
Streaming Process Mining

Andrea Burattin(B)

Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

andbur@dtu.dk

Abstract. Streaming process mining refers to the set of techniques and
tools which have the goal of processing a stream of data (as opposed to
a finite event log). The goal of these techniques, similarly to their corre-
sponding counterparts described in the previous chapters, is to extract
relevant information concerning the running processes. This chapter
presents an overview of the problems related to the processing of streams,
as well as a categorization of the existing solutions. Details about control-
flow discovery and conformance checking techniques are also presented
together with a brief overview of the state of the art.

Keywords: Streaming process mining · Event stream

1 Introduction

Process mining techniques are typically classified according to the task they are
meant to accomplish (e.g., control-flow discovery, conformance checking). This
classification, though very meaningful, might come short when it is necessary
to decide which algorithm, technique, or tool to apply to solve a problem in
a given domain, where nonfunctional requirements impose specific constraints
(e.g., when the results should be provided or when the events are recorded).

Most algorithms, so far, have been focusing on a static event log file, i.e., a
finite set of observations referring to data collected during a certain time frame
in the past (cf. Definition 1 [1]). In many settings, however, it is necessary to
process and analyze the events as they happen, thus reducing (or, potentially,
removing) the delay between the time when the event has happened in the real
world and when useful information is distilled out of it. In addition, the amount
of events being produced is becoming so vast and complex [22] that storing them
for further processing is becoming less and less appealing. To cope with these
issues, event-based systems [4] and event processing systems [19] can become
extremely valuable tools: instead of storing all the events for later processing,
these events are immediately processed and corresponding reactions can be taken
immediately. In addition, event-based systems are also responsive systems: this
means they are capable of reacting autonomously when deemed necessary (i.e.,
only when new events are observed).

Coping with the above-mentioned requirements in the context of data anal-
ysis led to the development of techniques to analyze streams of data [3,21].
c© The Author(s) 2022

W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 349–372, 2022.

https://doi.org/10.1007/978-3-031-08848-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_11&domain=pdf
http://orcid.org/0000-0002-0837-0183
https://doi.org/10.1007/978-3-031-08848-3_11

350 A. Burattin

A data stream is, essentially, an unbounded sequence of observations (e.g.,
events), whose data points are created as soon as the event happens (i.e., in
real-time). Many techniques have been developed, over the years, to tackle dif-
ferent problems, including frequency counting, classification, clustering, approx-
imation, time series analysis and change diagnosis (also known as novelty detec-
tion or concept drift detection) [20,46]. Process mining techniques applied to the
analysis of data streams fall into the name of streaming process mining [8] and
both control-flow discovery as well as conformance checking techniques will be
discussed later in the chapter.

The rest of this chapter is structured as follows: this section presents typical
use cases for streaming process mining and the background terminology used
throughout the chapter. Section 2 presents a possible taxonomy of the different
approaches for streaming process mining, which can be used also to drive the
construction and the definition of new ones. Section 3 introduces the problem of
streaming process discovery, by presenting a general overview of the state of the
art and the details of one algorithm. Section 4 sketches the basic principles of
streaming conformance checking. As for the previous case, also this section starts
with a state-of-the-art summary and then dives into the details of one algorithm.
Section 5 mentions other research endeavors of streaming process mining and
then concludes the chapter.

1.1 Use Cases

This subsection aims at giving an intuition of potential use cases for stream-
ing process mining. In general, every setting that requires drawing conclusions
before the completion of a running process instance is a good candidate for the
application of streaming process mining. In other words, streaming process min-
ing is useful whenever it is important to understand running processes rather
than improving future ones or “forensically” investigate those from the past.

Process discovery on event streams is useful in domains that require a clear
and timely understanding of the behavior and usage of a system. For example,
let’s consider a web application to self-report the annual tax statement for the
citizens of a country. Such a system, typically, requires a lot of data to be inserted
over many forms and, usually, the majority of its users have to interact with
help pages, FAQs, and support information. In this case, it might be useful to
understand and reconstruct the flow of a user (i.e., one process instance) to
understand if they are getting lost in a specific section, or in specific cycles and,
if necessary, provide tailored help and guidance support. Since the ultimate goal
is to improve the running process instances (i.e., helping the users currently
online), it is important that the analyses process the events immediately and
that corresponding reactions are implemented straight away.

Conformance checking on event streams is useful whenever it is important to
immediately detect deviations from reference behavior to enact proper counter-
measures. For example, let’s consider operational healthcare processes [31], in
most of these cases (in particular in the case of non-elective care processes, such

Streaming Process Mining 351

as urgent or emergency ones) it is critically important to have a sharp under-
standing of each individual patient (i.e., one process instance), their treatment
evolution, as well as how the clinic is functioning. For example, when treating a
patient having acute myeloid leukemia it is vital to know that the treatment is
running according to the protocol and, if deviations were to occur, it is necessary
to initiate compensation strategies immediately.

Another relevant example of streaming conformance checking could derive
from the investigation of the system calls of the kernel of an operating system
when used by some services or applications. These calls should be combined in
some specific ways (e.g., a file should be open(), then either write() or read()
or both appear, and eventually the file should be close()) which represent the
reference behavior. If an application is observed strongly violating such behavior
it might be an indication of strange activities going on, for example trying to
bypass some limitations or privileges. Exactly the same line of reasoning could
be applied when consuming RESTful services.

Additional use cases and real scenarios are depicted in the research note [5],
where real-time computing1, to which streaming process mining belongs, is iden-
tified as one of the impactful information technology enablers in the BPM field.

1.2 Background and Terminology

This section provides the basic background on streams as well as the terminology
needed in the rest of the chapter.

A stream is a sequence of observable units which evolves over time by includ-
ing new observations, thus becoming unbounded2. An event stream is a stream
where each observable unit contains information related to the execution of an
event and the corresponding process instance. In the context of this chapter, we
assume that each event is inserted into the stream when the event itself happens
in the real world. The universe of observable units O can refer to the activities
executed in a case, thus having O ⊆ Uact × Ucase (cf. Definition 1 [1]), as dis-
cussed in Sect. 3) or to other properties (in Sect. 4 the observable units refer to
relations B between pairs of activities, i.e., O ⊆ (B × Uact × Uact) × Ucase).

Definition 1 (Event stream). Given a universe of observable units O, an
event stream is an infinite sequence of observable units: S : N≥0 → O.

We define an operator observe that, given a stream S, it returns the latest
observation available on the stream (i.e., observe(S) ∈ O is the latest observable
unit put on S).
1 Please note that the paper explicitly mentions that, in that context, “real-time com-
puting refers to the so-called near real-time, in which the goal is to minimize latency
between the event and its processing so that the user gets up-to-date information and
can access the information whenever required”, thus perfectly matching our notion
of streaming process mining.

