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Abstract. Process discovery is a family of techniques that helps to comprehend
processes from their data footprints. Yet, as processes change over time so should
their corresponding models, and failure to do so will lead to models that under-
or over-approximate behaviour. We present a discovery algorithm that extracts
declarative processes as Dynamic Condition Response (DCR) graphs from event
streams. Streams are monitored to generate temporal representations of the pro-
cess, later processed to create declarative models. We validated the technique
by identifying drifts in a publicly available dataset of event streams. The used
metrics extend the Jaccard similarity measure to account for process change in
a declarative setting. The technique and the data used for testing are available
online.
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1 Introduction

Process discovery techniques promise that given enough data, it is possible to output
a realistic model of the process as is. This evidence-based approach has a caveat: one
needs to assume that inputs belong to the same process. Not considering process vari-
ance over time might end in under- or over-constrained models that do not represent
reality. The second assumption is that it is possible to identify full traces from the
event log. This requirement indeed presents considerable obstacles in organizations
where processes are constantly evolving, either because the starting events are located
in legacy systems no longer in use, or because current traces have not finished yet.
Accounting for change is particularly important in declarative processes. Based on a
“outside-in” approach, declarative processes describe the minimal set of rules that gen-
erate accepting traces. For process mining, the simplicity of declarative processes has
been demonstrated to fit well with real process executions, and declarative miners are
currently the most precise miners in use3. However, little research exists regarding how
declarative miners are sensitive to process change. The objective of this paper is to
study how declarative miners can give accurate and timely views of partial traces (so-
called event streams). We integrate techniques of streaming process mining to declar-
ative modelling notations, in particular, DCR graphs [14]. While previous works of
streaming conformance checking have addressed other declarative languages (e.g.: De-
clare [23]), these languages are fundamentally different. Declare provides a predefined
⋆ Alphabetical order, equal authors contribution
3 See https://icpmconference.org/2021/process-discovery-contest/.
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Fig. 1: Contribution of the paper

set of 18 constraint templates with an underlying semantics based on LTL formulae on
finite traces [12]. Instead, DCR is based on a minimal set of 5 constraints, being able to
capture regular and omega-regular languages [13]. In comparison with Declare, DCR
is a language adopted by the industry: DCR is integrated into KMD Workzone, a case
management solution used by 70% of central government institutions in Denmark [22].
Event streams present challenges for discovery. Streams are potentially infinite, mak-
ing memory and time computation complexities major issues. Our technique optimizes
these aspects by relying on intermediate representations that are updated at runtime. An-
other aspect is extensibility: our technique can be extended to more complex workflow
patterns via the combination of atomic DCR constraints. Fig. 1 illustrates our contribu-
tion: a streaming mining component, capable of continuously generating DCR graphs
from an event stream (here we use the plural graphs to indicate that the DCR model
could evolve over time, to accommodate drifts in the model that might occur). Towards
the long-term goal of a system capable of spotting changes in a detailed fashion, we will
also sketch a simple model-to-model metric for DCR, which can be used to compare
the results of stream mining with a catalogue or repository of processes. An implemen-
tation of our techniques is available in Beamline [6] and it can be downloaded, together
with all the tests and datasets4.

The rest of the paper is structured as follows: related works are presented in Sec-
tion 2; theoretical background is covered in Section 3. The streaming discovery is pre-
sented in Section 4 and the approach is validated in Section 5. Section 6 concludes.

2 Related Work

This paper is the first work aiming at the discovery of DCR graphs from an event stream.
It is possible to situate related work in either offline discovery for DCR graphs or online
discovery for Declare models.

