation opj = (i, o, Lj) consists of

(i) an input log index i ≥ 0 such that i < j; We say that Li is the input log to
operation opj ,

(ii) a parameterized operation signature o = (f, p1, . . . , pk) where f is a process
mining tool function that accepts an event log L and actual parameters
p1, . . . , pk , and

(iii) an event log Lj , which we call the output log of opj such that Lj =
o(Li) =def f(Li, p1, . . . , pk), i.e., o describes a deterministic1 process mining
tool function f such that the output only depends on parameters p1, . . . , pk.

For example, o4 in Fig. 1 refers to the operation

L4 = activityFilter(L3, ‘cases’, ‘keep’, ‘CC’)

that keeps only cases with the ‘CC’ activity. We henceforth do not strictly dis-
tinguish between an operation and its signature when the difference is clear from
the context. Also, we note that the input log to the first operation op1 of the
replayable history must be L0, which we assume is implicitly part of the history.

In general, the input event log can be any event log produced previously and
not just the direct predecessor in history. This means that analysts can navigate
back to a previous working event log and continue the analysis from there. This
type of navigation might not be a native capability in the process mining tool
but can be provided by the provenance view presented in Sect. 4.2.

We consider operations that are “relevant” for process analysts [2], such as
data exploration interactions [14], i.e., we choose a level of abstraction compara-
ble to the one in process mining tools. In this way, we can also include view oper-
ations, such as v4 in Fig. 1, which refers to the operation M1 = processMap(L4).

The determinacy in (iii) above guarantees that any intermediate version of
the working log can be reproduced recursively. When a replayable history is
properly integrated with a process mining tool, then all the analysis artifacts
and UI elements that are based on earlier versions of the working log can be

1Note that determinacy of an operation that calls a pseudo-random function re-
quires the inclusion of the random seed in the operation parameters.

7

reproduced to support auditing, storytelling, and other communication use cases.
Moreover, the replayable history is the basis for constructing the provenance and
data views introduced in the following paragraphs.

4.2 Provenance View

The provenance view is a rooted, directed tree that reflects the analysis steps
performed on the working event log as a branching history [6].

The tree of the provenance view is a visualization of the replayable history
where each index j = 0, 1, . . . of the history is a node labeled with the log Lj

and where each operation opj = (i, o, Lj) creates an edge from node i to node
j labeled with o. Fig. 2 shows a provenance view derived from the replayable
history of Fig. 1, where each node is labeled with an object representing the
state current state of the analysis, i.e., the working event log, and each edge is
labeled with an operation. For example, node L3 is the node representing the
event log given as input to operation o4, an activity filter that retains cases with
activity CC ; L4 is the filtered event log resulting from o4.

A path between two nodes represents a sequence of operations that trans-
forms the first node, i.e., the working event log, into the second one. New paths
are created via branching. We consider tree branches to reflect distinct analysis
(sub-)goals, such as testing a specific hypothesis or validating a particular oper-
ation, that develop on the same working log. For example, G1 in Fig. 2 recalls
the goal of the motivating scenario to reduce event log complexity via variant
filters. Analysts can interact with the provenance tree to deliberately create new
branches and decompose the analysis into different goals or reuse the results of
previously performed steps for further analysis. For example, new branches can
be created to test hypotheses or to validate the effects of different operations on
the same working log. Also, branching helps visualize the “analysis coverage”,
i.e., all the steps done in the course of an analysis, highlighting missing steps and
discarded results. Discarded results can provide precious information about the
process of obtaining the final result. For example, the branching realized by o1-o3

L0

L2 L3L1

L15

L16

L4

o1 o2 o3

o5

o4 o5

G1

L6

L8

L9

L12

L13
L11

L14

H4

H2

some cases
still have P

L5
L10

L7

o4

o6

o7

o8

o9

o7

o10
o7

o11o4

G3

G5
H3

H1

G2

Fig. 2. Provenance view derived from the motivating example of Fig. 1. User annota-
tions, hypotheses (H), and goals (G) are sketched on the tree to exemplify their use.

8

in Fig. 2 shows that different parameter configurations were tested, indicating
that the choice of applying o3 was informed by the (unsatisfactory) results of o1
and o2. Instead, missing steps can indicate unexplored areas needing attention.