2 Please note that, in the literature, it is possible to distinguish other streaming mod-
els, where elements are also deleted or updated [21]. However, in this chapter we will
assume an “insert-only model”.

352 A. Burattin

Due to the nature of streams, algorithms designed for their analyses are
required to fulfill several constraints [6,7], independently from the actual goal of
the analyses. These constraints are:

– it is necessary to process one event at a time and inspect it at most once;
– only a limited amount of time and memory is available for processing an event

(ideally, constant time and space computational complexity for each event);
– results of the analyses should be given at any time;
– the algorithm has to adapt to changes over time.

As detailed in [21, Table 2.1], it is possible to elaborate on the differences between
systems consuming data streams and systems consuming static data (from now
on, we will call these “offline”): in the streaming setting, the data elements
arrive incrementally (i.e., one at the time) and this imposes the analysis to be
incremental as well. These events are transient, meaning that they are available
for a short amount of time (during which they need to be processed). In addition,
elements can be analyzed at most once (i.e., no unbounded backtracking), which
means that the information should be aggregated and summarized. Finally, to
cope with concept drifts, old observations should be replaced by new ones: while
in offline systems, all data in the log is equally important, when analyzing event
stream the “importance” of events decreases over time.

In the literature, algorithms and techniques handling data streams are classi-
fied into different categories, including “online”, “incremental”, and “real-time”.
While real-time systems are required to perform the computation within a given
deadline – and, based on the consequences of not meeting the deadline, they
are divided into hard/soft/firm –, incremental systems just focus on processing
the input one element at the time with the solution being updated consequently
(no emphasis/limit on the time). An online system is similar to an incremental
one, except for the fact that the extent of input is not known in advance [37].
Please note that, in principle, both real-time and online techniques can be used
to handle data streams, thus we prefer the more general term streaming tech-
niques. In the context of this chapter, the streaming techniques are in between
the family of “online” and “soft real-time”: though we want to process each event
fast, the notion of deadline is not always available, and, when it is, missing it is
not going to cause a system failure but just degradation of the usefulness of the
information.

When instantiating the streaming requirements in the process mining con-
text, some of the constraints bring important conceptual implications, which are
going to change the typical way process mining is studied. For example, consid-
ering that each event is added to the stream when it happens in the real world
means that the traces we look at will be incomplete most of the time. Consider
the graphical representation reported in Fig. 1a, where the red area represents
the portion of time during which the streaming process mining is active. Only
in the first case (i.e., instance i), events referring to a complete trace are seen.
In all other situations, just incomplete observations are available, either because
events happened before we started observing the stream (i.e., instance l, suffix
trace) because the events have still to happen (i.e., instance k, prefix trace),

Streaming Process Mining 353

Fig. 1. Process mining implications of some streaming requirements.

or because of both (i.e., instance j, subsequence trace). Figure 1b is a graphi-
cal representation of what it means to give results at any time in the case of
conformance: after each event, the system needs to be able to communicate the
conformity value as new events come in. Also, the result might change over time,
thus adapting the computation to the new observations.

2 Taxonomy of Approaches

Different artists are often quoted as saying: “Good artists copy, great artists
steal”. Regardless of who actually said this first3, the key idea is the importance
of understanding the state of the art to incorporate the key elements into newly
designed techniques. Streaming process mining techniques have been around for
some years now, so it becomes relevant to understand and categorize them in
order to relate them to each other and derive new ones.

3 Many people, including Pablo Picasso, William Faulkner, Igor Stravinsky, and sev-
eral others are often referred to as the “first author” of some version of the quote.
Actually, investigating the history of this quote on the Internet represents a forma-
tive yet very procrastination-prone activity (see also https://xkcd.com/214/).

https://xkcd.com/214/

354 A. Burattin

Fig. 2. Taxonomy of the different approaches to solve the different stream process
mining problems. For each technique, corresponding general steps are sketched [10].

It is possible to divide the currently available techniques for streaming pro-
cess mining into four categories. A graphical representation of such taxonomy is
available in Fig. 2, where three main categories are identified, plus a fourth one,
which represents possible mixes of the others. In the remainder of this section,
each category will be briefly presented.

Window Models. The simplest approach to cope with infinite streams consists
of storing only a set of the most recent events and, periodically, analyzing them.
These approaches store a “window” of information that can be converted into
a static log. Then, standard (i.e., offline) analyses can be applied to the log
generated from such a window. Different types of windowing models can be
used and classified based on how the events are removed [34]. These models can
be characterized along several dimensions, including the unit of measurement
(i.e., whether events are kept according to some logical or physical units such
as the time of the events or the number of events); the edge shift (so whether
any of two bounds of a window is fixed to a specific time instant or if these
change over time); and the progression step (i.e., how the window evolves over
time, assuming that either of the bounds advances one observation at a time or
several data points are incorporated at once). These profiles can create different
window models, such as:

– count-based window: at every time instance, the window contains the latest
N observations;

– landmark window: one of the window bounds is fixed (e.g., the starting time
or the end time, far in the future) whereas the other progresses with time;

– time-based sliding window: in this case, the sliding window progresses accord-
ing to two parameters: a time window duration and a time progression step;

– time-based tumbling window: similar to the time-based sliding window but
where entire batches of events are observed so that two consecutive windows
do not overlap.

Streaming Process Mining 355

Algorithm 1: Count-based window model process mining algorithm
Input: S: event stream

M : memory
maxM : number of observation to keep
A: additional information (e.g., a reference model), can be ∅

1 forever do
// Observe a new event

2 e ← observe(S)

// Memory update

3 if max(M) ≥ maxM then
4 dequeue(M) // Forgetting

5 end
6 insert(M, e)

// Mining update

7 if perform mining then
// Memory into event log

8 L ← convert(M)
9 ProcessMining(L, A)

10 end

11 end

Algorithm 1 reports a possible representation of an algorithm for process
mining on a count-based window model. The algorithm uses as a memory model
a FIFO queue and it starts with a never-ending loop which comprises, as the
first step, the observation of a new event. After that, the memory is checked for
maximum capacity and, if reached, the oldest event observed is removed. Then,
the mining can take place, initially converting the memory into a process mining
capable log and then running the actual mining algorithm on the given log.

Window-based models come with many advantages such as the capability
of reusing any offline process mining algorithm already available for static log
files. The drawback, however, comes from the inefficient handling of the memory:
window-based models are not very efficient for summarizing the stream, i.e., the
logs generated from a window suffer from strong biases due to the rigidity of the
model.

