Process Mining meets Statistical Model
Checking: Towards a Novel Approach to Model
Validation and Enhancement

Roberto Casaluce!?, Andrea Burattin?,
Francesca Chiaromonte?4, and Andrea Vandin?3

! Univerista di Pisa, Pisa, Italy
2 Institute of Economics and EMbeDS, Sant’Anna School of Adv. Studies, Pisa, Italy
3 DTU Technical University of Denmark, Kgs. Lyngby, Denmark
4 Dept. of Statistics and Huck Institutes of the Life Sciences, Penn State Univ., USA

Abstract. We propose a novel research line integrating Statistical Model
Checking (SMC), a family of simulation-based analysis techniques from
quantitative formal methods, with Process Mining (PM), a collection
of data-driven process-oriented techniques. SMC and PM are comple-
mentary. SMC focuses on performing the right number of simulations to
obtain statistically-reliable estimations (e.g., the probability of success of
an attack). PM focuses on reconstructing a model of a system using logs
of its traces. Nevertheless, both approaches aim at providing evidence of
issues/guarantees of the system, and at proposing enhancements.

We aim at enriching SMC by explaining why it produced specific esti-
mates. This might help, e.g., identifying issues in the model (validation)
or suggesting improvements (enhancement). Given that SMC uses statis-
tics to decide what is the correct number of simulations (or traces), we
avoid by-construction the complex issue of under-representation of sys-
tem behavior in the logs crucial to many PM exercises.

This work-in-progress paper demonstrates the proposed methodology
and its usefulness using a simple example from the security threat mod-
eling domain. We show how PM helps highlighting both mistakes in the
model, and possibilities for improvement.

Keywords: Process Mining - Statistical Model Checking - Validation

1 Introduction

We present novel research integrating the simulation-based analysis technique
from quantitative formal methods known as statistical model checking (SMC) [2],
with the data- and process-driven techniques known as process mining (PM) [I].

Specifically, we aim at formulating a novel framework capable of making anal-
yses results typical of SMC, and of simulation-based analysis in general, more
explainable and understandable. Our framework will empower modelers to ac-
tually see the unfolded behavior of their models, as opposed to just numerical
aggregated values. This will pave the way to new possibilities in terms of de-
bugging and validating the models of interest. Considering the widespread use
of simulation models, having tools to debug and validate them will represent a
potentially very impactful contribution among several disciplines.

2 R. Casaluce, A. Burattin, F. Chiaromonte, A. Vandin

2 Preliminaries and Related work

2.1 Attack-Defense Trees

We briefly introduce the domain of risk modeling and analysis with so-called
attack-defense trees. Attack-defense trees (ADT) and their variants [T9I6JI3]
allow to represent security scenario by means of intuitive visual language con-
structs. These aim at providing means for specifying vulnerabilities and coun-
termeasures, their interplay, together with quantitative aspects such as cost and
effectiveness. The goal is to support policy- and decision-making in determining,
e.g., the degree of vulnerability to specific attacks, based on the resources of at-
tackers, or whether given defensive resources are cost-effective. Attack trees are
widely used in several domains like, e.g., defense (e.g., their use is recommended
by NATO [18]), aerospace [22], or safety-critical cyber-physical systems [12].

RobBank

BlowUp

We present a simple running example for
the risk assessment of a “bank robbery” sce-
nario extrapolated from [5] as depicted in
Fig. [We see that ADT are graphs whose
nodes represent either attack goals or defen-
sive measures, and sub-trees represent nodes’
refinements. The root (RobBank), is the threat \
under analysis. In order to achieve it, we shall
first succeed in opening the vault (Openvault),
or blowing it up (BlowUp), or both. Refine-
ments might also come with other Boolean
conjunctions like and, xor, etc. The figure also Fig. 1: Attack-defense Tree for a
shows another kind of refinement, denoted by
a grey dashed edge: RobBank attempts can be
mitigated by the countermeasure LockDown. This is a reactive defense that might
be turned on by BlowUp attempts (dashed blue arrow).

