
Viola: Detecting Violations of Behaviors
from Streams of Sensor Data

Gemma Di Federico[0000−0002−2487−1164], Giovanni Meroni[0000−0002−9551−1860],
and Andrea Burattin[0000−0002−0837−0183]

Technical University of Denmark, Kgs. Lyngby, Denmark
gdfe@dtu.dk

Abstract. Sensor networks and the Internet of Things enable the easy
collection of environmental data. With this data it is possible to perceive
the activities carried out in an environment. For example, in healthcare,
sensor data could be used to identify and monitor the daily routine of
people with dementia. In fact, changes in routines could be a symptom
of the worsening of the disease. Streaming conformance checking tech-
niques aim at identifying in real-time, from a stream of events, whether
the observed behavior differs from the expected one. However, they re-
quire a stream of activities, not sensor data. The artifact-driven process
monitoring approach combines the structure of the control-flow with the
data in an E-GSM model. This paper presents Viola, the first technique
capable of automatically mining an E-GSM model from a labeled sensor
data log, which is then suitable for runtime monitoring from an unla-
beled sensor stream to accomplish our goal (i.e., streaming conformance
checking). This approach is implemented and has been validated with
synthetic sensor data and a real-world example.

1 Introduction

The environment we live in is becoming smarter and interconnected thanks to the
increasing use of sensor systems. These systems are able to collect large amount
of data on the environment we are living in and could be used to perceive the
activities performed in order to derive their dependencies. In particular, these
data can be represented in the form of a process model, where the process is
intended as the execution of a series of activities performed in the environment.

One field, among many, that would benefit from this technology is the health-
care domain. In the area of Ambient Assisted Living, sensor systems can be used
to discover and monitor the course of a disease. For instance, people affected by
dementia usually tend to follow a strict routine. A deviation in the routine could
be a symptom of the worsening of the disease. Therefore, by automatically mod-
eling a person’s routines as a process model [5], it becomes possible to monitor
whether deviations from daily habits are occurring, in order to monitor the evo-
lution of their disease.

However, data captured by sensor systems and behavioral process models are
at two different levels of abstraction. Sensor data represent low-level events at

2 Gemma Di Federico , Giovanni Meroni, and Andrea Burattin

a specific point in time, whereas behavioral process models represent high-level
activities and their dependencies. In addition, the application scenario requires
real-time analysis so that medical staff can be notified as soon as changes are de-
tected and react accordingly. This makes post-mortem analysis trivial. Therefore,
discovering a behavioral process model from sensor data, detecting in real-time
when activities in the model are executed, and identifying deviations between the
discovered model and the observed behavior as they occur becomes a challenging
task.

To address this issue, streaming conformance checking [2,15] aims to analyze
an event stream with respect to a process model. However, most approaches for
conformance checking focus on the structure of the process (i.e. the control flow),
ignoring the data generated when the process is run (e.g. sensor data). Hence,
they expect the stream to contain high-level events, rather than low-level sensor
data. Therefore, a pre-processing step in charge of abstracting activities from
sensor data would be necessary. Artifact-driven process monitoring is one of the
few approaches that explicitly combines the structure of a process with the data
produced by the activities in that process [10]. An example is the Extended-GSM
(E-GSM) modeling language, which includes both control flow dependencies and
rules to determine when activities are executed. However, artifact-driven process
monitoring requires the process and the rules to identify activities to be manually
modeled, either from scratch or from an imperative process model [11].