Problem Reduction. To mitigate the issues associated with window models, one
option consists of employing a problem reduction technique (cf. Fig. 2). In this
case, the idea is to reduce the process mining problem at hand to a simpler yet
well-studied problem in the general stream processing field in order to leverage
existing solutions and derive new ones. An example of a very well studied prob-
lem is frequency counting : counting the frequencies of variables over a stream
(another example of a relevant and well-studied problem is sampling). To prop-
erly reduce a process mining problem to a frequency counting one, it is important

356 A. Burattin

Algorithm 2: Lossy Counting
Input: S: data stream

ε: maximal approximation error

1 T ← ∅ // Initially empty set

2 N ← 1 // Number of observed events

3 w ← ⌈
1
ε

⌉
// Bucket width

4 forever do
5 e ← observe(S)

6 bcurr ← ⌈
N
w

⌉

// Is there a tuple in T with e as first component?

7 if e is already in T then
8 Increment the frequency of e in T
9 else

10 Insert (e, 1, bcurr − 1) in T
11 end

12 if N mod w = 0 then
13 forall the (a, f, Δ) ∈ T s.t. f + Δ ≤ bcurr do
14 Remove (a, f, Δ) from T
15 end

16 end
17 N ← N + 1

18 end

to understand what a variable is in the process mining context and if it is indeed
possible to extract information by counting how often a variable occurs.

An algorithm to tackle the frequency counting problem is called Lossy Count-
ing [30], described in Algorithm 2 and graphically depicted in Fig. 3. Concep-
tually, the algorithm divides the stream into “buckets”, each of them with a
fixed size (line 6). The size of the bucket is derived from one of the inputs of
the algorithm (ε ∈ [0, 1]) which indicates the maximal acceptable approximation
error in the counting. Lossy Counting keeps track of the counting by means of
a data structure T , where each component (e, f,Δ) refers to the element e of
the stream (the variable to count), its estimated frequency f , and the maximum
number of times it could have occurred Δ (i.e., the maximum error). Whenever
a new event is observed (line 5), if the value is already in the memory T , then
the counter f is incremented by one (line 8), instead, if there is no such value, a
new entry is created in T with the value e corresponding to the observed vari-
able, frequency f = 1, and maximum error equal to the number of the current
bucket minus one (from here it is possible to understand that since the buck
size depends on the maximum allowed error, the higher the error, the larger
the bucket size and hence the higher the approximation error) (line 10). With
a fixed periodicity (i.e., every time a new conceptual bucket starts) the algo-
rithm cleans the memory, by removing elements not frequently observed (lines
12–16). Please note that this specific algorithm has no memory bound: the size

Streaming Process Mining 357

Fig. 3. Graphical representation of the Lossy Counting algorithm.

Fig. 4. Demonstration of the evolution of the internal data structure constructed by
the Lossy Counting on a simple stream. Each color refers to a variable.

of its data structure T depends on the stream and on the max approximation
error (i.e., if the error is set to 0 and the observations never repeat, the size of
T will grow indefinitely). Variants of the algorithm enforcing a fixed memory
bound is available as well [18] but are not described in detail here. In the rest
of this chapter, a set whose entries are structured and updated using the Lossy
Counting algorithm (i.e., T in Algorithm 2) will be called Lossy Counting Set.

Figure 4 shows a demonstration of the evolution of the Lossy Counting Sets
over time (at the end and at the beginning of each virtual bucket) for the given
stream. In this case, for simplicity purposes, the background color of each box
represents the variable that we are counting. The counting is represented as the
stacking of the blocks, and below, in red, the maximum error for each variable
is ported.

The most relevant benefit of reducing the problem to a known one is the abil-
ity to employ existing as well as new solutions in order to improve the efficiency
of the final process mining solution. Clearly, this desirable feature is paid back
in terms of the complexity of the steps (both conceptual and computational)
required for the translation.

Offline Computation. Due to some of the constraints imposed by the streaming
paradigm, one option consists of moving parts of the computation offline (cf.
Fig. 2) so that performance requirements are met when the system goes online.
This idea implies decomposing the problem into sub-problems and reflecting on
whether some of them can be solved without the actual streaming data. If that

358 A. Burattin

Fig. 5. Conceptualization of the streaming process discovery. Figure from [16].

is the case, these sub-problems will be solved beforehand and corresponding
pre-computed solutions will be available as the events are coming in.

Such an approach comes with the advantage of caching the results of com-
putations that would otherwise require extremely expensive computations. This
approach, still, suffers from several limitations since it is not possible to apply this
approach to all streaming process mining problems. Additionally, by computing
everything in advance, we lose the possibility of adapting the pre-computed
solutions to the actual context, which might be uniquely specific to the running
process instance.

Hybrid Approaches. As a final note, we should not rule out the option of defining
ensemble methods that combine different approaches together (see Fig. 2).

3 Streaming Process Discovery

After introducing the general principles and taxonomy of techniques to tackle
streaming process mining, in this section, we will specifically analyze the problem
of streaming process discovery.

A graphical conceptualization of the problem is reported in Fig. 5: the basic
idea is to have a source of events that generates an event stream. Such an event
stream is consumed by a miner which keeps a representation of the underlying
process model updated as the new events are coming in.

3.1 State of the Art

In this section, the main milestones of the streaming process discovery will be
presented. The first available approach to tackle the streaming process discovery
problem is reported in [15,16]. This technique employs a “problem reduction”
approach (cf. Fig. 2) rephrasing the Heuristics Miner [38] as a frequency counting
problem. The details of this approach will be presented in Sect. 3.2. In [23],
authors present StrProM which, similarly to the previous case, tracks the direct

Streaming Process Mining 359

following relationship by keeping a prefix tree updated with Lossy Counting with
Budget [18].

More recently, an architecture called S-BAR, which keeps an updated
abstract representation of the stream (e.g., direct follow relationships), is used
as starting point to infer an actual process model, as described in [44]. Different
algorithms (including α. [39], Heuristics Miner [38] and Inductive Miner [26])
have been incorporated to be used with this approach. Also in this case authors
reduced their problem to frequency counting, thus using Lossy Counting, Space
Saving [32], and Frequent [24].

Declarative processes (cf. Chapter 4) have also been investigated as the target
of the discovery. In [12,14,27], authors used the notion of “replayers” – one for
each Declare [35] template to mine – to discover which one are fulfilled. Also in
this case, Lossy Counting strategies have been employed to achieve the goal. A
newer version of the approach [33], is also capable of discovering data conditions
associated with the different constraints.