One last important feature of the provenance view is annotations. Annota-
tions can be attached to nodes or sub-trees to capture user observations about
specific analysis outcomes as well as analysis goals. Annotations are versioned to
allow tracking changes in the flow of thoughts as the analysis evolves. Analysts
can use annotations to “give meaning” to intermediate results, to document
analysis steps and decisions, or to report hypotheses and goals. For example,
node L4 in Fig. 1 is annotated with “some cases still have P”, documenting the
fact that the filter o4 did not result in unpaid fines, i.e., cases without a payment
(P) activity, as expected (cf. Sect. 2). Similar to literate programming [10], the
information included in annotations can support analysts in storytelling tasks.

Overall, the provenance view provides access to analytic provenance informa-
tion organized into analysis goals via branching and annotation. The provenance
view also allows the analyst to reuse previously obtained results, e.g., to extend
them or use them as input for further analysis steps, as done with L6 in Fig. 2.
Finally, it provides a transparent view of the analysis process that can help iden-
tify unnecessary and missing steps, inform future analyses, and serve as a basis
to automate steps that might emerge as repetitive.

4.3 Data Views

Complementing the provenance view, the analysis is also reflected in one or more
data views. Fig. 3(a) shows a data view, which is a rooted, directed multi-graph.
Each node is labeled with an object that represents some aspect of the state,
i.e., the working event log, and hence some aspect of the effect of the previous
analysis step. Fig. 3(a) shows a data view, which we call the complete data view,
where each node is labeled with the complete working event log, not just one
aspect of it. However, in contrast to the provenance view, the different sequences
of operations represented in the edges can lead to the same node whenever they
produce the same working event log. For example, starting from node L3, both
sequences o4, o5 and o5, o4 commute, i.e., they lead to the same node (L5/16).

Different sequences of operations resulting in the same log can be expected or
unexpected for the analyst. The previous example of commuting filters (o4, o5)
might be expected, whereas the observation that starting from L8 the sequences
o8 and o8, o9 result in the same log might be unexpected. Indeed, the fact that o9
had no effect might depend on specific characteristics of the working event log.
This is one way in which the data view can help analysts validate the effect of
their actions or spot inconsistencies stemming from unclear operation semantics.

Conversely, analysis steps with different working event logs are represented
by different nodes. Again, working logs being different can be expected or unex-
pected by the analyst, the latter, e.g., for non-commuting permutations of the
same filters. Different nodes can then be compared with a dedicated diff capabil-
ity within the data view, which allows the analyst to investigate an unexpected
difference. A full design of such a diff capability is out of the scope of this paper.

9

L0

L2 L3L1

L15 L4

o1 o2 o3

o4

o5 o4

L6

L8
L14

o5

o6
o7

o8

o9
o7

o10

o11

o4

L0

L2 L3L1

L15 L4

o1 o2 o3

o4

o5 o4

L6

L14

o5

o6

o7o8

o9

o7

o10

o11

o4

(a) (b)

L7,12

L11,
13

L9,10
L5,16

L5,16
L9,10

L7,8,
12

L11,13

113k 128k

150k

135k

59k 80.7k

56.9k

146k

68.3k

66.7k

2.13k

19.4k

Fig. 3. Examples of data views based on the motivating example. (a) Complete data
view; (b) data view using the number of cases as abstraction.

We assume that the complete data view is always automatically provided to
the user. The complete data view can be computed from the provenance view
by unifying nodes that are labeled with equal event logs, as shown in Fig. 2 with
the same color, or directly from the replayable history as described below.

Fig. 3(b) shows another data view for our example. In general, each data
view is created from a pre-defined or user-defined abstraction. An abstraction
α defines, for each working event log L, an object α(L). The set of cases, the
number of cases, or the number of case variants are frequently used abstractions
in process mining, but abstractions based on data attributes or other event log
characteristics may also be defined. Case abstractions are of special interest,
which are defined through a mapping β that defines an object β(c) for each case
c and α(L) is then the set or bag of all β(c) where c is a case of L. For example,
we can disregard the ordering of events in a case c and define β(c) as the set of
activities that occur in c. A user-defined abstraction may also disregard event
data features that are deemed irrelevant for a specific analysis. Fig. 3(b) uses
the number of cases as data view abstraction. Whenever an abstraction is just
a short object, e.g., a number, we can show it directly in the data view.