The work presented in this paper is called Viola, and it aims at detecting
violations of behaviors from a stream of sensor data. The approach relies on
Process Mining and Machine Learning techniques to automatically generate an
E-GSM model from a labeled sensor log, where the labels indicate high-level
activities carried out and perceived (i.e., observed) by the sensors. The stream-
ing conformance checking algorithm takes as input directly the stream of raw
sensors measurements, which lies at a lower abstraction level. The paper aims
to answer the following research questions. First, we would like to focus on the
derivation of the E-GSM process model, verifying if the approach is able to con-
struct a behavioral process model suitable for conformance checking, where the
data are in the form of labeled activities (RQ1). The resulting model is then
used by the engine to monitor the process at run-time. In particular, the engine
receives a stream of unlabeled sensor data and uses the E-GSM model to detect
which activities are running. The second research question focuses on recogni-
tion, so we want to assess the approach’s ability to recognize activities from an
unlabeled stream of sensor data (RQ2). Once the running activities have been
identified, the engine verifies the conformance between the observed behavior
and its representation in the model. Therefore, the approach should be capable
of verifying if the observed behavior is consistent with the discovered behavioral
model (RQ3). The approach has been validated with an artificial sensor log and
a real-world one.

The rest of the paper is structured as follows. Sect. 2 presents the related
work. The approach is explained in Sect. 3. It is then evaluated in Sect. 4,
including a discussion of the results. Sect. 5 concludes the paper.

Viola: Detecting Violations of Behaviors from Streams of Sensor Data 3

2 Related Work

The level of abstraction at which a process model is represented is reflected in
the granularity of the event log used to derive the model. When the process
is captured by sensor systems, the data is in the form of fine-grained sensor
measurements, which result in a chaotic and non-expressive process model [14].
Instead, experts are interested in analyzing the behavior in terms of higher-level
activities. Hence, sensor measurements need to be grouped into activity labels.

Several techniques to cope with this problem have been devised, ranging from
event abstraction [16] to activity recognition [1]. One of the main challenges of
this work is to recognize activities on a stream of data, i.e. online. In the field
of event abstraction, Tax et al. [13] propose a supervised learning approach that
applies a statistical modeling method to recognize activities. The approach takes
as input a set of annotated traces used to train a conditional random field, which
then operates on an unlabeled log to abstract activities. Moving to the activity
recognition field, Sanchez et al. [12] propose a technique to recognize abnormal
activities. They use a labeled event log to train a classifier, which is then tested
on an unlabeled log. The approach is only capable to detect activities that were
already included in the training set. Also Maswadi et al. [9] make use of classi-
fication algorithms, comparing Decision Tree (DT) and Naïve Bayes classifiers
with the aim to perform a real-time classification of activities. The performance
of the two algorithms is similar, but the DT classifier resulted in higher accuracy.
The authors also highlight the importance of data pre-processing for feature se-
lection, which can significantly improve classification accuracy. What is more,
the DT is more clear in the explanation and representation of the decisions.

Furthermore, the process model must be able to represent activities but also
consider the information behind them. That is, make the process data-aware.
For the imperative languages, the focus is on data-aware Petri Nets [7, 8]. E.g.,
the Colored Petri Net, where the data dimension is dependent on the control
flow as data elements are attached to the tokens. During the verification of a
Colored Petri Net [4], both the data and the control flow are checked to evaluate
the next activity. When a violation is identified, the verification of the process
instance is stopped. Moving towards declarative languages, Burattin et al. [3]
recognize the need of verifying the conformance of multi-perspective declara-
tive models, by proposing a conformance checking algorithm that exploits also
the data dimension. It is worth mentioning that all of the aforementioned ap-
proaches revolve around the notion of activity, and the data is seen as an event
attribute. In the context of this paper, the objective is to deal directly with a
stream of data values, where the notion of activity naturally emerges from the
data configuration observed. On the one hand, all the mentioned approaches do
not allow for the streaming verification of the process. On the other hand, the
existing online conformance checking algorithms [2,15] only focus on the control
flow without considering the data. A solution is presented by Meroni et al. [11],
E-GSM, in which both the data and the process perspectives are considered,
by introducing the so-called process flow guards. The approach allows for the
run-time verification of a process. However, no approach to discover E-GSM