3.2 Heuristics Miner with Lossy Counting (HM-LC)

This section describes in more detail one algorithm for streaming process dis-
covery: Heuristics Miner with Lossy Counting (HM-LC) [16].

The Heuristics Miner algorithm [38] is a discovery algorithm which, given
the frequency of the direct following relations observed (reported as |a > b| and
indicating the number of times b is observed directly after a), calculates the
dependency measure, a measure of the strength of the causal relation between
two activities a and b:

a ⇒ b =
|a > b| − |b > a|

|a > b| + |b > a| + 1
∈ [−1, 1]. (1)

The closer the value of such metric is to 1, the stronger the causal dependency
from a to b. Based on a given threshold (parameter asked as input), the algorithm
considers only those dependencies with values exceeding the threshold, deeming
the remaining as noise. By considering all dependencies which are strong enough,
it is possible to build a dependency graph, considering one node per activity and
one edge for each dependency. In such a graph, however, when splits or joins are
observed (i.e., activities with more than one outgoing or incoming connection) it
is not possible to distinguish the type of the splits. In the case of a dependency
from a to b and also from a to c, Heuristics Miner disambiguates between an
AND and an XOR split by calculating the following metric (also based on the
frequency of direct following relations):

a ⇒ (b ∧ c) =
|b > c| + |c > b|

|a > b| + |a > c| + 1
∈ [0, 1]. (2)

When the value of this measure is high (i.e. close to 1), it is likely that b and c
can be executed in parallel, otherwise, these will be mutually exclusive. As for

360 A. Burattin

the previous case, a threshold (parameter asked as input) is used to make the
distinction.

It is important to note that the two fundamental measures employed by
the Heuristics Miner rely on the frequency of the directly-follows measure (e.g.
|a > b|), and so the basic idea of Heuristics Miner with Lossy Counting is to
consider such values as “variables” to be observed in a stream, thus reducing the
problem to frequency counting.

As previously mentioned, Lossy Counting is an algorithm for frequency count-
ing. In particular, the estimated frequencies can be characterized both in terms
of lower and upper bounds as follows: given the estimated frequency f (i.e., the
frequency calculated by the algorithm), the true frequency F (i.e., the actual
frequency of the observed variable), the maximum approximation error ε and
the number of events observed N , these inequalities hold

f ≤ F ≤ f + εN.

To calculate the frequencies, Lossy Counting uses a set data structure where each
element refers to the variable being counted, its current (and approximated) fre-
quency, and the maximum approximation error in the counting of that variable.

For the sake of simplicity, in Heuristics Miner with Lossy Counting, the
observable units of the event stream comprises just the activity name and the
case id (cf. Definition 1). In other words, each event observed from the stream
comprises two attributes: the activity name and the case id (cf. Definition 1 [1],
Sect. 3.2 [1]), so an event e is a tuple with e = (c, a), where #case(e) = c and
#act(e) = a.

Fig. 6. Conceptualization of the need to iso-
late different traces based on a single stream.
Boxes represent events: their background col-
ors represent the case id, and the letters inside
are the activity names. First line reports the
stream, following lines are the single cases.
Figure from [16].

The pseudocode of HM-LC
is reported in Algorithm 3. The
fundamental idea of the app-
roach is to count the frequency
of the direct following relations
observed. In order to achieve this
goal, however, it is necessary to
identify the direct following pairs
in the first place. As depicted in
Fig. 6, to identify direct follow-
ing relations it is first necessary
to disentangle the different traces
that are intertwined in an event
stream. To this end, the HM-LC
instantiates two Lossy Counting Sets: DC , and DR. The first keeps track of the
latest activity observed in each process instance whereas the second counts the
actual frequency of the directly follow relations. These data structures are ini-
tialized at the first line of the algorithm, which is followed by the initialization
of the counter of observed events (line 2) and the calculation of the size of the
buckets (line 3). After the initial setup of the data structure, a never-ending loop
starts by observing events from the stream (line 5, cf. Definition 1), where each

Streaming Process Mining 361

Algorithm 3: Heuristics Miner with Lossy Counting (simplified)
Input: S: event stream

ε: approximation error
1 Initialize Lossy Counting Sets DC and DR

2 N ← 1 // Counter of observed events

3 w ← ⌈
1
ε

⌉
// Bucket size

4 forever do
5 (cN , aN) ← observe(S)

6 bcurr =
⌈

N
w

⌉
// Calculate the current bucket id

// Step 1: Update the Lossy Counting Sets

7 if ∃((c, alast), f, Δ) ∈ DC such that c = cN then
8 Remove the entry ((c, alast), f, Δ) from DC

9 DC ← DC ∪ {((c, aN), f + 1, Δ)}
// Update the DR data structure

10 rN ← (alast, aN) // Build relation rN as alast → aN

11 if ∃(r, f, Δ) ∈ DR such that r = rN then
12 Remove the entry (r, f, Δ) from DR

13 DR ← DR ∪ {(r, f + 1, Δ)}
14 else
15 DR ← DR ∪ {(rN , 1, bcurr − 1)}
16 end

17 else
18 DC ← DC ∪ {((cN , aN), 1, bcurr − 1)}
19 end

// Step 2: Periodic cleanup

20 if N ≡ 0 mod w then
21 forall the ((c, a), f, Δ) ∈ DC such that f + Δ ≤ bcurr do
22 Remove ((c, a), f, Δ) from DC

23 end
24 forall the (r, f, Δ) ∈ DR such that f + Δ ≤ bcurr do
25 Remove (r, f, Δ) from DR

26 end

27 end
28 N ← N + 1

// Step 3: Consumption of the data structure to update the model

29 Update the model using DR

30 end

event is the pair (cN , aN), indicating that the case id observed as event N is
cN (resp., the activity is aN). The id of the current bucket is calculated right
afterwards (line 6). The whole algorithm is then divided into three conceptual
steps: in the first the data structures are updated; in the second periodic cleanup
takes place; in the third the data structures are used to construct and update
the actual model.

362 A. Burattin

Step 1: Updating the Data Structure. The Lossy Counting Set DC has been
defined in order not only to keep a count of the frequency of each case id observed
in the events but also to keep track of the latest activity observed in the given
trace. To achieve this goal, the entries of the data structure are tuples themselves,
comprising the case id as well as the name of the latest activity observed in the
case. Therefore, the first operation within the step consists of checking for the
presence of an entry in DC matching the case id of the observed event (but not
the activity name), as reported in line 7. If this is the case, the data structure
DC is updated, not only by updating the frequency but also by updating the
latest activity observed in the given case (lines 8 and 9). In addition, having
already an entry in DC means that a previous event within the same trace has
already been seen and, therefore, it is possible to construct a direct following
relation (cf. line 10 of Algorithm 3). This relation is then treated as a normal
variable to be counted and the corresponding Lossy Counting Set is updated
accordingly (lines 11–16). In case DC did not contain an entry referring to case
id cN , it means that the observed event is the first event of its process instance
(up to the approximation error) and hence just a new entry in DC is inserted
and no direct following relation is involved (line 18).