A data view for an abstraction α is defined as follows for the general case. An
abstraction α induces an equivalence over working event logs L1, L2 by L1 ≡ L2

whenever α(L1) = α(L2). The data view generated by α is a directed graph
where the nodes are the equivalence classes of this equivalence: Let [L] = {L′ |
L′ ≡ L} denote the equivalence class of working event logs w.r.t. to L. Then, the
nodes of the data view are the classes [L] where L is some working event log of
the replayable history and there is an edge from [L] to [L′] labeled with operation
o whenever there exists an L1 ∈ [L] and an L2 ∈ [L′] such that L2 was obtained
from L1 in the replayable history by applying the operation o. Again, a diff
capability on the abstraction can support the analyst in investigating differences.
Consider, for example, two nodes connected by an edge that represents a case
filter. In that case, the diff consists of two sets: the set of cases removed by the
filter and the set of cases kept by the filter. If the diff view allows the analyst
to search for specific test cases from the log, then the analyst can determine in

10

which of the two sets of the diff the test case ended up. In this sense, the diff
view allows the analyst to test whether the case filter had the desired effect.

Different data views allow analysts to explore the effect of their operations
at different abstraction levels. Also, they provide orthogonal and overlapping
perspectives into the current data selection. Hence the data views can raise the
awareness of the analyst for potential mistakes and ease the comparison among
different intermediate results. While the provenance view traces the analysis
steps to their goals, the data views can help validate that the results were ob-
tained on the proper data selection. Many useful abstractions and their semantic
equivalences, such as the examples above, are generic, i.e., they can be provided
off-the-shelf to the user and can be reused across projects. Project-specific ab-
stractions that are deemed useful, such as abstractions that use specific defi-
nitions of process outcomes or performance metrics, could be reused in similar
projects, e.g., when different projects deal with the same process type.

Requirements review. The requirements presented in Sect. 3 are addressed by
the design of the support system as follows.

(R1), i.e., the maintenance of the provenance information is addressed mostly
through the replayable history, which guarantees that analysis steps are recorded
and intermediate results can be reproduced. A specific part of the recording is
the ability of analysts to navigate back in history and create a new branch of
the provenance tree. This feature is supported by the provenance view.

(R2), i.e., the tracing of analysis goals and insights, is realized by the prove-
nance view and its annotation capability. The annotated provenance tree shows
which analysis branches serve which goals and which insights are derived from
them. These links can be inspected for consistency or for assessing the analysis
coverage, thus supporting the reasoning over analysis steps and results.

(R3), i.e., the support for data awareness is implemented predominantly by
the data views, which provide multiple cues for the analysts on what data se-
lection they are currently operating on. The equivalence between working event
logs and the capability to compare them at different abstraction levels allow
analysts to understand and validate various aspects of their analysis.

5 Evaluation

In this section, we evaluate our approach by demonstrating the feasibility of
central aspects of the design. Sect. 5.1 presents tests that evaluate the efficiency
of updating the data view based on different equivalences. Sect. 5.2 presents a
proof-of-concept and describes how it informed the next evaluation stages.

5.1 On the Efficiency of Computing the Equivalence in Data Views

To demonstrate the feasibility of our design, we focused on the efficiency of com-
puting event log equivalences in the data views. Indeed, establishing whether
two logs are equivalent in a data view is computationally not trivial. Whenever

11

a new analysis operation is performed, it is necessary to decide whether the
graph of the data view needs to be updated with a new node, i.e., the working
log is different from all the previously computed ones, or with a self-loop, i.e., the
working log is equivalent to a previously computed one (cf. Sect. 4.3). Since dif-
ferent equivalences could incur different computational costs, which might result
in delays if many large logs are compared, we devised some tests to investigate
the performance of updating different data views.

We implemented two equivalences for XES-formatted event logs. The first,
size-only, considers two logs as equivalent if they have the same number of events.
The second, named complete, considers two logs as equivalent if they have the
same set of cases and each case has the same set of events. Two events are the
same if they have the same key/value attributes. We implemented this equiv-
alence considering realistic improvements, i.e., we check increasingly restrictive
conditions, and as soon as one condition fails, two logs are deemed not equivalent.