4 Gemma Di Federico , Giovanni Meroni, and Andrea Burattin

Rules

1a 1b

2

Sensor data
stream

t

3
{ , },

Offline

E-GSM model

A

A_runDG M
DG

BDG

CDG

PG

PG

PG

B_runDG M

C_runDG M

M

M

M

Labeled log

A

B

C

A

A_runDG M
DG

BDG

CDG

PG

PG

PG

B_runDG M

C_runDG M

M

M

M

Monitoring results

Online

E-GSM
Engine

Sensor data
ar�fact

Directly-follows

graph

Fig. 1: Overview of the Viola approach. The different steps of the approach are
numbered 1a, 1b, 2, and 3

models from execution logs exists. Also, to determine when activities are exe-
cuted, the E-GSM model predicates on labels representing the discrete state of
the environment, rather than on raw sensor data.

3 Approach

The approach presented in this paper, named Viola, aims to identify violations
of behaviors from a stream of sensor data. The streaming conformance checking,
based on an E-GSM model, is able to process a stream of sensors, represent it in
the form of an abstracted process model, and verify at run-time if new instances
of the process are compliant.

An overview of the Viola approach is presented in Figure 1. Viola is divided
into two phases, one offline and one online. During the offline phase, the E-GSM
model is constructed. The starting point is a labeled sensor log.Step 1a consists
of the derivation of the process flow conditions, in the form of a Directly-Follows
Graph (DFG). In Step 1b, the data flow constraints are derived and represented
in the form of rules. The rules explain how each activity label can be recognized,
starting from an unlabeled series of sensor measurements. In step 2, both the
DFG and the rules are used to build the E-GSM model. In particular, information
in the DFG is used to derive the structure of the process, whereas the rules are
used to derive the conditions on the data flow guards and milestones. In the
online (i.e., streaming) phase, a stream of unlabeled sensor data is processed
(step 3 of Fig. 1). The processing consists in dividing the stream in windows
to be analyzed and organizing them in the sensor data artifact suitable for the
E-GSM engine. Based on the content of the windows and the constraints on
the stages, running activities are recognized. If the rules on the guards are not
fulfilled, violations in the execution of the process are identified.

In the following sections, each step of the two phases is explained in detail.
But before, background knowledge on E-GSM is provided.

Viola: Detecting Violations of Behaviors from Streams of Sensor Data 5

3.1 Background

E-GSM is an extension of the Guard-Stage-Milestone (GSM) artifact-centric
language explicitly designed for process monitoring. As shown in Figure 3, E-
GSM represents the units of work performed in a process (e.g., activities and
process portions) with stages. Stages can be either atomic (e.g., A_run), or can
nest other stages (e.g., A).

To determine when a stage is executed, it is annotated with data flow guards
(e.g. A.DG and A_run.DG), and milestones (e.g., A.M and A_run.M). Data
flow guards and milestones are Event-Condition-Action (ECA) rules, which re-
quire an event and a boolean expression to be specified. In particular, the boolean
expression in an ECA rule is evaluated when the specified event happens, based
on the state of the model at that time.

Stages can be in one of the following states: unopened, opened, closed. When
the process starts, all stages are unopened, indicating that they were never ex-
ecuted. When a data flow guard holds and the associated stage is unopened or
closed, that stage becomes opened, indicating that the process element repre-
sented by that stage is being executed. When a milestone holds and the asso-
ciated stage is opened, that stage becomes closed, indicating that the process
element completed its execution. Also, if that stage has any opened child stages,
those become closed too.

A stage can be decorated with process flow guard (e.g., A.PG) to represent
control flow dependencies that a stage should fulfill before being executed. A
process flow guard is a boolean expression that is evaluated immediately after
one of the data flow guards of the associated stage holds.

Stages can also be marked as onTime, outOfOrder, or skipped. When the
process starts, all stages are onTime. When one of the data flow guards of a stage
holds, the expression on the process flow guard of that stage is evaluated. If the
expression evaluates to true, the associated stage remains onTime, outOfOrder
otherwise. In addition, if the expression predicates on another stage being opened
or closed, and that stage is unopened, then that stage becomes skipped.