Step 2: Periodic Cleanup. With a periodicity imposed by the maximum approxi-
mation error (ε), i.e., at the end of each bucket (line 20), the two Lossy Counting
Sets are updated by removing entries that are not frequent or recent enough
(lines 21–26). Please note that the algorithm expects that observing an event
belonging to a process instance that has been removed from DC corresponds to
losing one direct following relation from the counting in DR. From this point of
view, the error on the counting of the relations is not only affected by DR but,
indirectly, also by the removal of instances from DC which causes a relation not
to be seen at all (and therefore, it cannot be counted).

Step 3: Consumption of the Data Structures. The very final step of the algo-
rithm (line 29) consists of triggering a periodic update of the model. The update
procedure (not specified in the algorithm) extracts all the activities involved in a
direct following relations from DR and uses the dependency measure (cf. Eq. 1)
to build a dependency graph, by keeping the relations with dependency measure
above a threshold. To disambiguate AND/XOR splits Eq. 2 is used. Both these
measures need to be adapted in order to retrieve the frequency of the relations
from DR.

The procedure just mentioned recomputes the whole model from scratch.
However, observing a new event will cause only local changes to a model. Hence
a complete computation of the whole model is not necessary. In particular, it
is possible to rearrange Eqs. 1 and 2 in order to signal when a dependency has
changed. Specifically, given a dependency threshold τdep , we know that a depen-
dency should be present if these inequalities hold:

|a > b| ≥ |b > a|(1 + τdep) + τdep
1 − τdep

or |b > a| ≤ |a > b|(1 − τdep) − τdep
1 + τdep

Streaming Process Mining 363

A A1 B

A2

C D

E

F

Fig. 7. Reference process model used to calculate
the conformance of traces in Table 1, from [17].

Table 1. Example traces with
corresponding offline confor-
mance.

Trace Conf.

t1 = 〈A, A1, B, E, F 〉 1.00

t2 = 〈A, A1, A2, A1, B〉 0.80

t3 = 〈B, C, D, F 〉 0.78

t4 = 〈B, C, D〉 0.62

In a similar fashion, we can rewrite Eq. 2 so that, given an AND threshold
parameter τand, a split (i.e., from activity a to both activities b and c) has type
AND if all these inequalities hold:

|b > c| ≤τand (|a > b| + |a > c| + 1) − |c > b|
|c > b| ≤τand(|a > b| + |a > c| + 1) − |b > c|

|a > b| ≤|b > c| + |c > b|
τand

− |a > c| − 1

|a > c| ≤|b > c| + |c > b|
τand

− |a > b| − 1

If this is not the case, the type of the split will be XOR. Therefore, by monitoring
how the frequencies of some of the relations in DR (which should be used as an
approximation of the direct following frequencies) are evolving, it is possible to
pinpoint the changes appearing in a model, with no need for rebuilding it from
scratch all the times.

In this section, we did not exhaustively cover the reduction of the Heuristics
Miner to Lossy Counting (for example, we did not consider the absolute number
of observations for an activity or parameters such as the relative-to-best) but
we focused on the core aspects of the reduction. The goal of the section was
to present the core ideas behind a streaming process discovery algorithm while,
at the same time, showing an example of an algorithm based on the problem
reduction approach (cf. Fig. 2).

4 Streaming Conformance Checking

Computing the conformity of running instances starting from events observed in
a stream is the main goal of streaming conformance checking.

Consider, for example, the process model reported in Fig. 7 as a reference
process, and let’s investigate the offline conformance (calculated according to
the alignment technique reported in [2]) for the traces reported in Table 1. Trace
t1 is indeed conforming with respect to the model as it represents a possible
complete execution of the process. This information is already properly cap-
tured by the offline analysis. Trace t2, on the other hand, is compliant with the
process but just up to activity B, as reported by the conformance value 0.8:

364 A. Burattin

offline systems assume that the executions are complete, and therefore observ-
ing an incomplete trace represents a problem. However, as previously discussed
and as shown in Fig. 1a, in online settings it could happen that parts of the
executions are missing due to the fact that the execution has not yet arrived
at this part of the computation. This could be the case with trace t2 (i.e., t2 is
the prefix of a compliant trace). Trace t3 suffers from the opposite problem: the
execution is conforming to the model, but just from activity B onward. While
offline conformance, in this case, is calculated to the value of 0.68, as for the
previous case, we cannot rule out the option that the trace is actually compli-
ant but, since the trace started before the streaming conformance checker was
online, it was incapable of analyzing the beginning of it (i.e., t3 is the suffix of
a compliant trace). Trace t4, finally, seems compliant just between activities B
and D. Though offline conformance, in this case, is 0.62, as for the previous two
cases, in a streaming setting, we cannot exclude that the issue actually derives
from the combination of the trace starting before the streaming conformance was
online and the trace not being complete (i.e.,t4 is a subsequence of a compliant
trace).

Hopefully, discussing the previous examples helped to point out the limit of
calculating the extent of the conformance using only one numerical value in a
streaming setting. Indeed, when the assumption that executions are complete
is dropped, the behavior shown in the traces of Table 1 could become 100%
compliant since the actual issue does not lie in the conformity but in the amount
of observed behavior.

4.1 State of the Art

Computing the conformity of a stream with respect to a reference model has
received a fairly large amount of attention, in particular in the case of declarative
processes. Under the name “operational support”, research has been focusing [28,
29] on understanding if and which constraints are violated and satisfied as new
events are coming in. In particular, each constraint is associated with one of four
possible truth values: permanently or temporarily violated or fulfilled which are
computed by representing the behavior as an automaton with all executions
replayed on top of it.

Streaming conformance checking on imperative models has also received
attention, though more recently. Optimal alignments can be computed for the
prefix (i.e., prefix-alignments) of the trace seen up to a given point in time [41],
resulting in a very reliable approach which, however, meets only to some extent
the streaming scenario (cf. Sect. 1.2). A more recent approach [36] is capable of
improving the performance of calculating a prefix-alignment, by rephrasing the
problem as the shortest path one and by incrementally expanding the search
space and reusing previously computed intermediate results.