For running the tests, we constructed logs of exponentially increasing size,
i.e., different configurations. Specifically, we generated logs with 100/1 000/10 000
cases and 10/50/250 events per case, thus ending up with 9 configurations (the
smallest event log contains 100 cases with 10 events each = 1 000 total events;
and the largest event log contains 10 000 cases with 250 events each = 2 500 000
total events). Each event has 10 attributes. Details are provided in Table 1.

For our tests, we identified five scenarios (s1-s5) that represent edge cases
from a computational point of view. These scenarios capture differences between
event logs that become increasingly subtle and, as such, increasingly harder to
compute. In each scenario, we compare a “given” event log with an amended
copy, which incorporates the following changes:

s1. One case of the given log is filtered out (for our test, we filtered out the very
last case that appears in the given log);

s2. One event of the given log is filtered out (we filtered out the very last event
of the last case that appears in the given log);

s3. One attribute of the very last case of the given log is changed;
s4. One attribute of the last event of the last case of the given log is changed;
s5. No changes; the copy is identical to the given event log.

As a result, we obtained 45 event logs (9 configurations × 5 scenarios), where
the perturbations represent the worst-case possibility, i.e., finding the difference
requires inspecting the entire logs.

We computed the size-only and complete equivalences while monitoring the
required time. For the tests, we used a laptop running Windows 10 64bit and
equipped with an Intel Core i7-7500U 2.70GHz CPU and 16GB of RAM. From

c1 c2 c3 c4 c5 c6 c7 c8 c9

Number of cases 100 1 000 10 000 100 1 000 10 000 100 1 000 10 000
Events per case 10 10 10 50 50 50 250 250 250
Events in the log 1 000 10 000 100 000 5 000 50 000 500 000 25 000 250 000 2 500 000

Table 1. Cases and events for each configuration used for testing the equivalences.

12

0.001

0.01

0.1

1
c1 c2 c3 c4 c5 c6 c7 c8 c9

Ex
ec

ut
io

n
tim

e
(lo

g(
m

s)
)

Configurations (event log size)

Performance for size-only equivalence

s1 s2 s3 s4 s5

0.001
0.01
0.1
1

10
100

1000
10000

100000
c1 c2 c3 c4 c5 c6 c7 c8 c9

Ex
ec

ut
io

n
tim

e
(lo

g(
m

s)
)

Configurations (event log size)

Performance for complete equivalence

s1 s2 s3 s4 s5

Fig. 4. Performance of the size-only and complete equivalences against the 9 configu-
rations and 5 scenarios. The y-axes are in a logarithmic scale of milliseconds, i.e., bars
below 1 mean that it took less than 1 ms to compute the equivalence.

the performance results in Fig. 4, we can see that the time required for processing
the size-only equivalence is negligible (less than milliseconds in all cases) as it
requires verifying only the size of the log. Instead, the time needed to compute
the complete equivalence grows linearly with the number of events in the log
(the worst time reported is 77 seconds for configuration c9). This holds for all
scenarios but S1, where differences are instantly detected. The linear complexity
for the complete equivalence suggests that the computation of the equivalence
between two event logs is scalable. Also, the worst-case scenario is observed only
when two logs have no differences, meaning that in other cases the equivalence
computation can be more efficient. For example, for the data views of Fig. 3,
which both have multiple different nodes, we could imagine a strategy that first
computes the size-only equivalence and, only if two logs are equivalent, it com-
putes the complete equivalence. Besides, since any new node will be equivalent
to at most one other node, the worst-case scenario will be observed at most once.

From these tests, we conclude that the equivalences implemented are already
promising from a performance viewpoint, despite the fact that no particular
optimization was considered. The implementation of the equivalences, the scripts
used to generate the logs, the logs, and the detailed results are publicly available.2

5.2 Proof-of-Concept Implementation

To better understand how the support system proposed in this paper could be
used, we have implemented a conceptual prototype. The implementation, which
is available as open source2, consists of a web application with a backend realized
in Python and a frontend written in Javascript.