Offline process discovery techniques. The most current discovery technique for
DCR graphs is the DisCoveR algorithm [4]. In their paper, the authors claim an ac-
curacy of 96,1% with linear time complexity (in PDC 2021 the algorithm achieved
96.2%). The algorithm is an extension of the ParNek algorithm [21] but it uses a highly

4 See https://github.com/beamline/discovery-dcr.

https://github.com/beamline/discovery-dcr
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efficient implementation of DCR mapping to bit vectors. In its most recent version [24],
DisCoveR has been extended with the idea of having both positive and negative exam-
ples to produce a more precise process model. Other related works derive from confor-
mance checking [10] and process repair [1] techniques. Both fields aim at understanding
whether executions can be replayed on top of an existing processes model. However,
in our case, we wanted to separate the identification of the processes (i.e., control-flow
discovery) from the calculation of their similarity (i.e., the model-to-model metric) so
that these two contributions can be used independently from each other. Conformance
checking and process repair, on the other hand, embed the evaluation and the improve-
ment into one “activity”.

Online Discovery for Declarative Models. In [7] a framework for the discovery of
Declare models from streams was introduced as a way to deal with large collections of
datasets that are impossible to store and process altogether. In [20] this work was gener-
alized to handle the mining of data constraints, leveraging the MP-Declare notation [9].

Streaming Process Mining in General. In his PhD thesis [29], van Zelst proposes
process mining techniques applicable to process discovery, conformance checking, and
process enhancement from event streams. An important conclusion from his research
consists of the idea of building intermediate models that capture the knowledge ob-
served in the stream before creating the final process model. In [5] the author presents a
taxonomy for the classification of streaming process mining techniques. Our techniques
constitute a hybrid approach in the categories in [5], mixing a smart window-based
model which is used to construct and maintain an intermediate structure updated, and a
problem reduction technique used to transform the such structure into a DCR graph.

3 Background

In the following section, we recall basic notions of Directly Follows Graphs [1] and the
Dynamic Condition Response (DCR) graphs [14]. While, in general, DCR is expressive
to capture multi-perspective constraints such as time and data [15,26], in this paper we
use the classical, set-based formulation first presented in [14] that contains only four
most basic behavioural relations: conditions, responses, inclusions and exclusions.

Definition 1 (Sets, Events and Sequences). Let C denote the set of possible case iden-
tifiers and let A denote the set of possible activity names. The event universe is the set
of all possible events E = C × A and an event is an element e = (c, a) ∈ E . Given a
set N+

n = 1, 2, . . . , n and a target set A, a sequence σ : N+
n → A maps index values to

elements in A. For simplicity we can consider sequences using a string interpretation:
σ = ⟨a1, . . . , an⟩ where σ(i) = ai ∈ A.

We can now formally characterize an event stream:

Definition 2 (Event stream). An event stream is an unbounded sequence mapping in-
dexes to events: S : N+ → E .

Definition 3 (Directly Follows Graph (DFG)). A DFG is a graph G = (V,R) where
nodes represent activities (i.e., V ⊆ A), and edges indicate directly follows relations
from source to target activities (i.e., (as, at) ∈ R with as, at ∈ V , so R ⊆ V × V ).
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Definition 4 (Extended DFG). An extended DFG is a graph Gx = (V,R,X) where
(V,R) is a DFG and X contains additional numerical attributes referring to the nodes:
X : V ×Attrs → R, where Attrs is the set of all attribute names. To access attribute α1

for node v we use the notation X(v, α1).

We use the following attributes: avgFO: average index of the first appearance of an ac-
tivity in a trace; noTraceApp: current number of traces containing the activity; avgIdx:
average index of the activity in a trace; and noOccur: number of activity occurrences.

Definition 5 (DCR Graph). A DCR graph is a tuple ⟨A,M,→•, •→,→+,→%⟩,
where A is a set of activities, M ⊆ P(A)×P(A)×P(A) is a marking, and ϕ ⊆ A×A
for ϕ ∈ {→•, •→,→+,→%} are relations between activities.