Streaming Process Mining 365

A different line of research focused on calculating streaming conformance for
all scenarios (cf., Fig. 1a). In this case, techniques employed “offline computa-
tion” approaches [11,17,25] to construct data structures capable of simplifying
the computation when the system goes online. These approaches not only com-
pute the conformity of a running instance but also try to quantify the amount
of behavior observed or still to come.

In addition to these, one of the first approaches [45] focused on a RESTful
service capable of performing the token replay on a BPMN model (via a token
pull mechanism). No explicit guarantees, however, are reported concerning the
memory usage, the computational complexity, or the reliability of the results,
suggesting that the effort was mostly on the interface type (i.e., online as in
RESTful).

4.2 Conformance Checking with Behavioral Patterns

This section presents in more detail one algorithm for streaming conformance
checking using behavioral patterns [17]. The algorithm belongs to the category of
offline computation (cf. Fig. 2), where the heaviest computation is moved before
the system goes online, thus meeting the performance requirement of streaming
settings.

The fundamental idea of the approach is that using just one metric to express
conformity could lead to misleading results, i.e. cases that already started and/or
that are not yet finished get falsely penalized. To solve these issues, the approach
proposes to break the conformity into three values:

1. Conformance: indicating the amount of actually correct behavior seen;
2. Completeness: providing an estimate of the extent to which the trace has

been observed since the beginning; and
3. Confidence: indicating how much of the trace has been seen, and therefore to

what extent the conformance is likely to remain stable.

A graphical representation of these concepts is reported in Fig. 8. In addition,
the approach does not assume any specific modeling language for the reference
process. Instead, the approach takes the reference process as a constraining of
the relative orders of its activities. Such constraints are defined in terms of
behavioral patterns, such as weak ordering, parallelism, causality, and conflict.
Such behavioral patterns (with the corresponding activities involved) represent
also what the conformance checking algorithm observes. In the context of this
chapter, we will consider the directly follow relation as a pattern.

Please note that the input of the algorithm is not a stream of events, but a
stream of observed behavioral patterns, which could require some processing of
the raw events. This, however, does not represent a problem for the behavioral
pattern considered (i.e., directly follow relation), since these can be extracted
using the technique described in Sect. 3.2.

366 A. Burattin

Fig. 8. General idea of the 3 conformance measures computed based on a partially
observed process instance: conformance, completeness, and confidence. Figure from [17].

As previously mentioned, the technique offloads the computation to a pre-
processing stage which takes place offline, before the actual conformance is com-
puted. During such a step, the model is converted into another representation,
better suited for the online phase. Specifically, the new model contains:

1. The set of behavioral patterns that the original process prescribes;
2. For each of the behavioral patterns identified, the minimum and maximum

number of distinct prescribed patterns that must occur before it, since the
very beginning of the trace;

3. For each behavioral pattern, the minimum number of distinct patterns still
to observe to reach a valid accepting state of the process (as prescribed by
the reference model).

These requirements drive the definition of the formal representation called “Pro-
cess Model for Online Conformance” (PMOC). A process model for online con-
formance M = (B,P, F) is defined as a triplet containing the set of prescribed
behavioural patterns B. Each pattern b(a1, a2) is defined as a relation b (e.g., the
directly follow relation) between activities a1, a2 ∈ Uact (cf. Definition 1 [1]). P
contains, for each behavioral pattern b ∈ B, the pair of minimum and maximum
number distinct prescribed patterns (i.e., B) to be seen before b. We refer to
these values as Pmin(b) and Pmax(b). For each pattern, b ∈ B, F (b) refers to the
minimum number of distinct patterns (i.e., B) required to reach the end of the
process from b.

Once such a model is available, the conformance values can be calculated
according to Algorithm 4 which executes three steps for each event: updating the
data structures, calculating the conformance values, and housekeeping cleanup.
After two maps are initialized (lines 1, 2), the never-ending loop starts and, each
observation from the stream (which refers to a behavioral patter b for case id
c, cf. Definition 1) triggers and update of the two maps: if the pattern refers to
a prescribed relation, then it is added to the obs(c) set (line 6)4, otherwise, the
value of incorrect observations for the process instance obs(c) is incremented (line
8)5. In the second step, the algorithm calculates the new conformance values.
4 If obs has no key c, obs(c) returns the empty set.
5 If inc has no key c, then inc(c) returns 0.

Streaming Process Mining 367

Algorithm 4: Conformance Checking with Behavioral Patterns
Input: S: stream of behavioural patterns

M = (B, P, F): process model for online conformance

1 Init map obs // Maps case ids to set of observed patterns from M
2 Init map inc // Maps case ids to integers

3 forever do
4 (c, b) ← observe(S) // New observation of pattern b for case c

// Step 1: update internal data structures

5 if b ∈ B then
6 obs(c) ← obs(c) ∪ {b} // If b already in obs(c), then no effect

7 else
8 inc(c) ← inc(c) + 1
9 end

// Step 2: compute online conformance values

10 conformance(c) ← |obs(c)|
|obs(c)| + inc(c)

11 Notify new value of conformance(c)
12 if b ∈ B then
13 if Pmin(b) ≤ |obs(c)| ≤ Pmax(b) then
14 completeness(c) ← 1
15 else

16 completeness(c) ← min

{
1,

|obs(c)|
Pmin(b) + 1

}

17 end

18 confidence(c) ← 1 − F (b)

maxb′∈B F (b′)
19 Notify new values of completeness(c) and confidence(c)

20 end

// Step 3: cleanup

21 if size of obs and inc is close to max capacity then
22 Remove oldest entries from obs and inc
23 end

24 end

The actual conformance, which resembles the concept of precision, is calculated
(lines 10, 11) as the number of distinct observed prescribed patterns in c (i.e.,
|obs(c)|) divided by the sum of the number of prescribed observed patterns and
the incorrect patterns (i.e., |obs(c)| + inc(c)): 1 indicates full conformance (i.e.,
only correct behaviour) and 0 indicates no conformance at all (i.e., only incorrect
behaviour). Completeness and confidence are updated only when a prescribed
behavioral pattern is observed (line 12) since they require locating the pattern
itself in the process. Concerning completeness, we have perfect value if the num-
ber of distinct behavioral patterns observed so far is within the expected interval
for the current pattern (lines 13, 14). If this is not the case, we might have seen
fewer or more patterns than expected. If we have seen fewer patterns, the com-

368 A. Burattin

pleteness is the ratio of observed patterns over the minimum expected; otherwise,
it’s just 1 (i.e., we observed more patterns than needed, so the completeness is
not an issue). Please bear in mind that these numbers confront the number of
distinct patterns, not their type, thus potentially leading to false positives (line
16). The confidence is calculated (line 18) as 1 minus the proportion of patterns
to observe (i.e., F (b)) and the overall maximum number of future patterns (i.e.,
maxb′∈B F (b′)): a confidence level 1 indicates strong confidence (i.e., the execu-
tion reached the end of the process), 0 means low confidence (i.e., the execution
is still far from completion, therefore there is room for change). The final step
performs some cleanup operations on obs and inc (lines 21–23). The algorithm
does not specify how old entries should be identified and removed, but, as seen
on the previous section, existing approaches can easily handle this problem (e.g.,
by using a Lossy Counting Set).