The prototype implements the core functionality of the three components
described in Sect. 4. The replayable history is created directly in the prototype
from recorded user interactions: the user can upload an event log and apply
different filter operations, e.g., activity, directly-follows, or throughput-based
filters. In this way, the prototype can “simulate” the analysis done in a process
mining tool and reproduce a basic yet realistic history of interactions. Based

2See https://doi.org/10.5281/zenodo.7329844.

https://doi.org/10.5281/zenodo.7329844

13

0

1 2 3 8

4

5

6 9

7 10 13

11

12

14

filterOut A filterOut B filterOut C filterOut F

filterOut GfilterOut EfilterOut D

filterOut E filterOut D filterOut JfilterOut G

filterOut H

filterOut I

filterOut I

cases: 300, events 2071

cases: 240, events 1651
cases: 235, events 1602 cases: 233, events 1605 cases: 237, events 1617

cases: 176, events 1203cases: 180, events 1221cases: 177, events 1212

cases: 130, events 873 cases: 130, events 873
cases: 116, events 767cases: 176, events 1203

cases: 132, events 899

cases: 107, events 719

cases: 107, events 719

0

1 2 3 8

4

5
7

6

1311

filterOut A filterOut B filterOut C filterOut F

filterOut GfilterOut E

filterOut D

filterOut E

filterOut D

filterOut J

filterOut H

filterOut I

cases: 300, events 2071

cases: 240, events 1651
cases: 235, events 1602 cases: 233, events 1605 cases: 237, events 1617

cases: 176, events 1203cases: 180, events 1221
cases: 177, events 1212

cases: 130, events 873
cases: 116, events 767

cases: 132, events 899

cases: 107, events 719

filterOut G

filterOut G

9
10

12

Fig. 5. Screenshots of the developed prototype showing the provenance view (left)
and the corresponding data view (right). The yellow ring around a node indicates the
“current selection”, i.e., the working event log to which operations are being applied.

on the replayable history, the prototype can create a provenance view and a
corresponding data view and update them whenever the replayable history is
extended. The user can navigate the provenance tree, create new branches from
any selected node, i.e., to pursue different analysis goals, and annotate the nodes.
In turn, in the data view, the user can visualize the working event logs, which are
deemed equivalent if they have the same set of case ids. Fig. 5 shows screenshots
of the prototype with a scenario in which two pairs of equivalent nodes occur.

As part of our evaluation, we used the prototype to replay scenarios from [22].
Our ultimate goal was to identify critical aspects for the implementation of
the system that should be addressed before conducting a user evaluation. In
particular, we identified the following critical points for the next evaluation stage.
– Tighter integration of the support system with a process mining tool should

be considered to enable the automated export of replayable histories. Re-
creating a replayable history from a realistic analysis in a fully-fledged pro-
cess mining tool is error-prone and expensive.

– Although our tests have shown that equivalences in the data view can be
efficiently computed, we have learned that the complexity of both the prove-
nance tree and the data view graph can become large with long repayable
histories. The support system should provide means to manage such com-
plexity, e.g., by easing frequent branching and the navigation of large trees.

– The branching in the provenance view is done by users based on different
reasons, e.g., wanting to reuse an intermediate result or validate a sequence of
steps. Further investigation on the reasons for branching should be conducted
to enable the system to differentiate them and instruct users accordingly.

6 Related Work

In this section, we discuss related work comparing our system with relevant
literature and existing software in the fields of data analytics and process mining.

14

The idea to increase analytical rigor is inspired by techniques from systems
engineering, such as configuration- and change management [4] and requirements
tracing [18]. Although such systems are not conceived to support exploratory
data analysis, they inspired the design of the provenance view by manifesting
the evolution process and the user goals and enabling deliberate branching.

More closely related to our work are systems that capture and visualize ana-
lytic provenance to assist data analysis and sense-making processes [20]. Among
them, provenance management systems [13] have emerged in the areas of sci-
entific workflows and visual analytics. Such systems leverage different kinds of
provenance information [14] to assist analysts in the creation and management
of data analysis workflows. Notable examples are VisTrails [3] for visualization
workflows, Chimera [8] for data derivations, and ZOOM [2] for bioinformatics.
Provenance management systems capture provenance information in the form of
a history or action log, similar to our replayable history, and often allow users
to visualize it, similar to our provenance tree. For example, VisTrails [3] al-
lows users to manage visualization workflows and to maintain and navigate the
history of their design. However, these systems focus on repeatable analyses, re-
quiring analysts to pre-specify workflows. As such, they do not directly support
exploration processes learned from “free” interactions between the analyst and
the tool. Moreover, only a small part of such systems use provenance information
to support sense-making in terms of improving the analysis rigor [20], which is
what we aim to support with the tracing of user goals in the provenance view
and the user-defined equivalences in the data view. An example of tools support-
ing sense-making is InfoVis [15], a framework for maintaining the provenance of
visualization states that allows analysts to externalize their reasoning process.
Compared to InfoVis, we propose multi-perspective data views as a novel fea-
ture to increase data awareness in contexts like process mining, where the data
selection changes frequently and, thus, might make it hard to keep track of how
the results were generated from the data.