It is worth noting that process flow guards do not enforce control flow depen-
dencies. A stage can still be opened even if its process flow guard does not hold,
as long as at least one of its data flow guards holds. This allows to continuously
and autonomously monitor the execution of a process based on sensor data.

E-GSM supports different kinds of events. In this paper, we will cover only
a subset that is relevant for Viola. When the E-GSM engine receives updated
sensor data, it triggers two events e′ and e′′ to be emitted in succession. These
events can then be used by data flow guards and milestones (e.g., A.DG and
A_run.M) to check their boolean expression only when the sensor data changes.
Also, when a milestone holds, it triggers an event (e.g., A_run.M when the
milestone M of A_run is achieved) to be emitted. Such event can then be used
by data flow guards and milestones (e.g., A.M) to check their value only when
a portion of the process completed its execution.

6 Gemma Di Federico , Giovanni Meroni, and Andrea Burattin

Boolean expressions can predicate both on sensor data to check whether they
assume a specific value (e.g., A.DG and A_run.M) and on the model itself to
check whether a stage is opened (e.g., A.PG and A.M).

3.2 Steps 1a and 1b: Derivation of DFG and Decision Rules

The key aspect of the proposed approach is its capability of processing an un-
labeled stream of data. To achieve the objective, an E-GSM model must be
derived. For the automatic generation of the model, information related to the
control flow and to the activities must be provided. As depicted in Figure 1, the
first phase is composed of two steps. In step 1a the control flow is discovered
by means of a Process Mining algorithm, that derives a DFG. In the DFG, the
nodes represent activities while the edges are the directly follows relationships
between pairs of activities. We also assume that it is possible to augment the
DFG with information regarding which nodes are starting nodes. This informa-
tion can be extracted either from the DFG itself (e.g., by looking for nodes with
no incoming edges) or by looking for activities that are predominantly observed
as the first activity in the log (the actual procedure to perform this is outside
the scope of this paper). The DFG is used to define, in the E-GSM model, the
stages and their process flow guards. Since the E-GSM model is derived starting
from the DFG, the expressiveness of the E-GSM model is fundamentally limited
by the expressiveness of DFG. In particular, parallel executions are not allowed.

The stage names on the E-GSM model have the label of the high-level ac-
tivities from the labeled sensor log. However, during the streaming conformance
checking phase, an unlabeled stream is processed. For this reason, we have to
derive the rules necessary to recognize an activity (step 1b), that will be used
to define the data flow guards and milestones in the E-GSM model. We require
that the same activity label cannot be repeated in a sequence, since ideally the
same activity is not performed several times in a row. What is more, we assume
that there is no interleaving in the execution of activities. An activity is charac-
terized by a specific series of sensor data, and this information is used to train
a classifier. For example, we can segment the sensor log into windows and, for
each window, determine the set of sensors required to detect the corresponding
activity label. Sensor names could then be used as features to train a DT clas-
sifier, where the leaves (i.e., the classes) refer to the activity labels, while the
internal nodes predicate on the selected classification features. The classifier is
translated into first-order logic expressions, each referring to the data conditions
for a certain activity to occur.

3.3 Step 2: Generation of E-GSM Models from DFGs and Decision
Rules

Once we have discovered the DFG and we have identified the rules to infer from
sensor data when an activity is running, we can build an E-GSM model (step 2
in Fig. 1) that will be used to monitor the process at runtime (i.e., streaming
conformance checking).