It is important to note once again that the actual algorithm relies on a
data structure (the PMOC) that is tailored to the purpose and that might be
computational very expensive to obtain. However, since this operation is done
only once and before any streaming processing, this represents a viable solution.
The details on the construction of the PMOC are not analyzed in detail here
but are available in [17]. Briefly, considering the directly follow relation as the
behavioral pattern, the idea is to start from a Petri net and calculate its reverse
(i.e., the Petri net where all edges have opposite directions). Both these models
are then unfolded according to a specific stop criterion and, once corresponding
reachability graphs are computed, the PMOC can be easily derived from the
reachability graph of the unfolded original Petri net and the reachability graph
of the unfolded reverse net.

Considering again the traces reported in Table 1 and the reference model
in Fig. 7, all traces have a streaming conformance value of 1 (when calculated
using the approach just described). The completeness is 1 for t1 and t2, 0.6 for
t3, and 0.5 for t4. The confidence is 1 for t1 and t3, 0.5 for t2, and 0.75 for t4.
These values indeed capture the goals mentioned at the beginning of this section:
do not penalize the conformance but highlight the actual issues concerning the
missing beginning or end of the trace.

As for the streaming process discovery case, in this section, we did not
exhaustively cover the algorithm for streaming conformance checking presented.
Instead, we focused on the most important aspects of the approach, hopefully
also giving an intuition of how an offline computation approach could work (cf.
Fig. 2).

5 Other Applications and Outlook

It is worth mentioning that the concepts related to streaming process mining
have been applied not only to the problem of discovery and conformance but, to
a limited extent, to other challenges.

Examples of such applications are the discovery of cooperative structures out
of event streams, as tackled in [43], where authors process an event stream and

Streaming Process Mining 369

update the set of relationships of a cooperative resource network. In [40], several
additional aspects of online process mining are investigated too.

Supporting the research in streaming process mining has also been a topic
of research. Simulation techniques have been defined both as standalone appli-
cations [9], as ProM plugins [42], or just as communication protocols [13].

Finally, from the industrial point of view, it might be interesting to observe
that while some companies are starting to consider some aspects related to the
topics discussed in this chapter (e.g., Celonis’ Execution Management Plat-
form supports the real-time data ingestion, though not the analysis), none of
them offers actual solutions for streaming process mining. A report from Ever-
est Group6 explicitly refers to real-time monitoring of processes as an important
process intelligence capability not yet commercially available.

This chapter presented the topic of streaming process mining. While the field
is relatively young, several techniques are already available both for discovery
and conformance checking.

We presented a taxonomy of the existing approaches which, hopefully, can be
used proactively, when new algorithms need to be constructed, to identify how
a problem can be tackled. Then two approaches, one for control-flow discovery
and one for conformance checking, are presented in detail which, in addition,
belong to different categories of the taxonomy. Alongside these two approaches,
window models can also be employed, yet their efficacy is typically extremely
low compared to algorithms specifically designed for the streaming context.

It is important to mention that streaming process mining has very important
challenges still to be solved. For example, dealing with a stream where the arrival
time of events does not coincide with their actual execution. In this case, it would
be necessary to reorder the list of events belonging to the same process instance
before processing them. Another relevant issue might be the inference of the
termination of process instances. Finally, so far, we always considered an insert-
only stream model, where events can only be added in a monotonic fashion.
Scenarios where observed events can be changed or removed (i.e., insert-delete
models) are yet to be considered.

References

1. van der Aalst, W.M.P.: Chapter 1 - Process mining: a 360 degrees overview. In: van
der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. Lecture Notes
in Business Information Processing, pp. ??-??, vol. 448. Springer-Verlag, Berlin
(2022)

2. Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Technische
Universiteit Eindhoven (2014)

3. Aggarwal, C.C.: Data Streams: Models and Algorithms. Advances in Database
Systems. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-47534-9

4. Berry, R.F., McKenney, P.E., Parr, F.N.: Responsive systems: an introduction.
IBM Syst. J. 47(2), 197–206 (2008)

6 https://www2.everestgrp.com/reportaction/EGR-2020-38-R-3808/Marketing.

https://doi.org/10.1007/978-0-387-47534-9
https://www2.everestgrp.com/reportaction/EGR-2020-38-R-3808/Marketing

370 A. Burattin

5. Beverungen, D., et al.: Seven paradoxes of business process management in a hyper-
connected world. Bus. Inf. Syst. Eng. 63(2), 145–156 (2021)

6. Bifet, A., Gavaldà, R., Holmes, G., Pfahringer, B.: Machine Learning for Data
Streams. The MIT Press, Cambridge (2018)

7. Bifet, A., Kirkby, R.: Data stream mining: a practical approach. Technical report,
Centre for Open Software Innovation - The University of Waikato (2009)

8. Burattin, A.: Process Mining Techniques in Business Environments. Lecture Notes
in Business Information Processing, vol. 207. Springer International Publishing,
Cham (2015). https://doi.org/10.1007/978-3-319-17482-2

9. Burattin, A.: PLG2: multiperspective process randomization with online and offline
simulations. In: Online Proceedings of the BPM Demo Track (2016). CEUR-
WS.org

10. Burattin, A.: Streaming process discovery and conformance checking. In: Sakr, S.,
Zomaya, A., (eds.) Encyclopedia of Big Data Technologies. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-63962-8 103-1

11. Burattin, A., Carmona, J.: A framework for online conformance checking. In:
Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 165–177.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0 12

12. Burattin, A., Cimitile, M., Maggi, F.M., Sperduti, A.: Online discovery of declara-
tive process models from event streams. IEEE Trans. Serv. Comput. 8(6), 833–846
(2015)

13. Burattin, A., Eigenmann, M., Seiger, R., Weber, B.: MQTT-XES: real-time teleme-
try for process event data. In: CEUR Workshop Proceedings (2020)

14. Burattin, A., Maggi, F.M., Cimitile, M.: Lights, camera, action! Business process
movies for online process discovery. In: Proceedings of the 3rd International Work-
shop on Theory and Applications of Process Visualization (TAProViz 2014) (2014)

15. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Heuristics Miners for Streaming
Event Data. ArXiv CoRR, December 2012

16. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Control-flow discovery from
event streams. In: Proceedings of the IEEE Congress on Evolutionary Computa-
tion, pp. 2420–2427. IEEE (2014)

17. Burattin, A., van Zelst, S.J., Armas-Cervantes, A., van Dongen, B.F., Carmona, J.:
Online conformance checking using behavioural patterns. In: Weske, M., Montali,
M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 250–267.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7 15

18. Da San Martino, G., Navarin, N., Sperduti, A.: A lossy counting based approach
for learning on streams of graphs on a budget. In: Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence, pp. 1294–1301. AAAI
Press (2012)

19. Dayarathna, M., Perera, S.: Recent advancements in event processing. ACM Com-
put. Surv. 51(2), 1–36 (2018)

20. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review.
ACM SIGMOD Rec. 34(2), 18–26 (2005)

21. Gama, J.: Knowledge Discovery from Data Streams. Chapman and Hall/CRC,
London (2010)

22. Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and ana-
lytics. Int. J. Inf. Manage. 35(2), 137–144 (2015)

23. Hassani, M., Siccha, S., Richter, F., Seidl, T.: Efficient process discovery from
event streams using sequential pattern mining. In: 2015 IEEE Symposium Series
on Computational Intelligence, pp. 1366–1373 (2015)

https://doi.org/10.1007/978-3-319-17482-2
https://doi.org/10.1007/978-3-319-63962-8_103-1
https://doi.org/10.1007/978-3-319-74030-0_12
https://doi.org/10.1007/978-3-319-98648-7_15

Streaming Process Mining 371

24. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm for finding fre-
quent elements in streams and bags. ACM Trans. Database Syst. 28(1), 51–55
(2003)

25. Jonathan Lee, W.L., Burattin, A., Munoz-Gama, J., Sepúlveda, M.: Orientation
and conformance: a HMM-based approach to online conformance checking. Inf.
Syst. 102, 1–38 (2020)

26. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

27. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: A knowledge-based integrated
approach for discovering and repairing declare maps. In: Salinesi, C., Norrie, M.C.,
Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 433–448. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38709-8 28

28. Maggi, F.M., Montali, M., van der Aalst, W.M.P.: An operational decision support
framework for monitoring business constraints. In: Proceedings of 15th Interna-
tional Conference on Fundamental Approaches to Software Engineering (FASE),
pp. 146–162 (2012)

29. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitor-
ing business constraints with linear temporal logic: an approach based on colored
automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 132–147. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23059-2 13

30. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In:
Proceedings of International Conference on Very Large Data Bases, pp. 346–357.
Morgan Kaufmann, Hong Kong, China (2002)

31. Mans, R., van der Aalst, W.M.P., Vanwersch, R.J.B.: Process Mining in Healthcare.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16071-9

32. Metwally, A., Agrawal, D., El Abbadi, A.: Efficient computation of frequent and
top-k elements in data streams. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS,
vol. 3363, pp. 398–412. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30570-5 27

33. Navarin, N., Cambiaso, M., Burattin, A., Maggi, F.M., Oneto, L., Sperduti, A.:
Towards online discovery of data-aware declarative process models from event
streams. In: Proceedings of the International Joint Conference on Neural Networks
(2020)

34. Patroumpas, K., Sellis, T.: Window specification over data streams. In: Proceedings
of Current Trends in Database Technology - EDBT, pp. 445–464 (2006)

35. Pešić, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for
loosely-structured processes. In: Proceedings of EDOC, pp. 287–298. IEEE (2007)

36. Schuster, D., van Zelst, S.J.: Online process monitoring using incremental state-
space expansion: an exact algorithm. In: Fahland, D., Ghidini, C., Becker, J.,
Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 147–164. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58666-9 9

37. Sharp, A.M.: Incremental Algorithms: Solving Problems in a Changing World.
Ph.D. thesis, Cornell University (2007)

38. van der Aalst, W.M.P., Ton, A.J., Weijters, M.M.: Rediscovering workflow models
from event-based data using little thumb. Integr. Comput. Aid. Eng. 10(2), 151–
162 (2003)

https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-642-38709-8_28
https://doi.org/10.1007/978-3-642-23059-2_13
https://doi.org/10.1007/978-3-642-23059-2_13
https://doi.org/10.1007/978-3-319-16071-9
https://doi.org/10.1007/978-3-540-30570-5_27
https://doi.org/10.1007/978-3-540-30570-5_27
https://doi.org/10.1007/978-3-030-58666-9_9

372 A. Burattin

39. van der Aalst, W.M.P., Ton, A.J., Weijters, M.M., Maruster, L.: Workflow mining:
discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16,
1128–1142 (2004)

40. van Zelst, S.J.: Process mining with streaming data. Ph.D. thesis, Technische Uni-
versiteit Eindhoven (2019)

41. van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B., van der Aalst, W.M.P.:
Online conformance checking: relating event streams to process models using
prefix-alignments. Int. J. Data Sci. Anal. 8, 269–284 (2017)

42. van Zelst, S.J., van Dongen, B., van der Aalst, W.M.P.: Know what you stream:
generating event streams from CPN models in ProM 6. In: CEUR Workshop Pro-
ceedings, pp. 85–89 (2015)

43. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Online discovery of
cooperative structures in business processes. In: Debruyne, C., et al. (eds.) OTM
2016. LNCS, vol. 10033, pp. 210–228. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-48472-3 12

44. van Zelst, S.J., van Dongen, B., van der Aalst, W.M.P.: Event stream-based process
discovery using abstract representations. Knowl. Inf. Syst. 54, 1–29 (2018)

45. Weber, I., Rogge-Solti, A., Li, C., Mendling, J.: CCaaS: online conformance check-
ing as a service. In: Proceedings of the BPM Demo Session 2015, vol. 1418, pp.
45–49 (2015)

46. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Mach. Learn. 23(1), 69–101 (1996)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-48472-3_12
https://doi.org/10.1007/978-3-319-48472-3_12
http://creativecommons.org/licenses/by/4.0/

	Streaming Process Mining
	1 Introduction
	1.1 Use Cases
	1.2 Background and Terminology

	2 Taxonomy of Approaches
	3 Streaming Process Discovery
	3.1 State of the Art
	3.2 Heuristics Miner with Lossy Counting (HM-LC)

	4 Streaming Conformance Checking
	4.1 State of the Art
	4.2 Conformance Checking with Behavioral Patterns

	5 Other Applications and Outlook
	References