In process mining, the capture and management of provenance informa-
tion have received little attention so far. Inspired by scientific workflows, some
works have focused on supporting the management of changes in process mining
pipelines. Examples of tools that offer this kind of support are RapidProM [1], bu-
parFlow [16], and PM4KNIME [11] for process mining pipelines or FilterTree [12]
for chaining filters into preprocessing pipelines. Although these tools might re-
semble our work, they support repeated analyses through reusable pipelines but
are not designed to assist exploratory analysis. Also, these tools do not manage
provenance information, nor do they explicitly support sense-making or meta-
analysis tasks, e.g., through the tracing of analysis goals, or data awareness,
e.g., with user-defined abstractions on the working event log. Similar remarks
can be made for commercial process mining tools [17], which, to our knowledge,
do not yet support the recording and management of analytic provenance in-
formation. Existing features like the Process Diff of IBM Process Mining could
inform the design of the diff capability in data views defined over (discovered)
process models as analysis artifacts (cf. view operations in Sect. 4.1). However,

15

the comparison among process mining analysis states, such as working logs, is
not supported by existing software.

7 Conclusion and Outlook

In this paper, we have proposed a support system aimed at providing process
analysts with a transparent overview of their analysis and making them aware of
the data selection they work with at each analysis step. The proposed system can
support the provenance and reproducibility of the analysis, ease result validation
and auditing, and provide a basis to improve the rigor of the analysis process.

Limitations and Outlook. The first limitation of this paper concerns the notion
of state of a process mining analysis, which we have assumed being a single event
log. As mentioned in Sect. 4.1, a reasonable extension of the system could man-
age additional analysis inputs, e.g., a normative process model. This extension
is straightforward as long as the interaction between different input artifacts
is limited. Each artifact can be managed separately with dedicated provenance
and data views. However, with the emergence of multi-process mining3, multiple
event logs may have stronger interactions, i.e., they might change simultaneously
in interdependent ways. Such cases might require a generalization of the current
definition of provenance view, which we will explore in the future. Another limi-
tation concerns the current evaluation of the support system. On the one hand,
the experimental evaluation in Sect. 5.1 is limited to simple equivalences. Fu-
ture work should investigate the feasibility of other equivalences that might be
relevant for process mining practice. On the other hand, the effectiveness and
usefulness of the proposed system have not been evaluated by users. Towards a
user evaluation, we have used a proof-of-concept implementation of our system to
replay realistic scenarios and identify critical aspects for future work that should
be addressed before designing such a study. For example, we have learned that
a new implementation of the system should consider methods to deal with the
complexity of large provenance and data views, such as techniques for tagging
and storing milestones or optimizing navigation via scrolling and panning.

Acknowledgment. This work is part of the ProMiSE project, funded by the
Swiss National Science Foundation under Grant No.: 200021 197032.

References

1. Van der Aalst, W., Iriondo, A.B., Van Zelst, S.: RapidProM: Mine your processes
and not just your data. In: RapidMiner: Data Mining Use Cases and Business
Analytics Applications. Chapman & Hall/CRC Press (2018)

2. Biton, O., Cohen-Boulakia, S., Davidson, S.B., Hara, C.S.: Querying and managing
provenance through user views in scientific workflows. In: 2008 IEEE Int. Conf. on
Data Engineering (ICDE). pp. 1072–1081 (2008)

3https://multiprocessmining.org

https://multiprocessmining.org

16

3. Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E., Silva, C.T., Vo, H.T.: Vis-
trails: visualization meets data management. In: Proc. of the 2006 ACM SIGMOD
Int. Conf. on Management of Data. pp. 745–747 (2006)

4. Conradi, R., Westfechtel, B.: Version models for software configuration manage-
ment. ACM Comput. Surv. 30(2), 232–282 (1998)