A DCR graph defines processes whose executions are finite and infinite sequences
of activities. An activity may be executed several times. The three sets of activities in
the marking M = (Ex,Re, In) define the state of a process, and they are referred to
as the executed activities (Ex), the pending response (Re)5 and the included activities
(In). DCR relations define what is the effect of executing one activity in the graph.
Briefly: Condition relations a→•a′ say that the execution of a is a prerequisite for a′,
i.e. if a is included, then a must have been executed for a′ to be enabled for execution.
Response relations a•→a′ say that whenever a is executed, a′ becomes pending. In
a run, a pending event must eventually be executed or be excluded. We refer to a′

as a response to a. An inclusion (respectively exclusion) relation a→+a′ (respectively
a→%a′) means that if a is executed, then a′ is included (respectively excluded).

For a DCR graph6 P with activities A and marking M = (Ex,Re, In) we write P•→
for the set of pairs {(x, y) | x ∈ A ∧ y ∈ A ∧ (x, y) ∈ •→} (similarly for any of the
relations in ϕ) and we write PA for the set of activities. Definition 5 omits the existence
of a set of labels and labelling function present in [14]. This has a consequence in the
set of observable traces: Assume a graph G = ⟨{a, b}, (∅, {a, b}, {a, b}), ∅, ∅, ∅, ∅⟩ as
well as a set of labels L = {p} and a labelling function l = {(a, p), (b, p)}. A possible
run of G has the shape σ = ⟨p, p⟩, which can be generated from 1) two executions of a,
2) two executions of b or 3) an interleaved execution of a and b. By removing the labels
from the events (or alternatively, assuming an injective surjective labelling function in
[14]), we assume that two occurrences of the event in the stream imply event repetition.

4 Streaming DCR Miner

This section presents the general structure of the stream mining algorithm for DCR
graphs. The general idea of the approach presented in this paper is depicted in Fig. 2:
constructing and maintaining an extended DFG structure (cf. Def. 4) starting from the
stream and then, periodically, a new DCR graph is extracted from the most recent ver-
sion of the extended DFG available. The extraction of the different DCR rules starts
from the same extended DFG instance. For readability purposes, we split the approach
into two phases. The former (Alg. 1) is in charge of extracting the extended DFG, the
latter (Algs. 2, 3, 4) focuses on the extraction of DCR rules from the extended DFG.

5 We might simply say pending when it is clear from the context.
6 We will use “DCR graph” and “DCR model” interchangeably in this paper
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Fig. 2: Conceptual representation of the discovery strategy in this paper.

Algorithm 1: General structure of Streaming DCR Miner
Input: S: stream of events; mt: maximum number of traces to store; me: maximum number of events per trace

to store; ⟨T,≤⟩: Pattern poset

1 Initialize map obs ▷ Maps case ids to the sequence of activities
2 Initialize map deps ▷ Maps case ids to one activity name
3 Initialize extended DFG GX = (V,R,X)
4 forever do

▷ Step 0: Observe new activity a for case c
5 (c, a)← observe(S)

▷ Step 1: Update of the extended DFG
6 if c ∈ obs then
7 Refresh the update time of c
8 if |obs(c)| ≥ me then
9 Remove oldest (i.e., earliest update time) event from list obs(c)

10 Update V and X of GX to be consistent with the event just removed

11 else
12 if |obs| ≥ mt then
13 Remove the oldest (i.e., earliest update time) trace from obs and all its events
14 Update V and X of GX to be consistent with the events just removed

15 obs(c)← ⟨⟩ ▷ Create empty list for obs(c)

16 obs(c)← obs(c) · ⟨a⟩ ▷ Append a to obs(c)
17 V ← V ∪ {a}
18 Update frequency and avg appearance index in X component of GX ▷ The average appearance index

is updated considering the new position given by |obs(c)|
19 if c ∈ deps then
20 R← R ∪ {(deps(c), a)}
21 deps(c)← a
22 if trigger periodic cleanup then ▷ Periodic cleanup of deps
23 Remove the oldest cases from deps

▷ Step 2: Periodic update of the DCR model (enough time/new behaviour)
24 if trigger periodic update of the model then
25 M ← mine(⟨T,≤⟩, GX) ▷ See Algorithm 2
26 Notify about new model M