Viola: Detecting Violations of Behaviors from Streams of Sensor Data 7

A

B

C

(a) DFG

Label Rule

A x>1
B y>2
C z>1

(b) Rules

Fig. 2: DFG (a) and rules (b) ex-
tracted from labeled sensor log

A

A_run
D

M: on e''
if not x>1

D
DG: on e'

if x>1

M: on A_run.M
if IsOpened(B) or
IsOpened(C)

B

B_run
D

M: on e''
if not y>2

D
DG: on e'

if y>2
M: on B_run.M
if IsOpened(C)

C

C_run
D

M: on e''
if not z>1

D
DG: on e'

if z>1
M: on C_run.M
if true

P

PG: not
(IsOpened(A) or
IsOpened(B) or

IsOpened(C))

PPG: IsOpened(A)

P
PG: IsOpened(A) or

IsOpened(B)

Fig. 3: Generated E-GSM model

Since an activity in a DFG can be connected with any other activity, exist-
ing techniques to generate E-GSM models from block-structured process models
are not suited for this purpose. Also, approaches that enforce control flow de-
pendencies cannot be used, since they would not allow monitoring executions
that differ from the expected control flow. Therefore, we defined an entirely new
transformation logic to derive the E-GSM model.

In particular, for each activity T in the DFG, the following elements are
derived in the E-GSM model.

– One atomic stage S_run, which is used to detect when T is running.

For example, stages A_run, B_run and C_run in Figure 3 are derived from,
respectively activities A, B and C in Figure 2a.

– One parent stage S, which contains S_run and it is used to assess the
conformance of T with respect to the expected execution flow.

For example, stages A, B and C in Figure 3 are derived from, respectively
activities A, B and C in Figure 2a.

– One data flow guard S.DG, which is attached to S. S.DG is evaluated
when event e′ is emitted (i.e., every time updated sensor data are received,
before e′′ is emitted). S.DG requires the rules from the decision tree asso-
ciated with the class T to evaluate to true. In this way, whenever updated
sensor data are received, S.DG is evaluated. If the sensor data indicate that
activity T is being executed (that is, S.DG evaluates to true), stage S will
become opened.

For example, the data flow guard A.DG in Figure 3 requires the rule in Fig. 2b
associated with activity A, that is, the value registered by sensor x to be
greater than 1, to evaluate to true.

– One data flow guard S_run.DG, which is attached to S_run, which is
identical to S.DG.

8 Gemma Di Federico , Giovanni Meroni, and Andrea Burattin

In this way, when activity A is being executed, stage A_run will be opened.

– One milestone S_run.M , which is attached to S_run. S_run.M is eval-
uated when event e′′ is emitted (i.e., every time updated sensor data are
received, immediately after e′ is emitted). S_run.M requires the rule asso-
ciated to T to evaluate to false. In this way, whenever updated sensor data
are received, S.M is evaluated. If the sensor data indicate that activity T
is no longer being executed (that is, S.DG evaluates to false), stage S will
become closed. Also, since e′′ is always emitted after e′, whenever updated
sensor data are received, S_run.M will always be evaluated after all the
data flow guards in the model.

For example, the milestone A_run.M in Figure 3 requires the fulfillment of
the rule in Fig. 2b associated with activity A, that is, the value registered by
sensor x to be greater than 1, to evaluate to false.

– One milestone S.M , which is attached to S. S.M is evaluated when S_run.M
is emitted. S_run.M requires at least one stage Ssucc to be opened. Ssucc is
a parent stage derived from an activity Tsucc which is a successor of T , that
is, in the DFG Tsucc is directly connected to T through an incoming arc. If
no stage Ssucc exists, then S.M always evaluates to true.

For example, the milestone A.M in Figure 3 is evaluated when A_run.M
is emitted, and requires either stage B or C, which are derived from the
activities in Figure 2a that are successors of A, to be opened. In this way,
when activity A stops being executed, stage A will become closed only if the
next activity is either B or C.

– One process flow guard S.PG, which is attached to S. S.PG requires at
least one of the following boolean expressions to evaluate to true:
1. At least one stage Spred must be opened. Spred is a parent stage derived

from an activity Tpred which is a predecessor of T , that is, in the DFG
Tpred is directly connected to T through an outgoing arc. If no stage
Spred exists, then this expression always evaluates to false.