5. De Leoni, M., Mannhardt, F.: Road traffic fine management process. Eindhoven
University of Technology, Dataset (2015)

6. Derthick, M., Roth, S.: Enhancing data exploration with a branching history of
user operations. Knowl Based Syst 14(1), 65–74 (2001)

7. Doan, A.: Human-in-the-loop data analysis: A personal perspective. In: Proc. of the
Workshop on Human-In-the-Loop Data Analytics. HILDA’18, ACM, New York,
NY, USA (2018). https://doi.org/10.1145/3209900.3209913

8. Foster, I., Vockler, J., Wilde, M., Zhao, Y.: Chimera: a virtual data system for
representing, querying, and automating data derivation. In: Proc. of the 14th Int.
Conf. on Scientific and Statistical Database Management. pp. 37–46 (2002)

9. Grisold, T., Mendling, J., Otto, M., vom Brocke, J.: Adoption, use and management
of process mining in practice. Bus. Process Manag. J. (2020)

10. Knuth, D.E.: Literate Programming. The Computer Journal 27(2), 97–111 (01
1984). https://doi.org/10.1093/comjnl/27.2.97

11. Kourani, H., van Zelst, S.J., Lehmann, B.D., Einsdorf, G., Helfrich, S., Liße, F.:
PM4KNIME: Process Mining Meets the KNIME Analytics Platform. In: ICPM
Demo Track. pp. 65–69. CEUR Workshop Proceedings (2022)

12. Leemans, S.: Filtertree: a repeatable branching XES editor. In: ICPM Doctoral
Consortium and Demo Track. pp. 70–74. CEUR Workshop Proceedings (2022)

13. Pérez, B., Rubio, J., Sáenz-Adán, C.: A systematic review of provenance systems.
Knowl Inf Syst 57(3), 495–543 (2018). https://doi.org/10.1007/s10115-018-1164-3

14. Ragan, E.D., Endert, A., Sanyal, J., Chen, J.: Characterizing provenance in visu-
alization and data analysis: an organizational framework of provenance types and
purposes. IEEE Trans Vis Comput Graph 22(1), 31–40 (2015)

15. Shrinivasan, Y.B., van Wijk, J.J.: Supporting the analytical reasoning process in
information visualization. In: Proc. of the SIGCHI Conference on Human Factors
in Computing Systems. p. 1237–1246. CHI ’08, ACM, New York, NY, USA (2008)

16. Steukers, B., Janssenswillen, G., van Hulzen, G.A.W.M., Vanhoenshoven, F., De-
paire, B.: bupaRflow: A Workflow Interface for bupaR. In: BPM Demo and Re-
sources track. vol. 3216, pp. 102–106. CEUR Workshop Proceedings (2022)

17. Viner, D., Stierle, M., Matzner, M.: A process mining software comparison. arXiv
preprint arXiv:2007.14038 (2020)

18. Watkins, R., Neal, M.: Why and how of requirements tracing. IEEE Software 11(4),
104–106 (1994). https://doi.org/10.1109/52.300100

19. Wongsuphasawat, K., Liu, Y., Heer, J.: Goals, process, and challenges of ex-
ploratory data analysis: An interview study. arXiv:1911.00568 (2019)

20. Xu, K., Attfield, S., Jankun-Kelly, T., Wheat, A., Nguyen, P.H., Selvaraj, N.:
Analytic provenance for sensemaking: A research agenda. IEEE Comput Graph
Appl 35(3), 56–64 (2015). https://doi.org/10.1109/MCG.2015.50

21. Zerbato, F., Soffer, P., Weber, B.: Initial insights into exploratory process mining
practices. In: Business Process Management Forum. LNBIP, vol. 427, pp. 145–161.
Springer (2021). https://doi.org/10.1007/978-3-030-85440-9 9

22. Zerbato, F., Soffer, P., Weber, B.: Process mining practices: Evidence from inter-
views. In: Int. Conf. on Business Process Management (BPM). pp. 268–285. LNCS,
Springer (2022). https://doi.org/10.1007/978-3-031-16103-2 19

https://doi.org/10.1145/3209900.3209913
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1007/s10115-018-1164-3
https://doi.org/10.1109/52.300100
https://doi.org/10.1109/MCG.2015.50
https://doi.org/10.1007/978-3-030-85440-9_9
https://doi.org/10.1007/978-3-031-16103-2_19

	Supporting Provenance and Data Awareness in Exploratory Process Mining