Algorithm 1 takes as input a stream of events S, two parameters referring to the
maximum number of traces mt and events to store me and a set of DCR patterns to
mine. The algorithm starts by initializing two supporting map data structures obs and
deps as well as an empty extended DCR graph GX (lines 1-3). obs is a map associating
case ids to sequences of partial traces; deps is a map associating case ids to activity
names. After initialization, the algorithm starts consuming the actual events in a never-
ending loop (line 4). The initial step consists of receiving a new event (line 5). Then, two
major steps take place: the first step consists of updating the extended DFG; the second
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consists of transforming the extended DFG into a DCR model. To update the extended
DFG the algorithm first updates the set of nodes and extra attributes. If the case id c of
the new event has been seen before (line 6), then the algorithm refreshes the update time
of the case id (line 7, useful to keep track of which cases are the most recent ones) and
checks whether the maximum length of the partial trace for that case id has been reached
(line 8). If that is the case, then the oldest event is removed and the GX is updated to
incorporate the removal of the event. If this is the first time this case id is seen (line 11),
then it is first necessary to verify that the new case can be accommodated (line 12) and,
if there is no room, then first some space needs to be created by removing oldest cases
and propagating corresponding changes (lines 13-14) and then a new empty list can
be created to host the partial trace (line 15). In either situation, the new event is added
to the partial trace (line 16) and, if needed, a new node is added to the set of vertices
V (line 17). The X data structure can be refreshed by leveraging the properties of the
partial trace seen so far (line 18). To update the relations in the extended DFG (i.e., the
R component of GX ), the algorithm checks whether an activity was seen previously for
the given case id c and, if that is the case, the relation from such activity (i.e., deps(c))
to the new activity just seen (i.e., a) is added (lines 19-20). In any case, the activity just
observed is now the latest activity for case id c (line 21) and oldest cases (i.e., cases
not likely to receive any further events) are removed from deps (line 23). Finally, the
algorithm refreshes the DCR model by calling the procedure that transforms (lines 25-
26) the extended DFG into a DCR model (cf. Alg. 2). Updates can be triggered based
on some periodicity (line 24) or based on the amount of behaviour seen. The mechanics
of such periodicity are are beyond the scope of the paper.

Algorithm 2 generates a DCR graph from an extended DFG. We do so by (1) defin-
ing patterns that describe occurrences of atomic DCR constraints in the extended DFG,
and (2) defining composite patterns from (1) that define the most common behaviour.
Given a set of relation patterns T , ⟨T,≤⟩ denotes a pattern dependency poset with ≤ a
partial order over T . Similarly MinimalElements(⟨T,≤⟩) = {x ∈ T |̸ ∃y ∈ T.y ≤
x}. Patterns as posets allow us to reuse and simplify the outputs from the discovery
algorithm. Consider the inclusion of a DCR pattern describing a sequential composi-
tion from a to b (similar to the flow construct in BPMN). A DCR model that captures a
sequential behaviour will need 4 constraints in DCR: {a→•b, a•→b, a→%a, b→%b}.
Consider T = {T1 : Condition, T2 : Response, T3 : Exclusion, T4 : Sequence}. The
pattern poset ⟨T, {(T4, T1), (T4, T2), (T4, T3)}⟩ defines the dependency relations for a
miner capable of mining sequential patterns. Additional patterns (e.g. exclusive choices,
escalation patterns, etc), can be modelled in the same way. Pattern posets are finite, thus
there exist minimal elements. The generation of a DCR model from an extended DFG
is described in Algorithm 2. We illustrate the mining of DCR conditions, responses and
self-responses, but more patterns are available in [25]. The algorithm takes as input an
extended DFG GX and a pattern poset. It starts by creating an empty DCR graph P
with activities equal to the nodes in GX and initial marking Minit = {∅, ∅, V }, that
is, all events are included, not pending and not executed. We then split the process-
ing between atomic patterns (those with no dependencies) and composite patterns. The
map Rel stores the relations from atomic patterns, that will be used for the composite
miner. We use the merge notation P ⊕Rels to denote the result of the creation of a DCR
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Algorithm 2: Mining of rules starting from the extended DFG
Input: ⟨T,≤⟩: Pattern poset, GX = (V,R,X): extended DFG