2. If T is an initial activity, that is, in the DFG the process start is directly
connected to T with an outgoing arc, no parent stage in the model must
be opened. If T is not an initial activity, then this expression always
evaluates to false.

For example, the process flow guard A.PG in Figure 3 requires that stages
A, B and C must not be opened, since activity A in Figure 2a is an initial
activity and has no predecessor. Conversely, the process flow guard B.PG in
Figure 3 requires that stage A must be opened, since activity A in Figure 2a
is a predecessor of activity B.

3.4 Step 3: Streaming Processing and Conformance Checking

The last step of the approach, step 3 in Figure 1, consists of the conformance
checking of a stream of sensor data. During the online processing, the stream of

Viola: Detecting Violations of Behaviors from Streams of Sensor Data 9

sensor data passes through a pre-processing phase where the data are converted
into the format suitable for the E-GSM engine. As introduced in Sect. 3.2 for
the step 1b, the sensor data stream can be processed in windows. During the
segmentation, we determine the set of sensors contained in each window, which
is transformed into a data object (i.e. the sensor data artifact), and sent to the
E-GSM engine. Each data object is evaluated by the engine according to the
data flow guards and milestones, in order to check whether the target conditions
are met, that is, if the activity is recognized and running.

To conclude, the approach presented in this paper allows the discovery of a
E-GSM model starting from a labeled sensor log. The model is then suitable for
the streaming conformance checking of an unlabeled sensor stream, in order to
detect deviations in the behaviors.

4 Evaluation

To evaluate the approach presented in this paper, two experiments are con-
ducted, one based on synthetic event logs, and the other based on a real dataset.
The objective of the evaluation is to verify whether the approach is able to
answer the research questions presented in Sect. 1. In particular, the use of syn-
thetic event logs allowed us to conduct a controlled experiment where we could
scrupulously verify the approach’s ability to process a stream of events, cor-
rectly recognize activities, and verify the conformity of the behavioral process
model. The experiment using a real dataset served to verify the actual applica-
bility of the approach to a real use case. In the context of this paper, only the
first experiment is explained, while the second one can be found in a technical
report1.

The first experiment is based on two synthetic datasets we constructed2. The
datasets describe the movements of a person inside a smart environment, where
movements are captured by sensors. To obtain the datasets, we used a smart
environment simulator tool, called Linac [6], which produces as output a stream
of triggered sensors, generated by the movements of a previously programmed
agent. The stream has been sequentialized and stored in a single log file and
it has been processed in order to be labeled. Two scenarios are constructed: a
normal scenario used to discover the process model and construct the E-GSM,
and a variation (i.e. a misalignment) used in the online phase for streaming
conformance checking.

The map of the environment used in the simulation is composed of four
rooms (named A, B, C, D). Each room is equipped with 5 pressure sensors on
the floor that record pressure variations, and a presence sensor on the entry
door that triggers at the passage in the detecting area. Sensors have a trigger
frequency of 30 seconds. The person moves across the rooms, and the behavior
changes according to the situation being simulated. In the base scenario (named
l-base), the person moves between the four rooms, following the order from A
1 The appendix can be found at https://dx.doi.org/10.5281/zenodo.7982452.
2 The source code can be found at https://github.com/gemmadifederico/VIOLA.

https://dx.doi.org/10.5281/zenodo.7982452
https://github.com/gemmadifederico/VIOLA

10 Gemma Di Federico , Giovanni Meroni, and Andrea Burattin

l-base l-error

False positives 0 8
False negatives 0 1
True positives 400 235
Precision 1 0.97
Recall 1 0.99
F1 score 1 0.98

(a) Activity recognition evaluation

l-base l-error

onTime activities 400 50
outOfOrder act. 0 185
Tot. activities 400 236
Conformance 1 0.21

(b) Control flow evaluation

Table 1: Results of the synthetic simulation

to D. The log constitutes the base case, and it is used to verify the capability
of the approach in detecting activities. In the variation of the scenario (named
l-error), the path of the person varies, covering either all the rooms in a different
order or just some of them. The variation is in the control flow, and the goal is
to recognize the set of activities executed but also identify when the set differs
from the modeled one, i.e. the violations.