1 P ← ⟨V,Minit,→• = ∅, •→ = ∅,→+ = ∅,→% = ∅⟩ ▷ Initial DCR graph
2 Rels, CompRels← ∅, ∅
3 foreach t ∈ MinimalElements(⟨T,≤⟩) do ▷ Baseline for atomic patterns
4 Rels← Rels ∪ MineAtomic(GX , t)

5 foreach t ∈ T\MinimalElements(⟨T ≤⟩) do ▷ Composite case
6 CompRels← CompRels ∪ MineComposite(GX , t, Rels)

7 if CompRels ̸= ∅ then
8 P ← P ⊕ CompRels
9 else

10 P ← P ⊕ Rels

11 return RemoveRedundancies(P ) ▷ Apply transitive reduction

Algorithm 3: Atomic miner
Input: GX = (V,R,X): extended DFG, u: DCR Pattern

1 Rels← ∅ ▷ Empty dictionary of mined relations
2 foreach (s, t) ∈ R do
3 switch u ▷ Pattern match with each atomic pattern
4 do
5 case RESPONSE do
6 if X(s, avgIdx) < X(t, avgIdx) then
7 Rels[u]← Rels[u] ∪ (s, t, •→)

8 case CONDITION do
9 if X(s, avgFO) < X(t, avgFO) ∧X(s, noTraceApp) ≥ X(t, noTraceApp) then

10 Rels[u]← Rels[u] ∪ (s, t,→•)

11 case SELFEXCLUDE do
12 if X(s, noOccur) = 1 then
13 Rels[u]← Rels[u] ∪ (s, s,→%)

▷ Further patterns here...
14 return Rels

graph whose activities and markings are the same as P , and whose relations are the
pairwise union of the range of Rels and its corresponding relational structure in P . Line
11 applies a transitive reduction strategy [4], reducing the number of relations while
maintaining identical reachability properties.

The atomic and composite miners are described in Algorithms 3, and 4. The atomic
miner in Alg. 3 iterates over all node dependencies in the DFG and the pattern matches
with the existing set of implemented patterns. Take the case of a response constraint. We
will identify it if the average occurrence of s is before t (line 6). This condition, together
with the dependency between s and t in GX is sufficient to infer a response constraint
from s to t. To detect conditions, the algorithm verifies another set of properties: given
a dependency between s and t, it checks that the first occurrence of s precedes t and
that s and t appeared in the same traces (approximated by counting the number of traces
containing both activities, line 9). The composite miner in Alg. 4 receives the DFG, a
pattern, and the list of mined relations from atomic patterns. We provide an example for
the case of include and exclude relations. This pattern is built as a combination of self-
exclusions, precedence, and not chain successions. As these atomic patterns generate
each set of include/exclude relations, the pattern just takes the set union construction.
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Algorithm 4: Composite miner
Input: GX = (V,R,X): extended DFG, u: DCR Pattern, Rels: Mined Relations

1 switch u do
2 case EXCLUDEINCLUDE do
3 return Rels[SELFEXCLUDE] ∪ Rels[PRECEDENCE] ∪ Rels[NOTCHAINSUCCESION]

▷ Removes redundant relations
▷ Further patterns here

Suitability of the Algorithms for Streaming Settings. Whenever discussing algorithms
that can tackle the streaming process mining problem [5], it is important to keep in
mind that while a stream is assumed to be infinite, only a finite amount of memory
can be used to store all information and that the time complexity for processing each
event must be constant. Concerning the memory, an upper bound on the number of
stored events in Alg. 1 is given by mt · me where me is the number of unique events
and mt is the number of parallel traces. Moreover, note that the extended DFG is also
finite since there is a node for each activity contained in the memory. Concerning the
time complexity, Alg. 1 does not perform any unbounded backtracking. Instead, for
each event, it operates using just maps that have amortized constant complexity or on
the extended DFG (which has finite, controlled size). The same observation holds for
Alg. 2 as it iterates on the extended DFG which has a size bounded by the provided
parameters (and hence, can be considered constant).