The base behavioral model is derived from the normal scenario. The l-base
log is split into training and test sets (70/30). Following the procedure indicated
in Fig. 1, a DFG and a set of rules are derived. In our tests, we used the PM4Py
and Scikit-learn libraries for Python3 for deriving, respectively, the DFG and
the set of rules. Firstly, the training set is pre-processed to group events into
timed windows of 30 seconds. The size of the window was decided based on the
average duration of each activity identifier, trying to approximate it. For each
window, we extract the set of sensors and the corresponding activity label. The
sensor names are used as features to train a classifier. The CART (Classification
and Regression Tree) algorithm is used for the classification, while the Gini
Index is adopted for the splitting. The obtained DT is then translated into
boolean expressions to obtain the rules. Secondly, the corresponding function
of the aforementioned library is used to derive a DFG representing the control
flow of the process. Therefore, the DFG and the rules are translated in the
E-GSM behavioral model, which is passed to the engine for the online phase.
SMARTifact [10] is the process monitoring platform used by the engine. During
the online phase, the logs are pre-processed by a Complex Event Processing
(CEP) system, which simulates a stream, hides the label, and groups the data
in timed windows (as in offline processing).

The results of the application of the approach are presented in Table 1.
The evaluation covers the recognition of activities considering false positives,
false negatives, and true positives (Table 1a); while the control flow is evaluated
by considering onTime and outOfOrder activities, as well as the conformance
measure (Table 1b). The first columns in Tables 1 refer to the verification with
the test set of the normal scenario. As can be noticed in Table 1a, all the activities
3 See https://pm4py.fit.fraunhofer.de/, https://scikit-learn.org/stable/.

https://pm4py.fit.fraunhofer.de/
https://scikit-learn.org/stable/

Viola: Detecting Violations of Behaviors from Streams of Sensor Data 11

are correctly recognized, returning a perfect value for precision, recall, and F1
score. When the control flow varies, that is l-error, it becomes more challenging
to recognize the activities. However, the approach was able to recognize almost
the entire set of activities (indeed precision and recall values are still high),
starting from the sensor stream. Once the activities have been recognized, we
need to verify if they conform to the control flow. An activity identified among
the true positives is flagged as onTime when it fulfills the requirements of both
the data and the process flow guards. If an activity is detected, and the data flow
guard holds but the process flow guard doesn’t hold, the activity is marked as
outOfOrder. Therefore, the overall conformance is computed as the ratio between
the total amount of onTime activities and the sum between the total onTime and
the total outOfOrder. The results are shown in Table 1b. In the verification using
the test set of the normal scenario, the control flow perfectly fits the reference
model, as expected. For the variation instead, it is important to consider that
not all the activities in l-error are non-compliant. In fact, there could be a partial
match of the control flow. As a consequence, not all the activities are marked as
outOfOrder.

The application of the approach on synthetic datasets produced promising
results as the discovered data guards are capable of discriminating the different
activities. Hence, we are able to construct a correct and meaningful behavioral
model suitable for conformance checking. Therefore, we can positively answer
to RQ1. In the base case, all the activities were correctly recognized. Also, no
control flow violations were detected. Even with the introduction of variations
in the behaviors, only a few activities were erroneously classified. Similarly, only
a few non-existent control flow violations were detected. This aspect partially
answers to RQ2 and RQ3, since it could generate a cascade effect. If an activity
is mislabeled and therefore it is flagged as running, but violates the control flow,
it will impact the conformance of the entire process instance. In other words: if
an activity is wrongly classified, then the conformance will be evaluated against
the classified activity, not the real one.