5 Experimental Evaluation
To validate our approach we executed several tests, first to validate quantitatively the
streaming discovery on synthetic data, then to qualitatively evaluate the whole approach
on a real dataset. Due to lack of space, we only report quantitative tests, while perfor-
mance and the qualitative evaluation can be found in a separate technical report [8].

5.1 Quantitative Evaluation of Streaming Discovery
Recall from the previous section that time/space complexity are constant for streaming
settings. Thus, our analysis will focus on studying how the algorithm behaves when
encountering sudden changes in a stream. We compare with other process discovery al-
gorithms for DCR graphs, in this case, the DisCoveR miner [4]. The tests are performed
against a publicly available dataset of events streams [11]. This dataset includes (1) a
synthetic stream inspired by a loan application process, and (2) perturbations to the
original stream using change patterns [28]. Recall that the DisCoveR miner is an offline
miner, thus it assumes an infinite memory model. To provide a fair evaluation we need
to parameterize DisCoveR with the same amount of available memory. We divided the
experiment into two parts: a simple stream where the observations of each process in-
stance arrive in an ordered manner (i.e., one complete process instance at a time) and a
complex stream where observations from many instances arrive intertwined. As no ini-
tial DCR graph exists for this process, and no streaming DCR miner exists, we used the
DisCoveR miner in its original (offline) setting to generate a baseline graph using the
entire dataset. This model (the one calculated with offline DisCoveR) was used to cal-
culate the model-to-model similarity between the DCR stream miner and the DisCoveR
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(a) Performance comparison on a simple stream.
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(b) Performance comparison on a complex stream.

Fig. 3: Performance comparison between the offline DisCoveR miner and the streaming
DCR Miner with equal storage available (capacity of up to 100 and 500 events).

miner with memory limits. For the sake of simplicity, in this paper, we considered only
the case of sudden drifts, while we discuss other types of drift in future work.

We introduce a metric that quantifies the similarity between two DCR graphs. It
can be used, for example, to identify which process is being executed with respect to
a model repository, or by quantifying the change rate of one process over time. The
metric takes as input two DCR graphs P and Q as well as a weight relation W that
associates each DCR relation in ϕ (cf. Def. 5) with a weight, plus one additional weight
for the activities. Then it computes the weighted Jaccard similarity [17] of the sets of
relations and the set of activities, similarly to what happens in [2] imperative models:

Definition 6 (DCR Model-to-Model metric). Given P and Q two DCR graphs, and
W : ϕ∪{act} → R a weight function in the range [0, 1] such that

∑
r∈ϕ∪{act}W (r) =

1. The model-to-model similarity metric is defined as:

S(P,Q,W ) = W (act) · |PA ∩QA|
|PA ∪QA|

+
∑
r∈ϕ

W (r) · |Pr ∩Qr|
|Pr ∪Qr|

(1)

The similarity metric compares the relations in each of the two DCR graphs, thus
returning a value between 0 and 1, where 1 indicates a perfect match and 0 stands for
no match at all. A brief evaluation of the metric is reported in Appendix A.

The results of the quantitative evaluation are reported in Fig. 3. Each figure shows
the performance of the incremental version of DisCoveR and the streaming DCR miner
against 2 different configurations over time. The vertical black bars indicate where a
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sudden drift occurred in the stream. While the performance for the simple stream is
very good for both the DisCoveR and the streaming DCR miners, when the stream be-
comes more complicated (i.e., Fig. 3b), DisCoveR becomes less effective, and, though
its average performance increases over time, the presence of the drift completely disrupt
the accuracy. In contrast, our approach is more robust to the drift and more stable over
time, proving its ability at managing the available memory in a more effective way.