5 Conclusions and Future Work

In this paper, we presented Viola, a behavioral violations detection approach
that works on streams of sensor data. Viola is able to automatically derive
an E-GSM behavioral model starting from a labeled sensor log. What is more,
Viola allows the online verification of the conformity between the behavioral
process model and an unlabeled stream of sensor data. The behavioral model
represents activity labels as stages, while the stages predicate on the sensor data.
In other words, the approach is able to process a stream of raw sensor events
(i.e. low-level of granularity), while the model represents higher-level activity
labels. The approach is evaluated using synthetic and real datasets. In both cases
positive results were obtained, supporting the quality of the proposed approach.
The approach has some limitation mainly due to the expressiveness of the DFG
graph used to generate the E-GSM model. The approach does not allow for

12 Gemma Di Federico , Giovanni Meroni, and Andrea Burattin

parallel executions. What is more, we do not consider repetitive activities, i.e.,
when the same activity is repeated several times in a sequence. In fact, we assume
that a person does not perform the same activity over and over again, but only
that they are performing that specific activity. As a future work, we would like
to improve the detection of activities by enhancing the hyperparameter tuning
process, as it influences the performance of the task. In addition, we aim to
formalize the translation from the DFG and the rules in the E-GSM model, in
order to demonstrate their correctness.

References

1. Arshad, M.H., Bilal, M., Gani, A.: Human activity recognition: Review, taxonomy
and open challenges. Sensors 22(17), 6463 (2022)

2. Burattin, A., Carmona, J.: A framework for online conformance checking. In: BPM.
pp. 165–177. Springer (2017)

3. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-
perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016)

4. Carrasquel, J.C., Mecheraoui, K., Lomazova, I.A.: Checking conformance between
colored petri nets and event logs. In: AIST. pp. 435–452. Springer (2020)

5. Di Federico, G., Burattin, A., Montali, M.: Human behavior as a process model:
Which language to use? In: ITBPM@ BPM. pp. 18–25 (2021)

6. Di Federico, G., Nikolajsen, E.R., Azam, M., Burattin, A.: Linac: A smart envi-
ronment simulator of human activities. In: ICPM. pp. 60–72. Springer (2022)

7. Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S.: Cocomot: Conformance
checking of multi-perspective processes via smt. In: BPM. pp. 217–234 (2021)

8. de Leoni, M., Felli, P., Montali, M.: A holistic approach for soundness verification
of decision-aware process models. In: ICCM. pp. 219–235. Springer (2018)

9. Maswadi, K., Ghani, N.A., Hamid, S., Rasheed, M.B.: Human activity classification
using decision tree and naive bayes classifiers. Multimed. Tools. Appl. 80(14),
21709–21726 (2021)

10. Meroni, G.: Artifact-Driven Business Process Monitoring - A Novel Approach to
Transparently Monitor Business Processes, Supported by Methods, Tools, and
Real-World Applications, Lect. Notes Bus. Inf., vol. 368. Springer (2019)

11. Meroni, G., Baresi, L., Montali, M., Plebani, P.: Multi-party business process com-
pliance monitoring through iot-enabled artifacts. Inf. Syst. 73, 61–78 (2018)

12. Sánchez, V.G., Skeie, N.O.: Decision trees for human activity recognition modelling
in smart house environments. Simul. Notes Eur. 28, 177–184 (2018)

13. Tax, N., Sidorova, N., Haakma, R., Aalst, W.: Mining process model descriptions
of daily life through event abstraction. In: Int. J. Intell. Syst. Appl. pp. 83–104.
Springer (2016)

14. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.: Log-based evaluation of
label splits for process models. Procedia Comput. Sci. 96, 63–72 (2016)

15. van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B.F., van der Aalst, W.M.:
Online conformance checking: relating event streams to process models using prefix-
alignments. JDSA 8(3), 269–284 (2019)

16. van Zelst, S.J., Mannhardt, F., de Leoni, M., Koschmider, A.: Event abstraction
in process mining: literature review and taxonomy. Granul. Comput. 6(3) (2021)

	Viola: Detecting Violations of Behaviors from Streams of Sensor Data