5.2 Discussion

One of the limitations of the approach regards precision with respect to offline min-
ers. A limiting aspect of our work is the choice of the intermediate structure. A DFG
representation may report confusing model behaviour as it simplifies the observations
using purely a frequency-based threshold [27]. A DFG is in essence an imperative data
structure that captures the most common flows that appear in a stream. This, in a sense,
goes against the declarative paradigm as a second-class citizen with respect to declara-
tive constraints. We believe that the choice of the DFG as an intermediate data structure
carries out a loss of precision with respect to the DisCoveR miner in offline settings.
However, in an online setting, the DFG still provides a valid approximation to observa-
tions of streams where we do not have complete traces. This is far from an abnormal sit-
uation: IoT communication protocols such as MQTT [16] assume that subscriber nodes
might connect to the network after the communications have started, not being able to
identify starting nodes. Specifically, in a streaming setting it is impossible to know ex-
actly when a certain execution is complete and, especially in declarative settings, certain
constraints describe liveness behaviours that can only be verified after a whole trace has
been completely inspected. While watermarking techniques [3] could be employed to
cope with lateness issues, we have decided to favour self-contained approaches in this
paper, leaving for future work the exploration of watermarking techniques.

6 Conclusion and Future Work

This paper presented a novel streaming discovery technique capable of extracting
declarative models expressed using the DCR language, from event streams. Addition-
ally, a model-to-model metric is reported which allows understanding if and to what
extent two DCR models are the same. An experimental evaluation, comprising both
synthetic and real data, validated the two contributions separately as well as their com-
bination in a qualitative fashion, which included interviews with the process owner.

We plan to explore several directions in future work. Regarding the miner, we plan
to extend its capabilities to the identification of sub-processes, nesting, and data con-
straints. Regarding the model-to-model similarity, we would like to embed more seman-
tic aspects, such as mentioned in [18]. A possible limitation of the streaming miner algo-
rithm approach followed here relates to the updating mechanism. Currently lines 22–24
of Algorithm 1 perform updates based entirely on periodic updates triggered by time,
which will generate notifications even when no potential changes in the model have
been identified. A possibility to extend the algorithm will be to integrate the model-to-
model similarity as a parameter to the discovery algorithm, so models only get updated
after a given change threshold (a similarity value specified by the user) is reached.
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18. López, H.A., Debois, S., Slaats, T., Hildebrandt, T.T.: Business process compliance using

reference models of law. In: FASE. pp. 378–399. Springer (2020)
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A Quantitative Evaluation of Model-to-model Metric
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Fig. 4: Scatter plot showing the correlation be-
tween the model-to-model metric and the number of
changes introduced in the model. The colour indi-
cates the density of observations.

To validate our metric we used
a dataset of 28 DCR process
models collected from previous
mapping efforts [19] and, for
each model, we randomly
introduced variations such as:
adding new activities connected
to the existing fragments,
adding disconnected activities,
deleting existing activities (with
corresponding constraints),
adding constraints, removing
constraints, and swapping
activity labels in the process.
By systematically applying
all possible combinations
of variations in a different
amount (e.g., adding 1/2/3
activities and nothing else; adding 1/2/3 activities and removing 1/2/3 constraints)
we ended up with a total of 455,826 process models with a quantifiable amount
of variation from the 28 starting processes. Fig. 4 shows each variation on a scat-
ter plot where the x axis refers to the number of introduced variations and the y
axis refers to the model-to-model similarity. The colour indicates the number of
models in the proximity of each point (since multiple processes have very close
similarity scores). For identifying the optimal weights we solve an optimization
problem, aiming at finding the highest correlation between the points, ending up with:
W = {(→•, 0.06), (•→, 0.07), (→⋄, 0.06), (→+, 0.07), (→%, 0.13), (act, 0.61)}
which leads to a Pearson’s correlation of -0.56 and a Spearman’s correlation of -0.55.
These values indicate that our metric is indeed capable of capturing the changes. As the
metric is very compact (value in [0, 1]) and operates just on the topological structure
of the model, it cannot identify all details. However, the metric benefits from a fast
computation.
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