Recently (e.g., [4[14/3]), ADT have been extended with attacker profiles, ex-
plicit attacker behaviours acting on the security scenario described by the ADT.
This allows to assess systems against specific classes of attackers (e.g., large or-
ganizations with rich resources, or lone wolves). E.g., RisQFLan [4] allows one to
specify probabilistic attacker behaviours. An example is shown in Fig. 2] We can
see that the attacker can be in four states: Start, TryOpenVault, TryBlowUp, and
Complete. When s/he is in state Start, s/he can decide to attempt OpenVault or
BlowUp strategies by changing in states TryOpenVault, or TryBlowUp, respectively.
This is done by performing action chooseOV with weight 2, or chooseBU with
weight 4, respectively. Alternatively, if allowed by the ADT (i.e., if OpenVault or
BlowUp attempts have already previously succeeded), the attacker can actually
attempt to rob the bank by moving in state Complete. In particular, the attack
will succeed (succ(RobBank)) with weight 3, or fail(RobBank) with weight 1.
Likewise, from state TryOpenVault or TryBlowUp, the corresponding attacks will
be attempted as dictated by the transitions with actions succ and fail. We note

Attributes
Cost = 90.0
Detection Rate = 0.0

OpenVault

LockDown
Defense Effectiveness
ALL : RobBank = 0.3

simple bank robbery scenario

Process Mining meets Statistical Model Checking 3

add(BlowUp),2 Yfail(BlowUp), 10000 add(RobBank),3 Yail(RobBank),1

fail(OpenVault),1 (chooseBU,4'
TryBlowUp

Fig. 2: Probabilistic attacker behaviour

TryOpenVault

that the weight for fail(BlowUp) is particularly high, this will be instrumental
to our analyses in Section [4]

The weights are used to compute the probability with which each transition is
executed, allowing to obtain probabilistic simulations of the attacker behaviour
modulo the constraints by the ADT. More details on the RisQFLan language,
on the further quantitative attributes of nodes shown in Fig. and on the
simulation of RisQFLan models will be provided in Section [

2.2 (Black-box) Statistical Model Checking

We introduce a family of simulation-based analysis techniques that comes un-
der the name of (black-box) statistical model checking (SMC). SMC [2], con-
sists in performing a sufficient number of probabilistic simulations of a model
to obtain statistically reliable estimations of model properties. Black-box SMC
(e.g., |21I25124]) is a fragment of SMC where no assumption is made on the
studied model, only that probabilistic simulations of it can be performed. E.g.,
MultiVeStA [24120/10] is a black-box SMC tool that can be integrated with ex-
isting simulators to enrich them with automated statistical analysis techniques.
The idea is simple: to each simulation we assign a real value, e.g., 0 or 1 if the at-
tacker succeeds or fails, resp., in robbing the bank within the first 60 simulation
steps. Technically, this is a random variable X in the interval [0, 1] over simula-
tions of the model. Notably, the expected value p = E[X] of X corresponds to
the probability of success of the event (the attacker succeeds within the first 60
steps of simulation). As discussed in [24]20], MultiVeStA estimates such expected
values E[X] as the mean T of n independent simulations, with n large enough
to guarantee an («, d) confidence interval (CI) [15, Chapter 9]. In other words,
MultiVeStA guarantees that E[X], i.e., the studied probability, belongs to the
interval [T — &2, T + ¢/2] with statistical confidence (1 —«)-100%. § is a parameter
chosen by the user that gives a sort of precision on the performed estimation.
Instead, roughly, « is related to the probability that the studied probability ac-
tually belongs to the computed interval. The interesting part is that the correct
number of simulations to be performed for a given property and CI is chosen by
MultiVeStA by using standard statistical machinery [I5, Chapter 9].

Black-box SMC and MultiVeStA can estimate more complex properties.
However, for the sake of presentation, here we focus on simple ones like the
mentioned one. MultiVeStA has been successfully applied to a wide range of do-
mains, including, e.g., security risk modeling [4], economical agent-based mod-
els [24], highly-configurable systems [523], public transportation systems, [T1Ig],
business process modeling [9]. robotic scenarios with planning capabilities [6],

4 R. Casaluce, A. Burattin, F. Chiaromonte, A. Vandin

and crowd steering scenarios [I7]. This has been made possible by the fact that
black-box SMC can be applied to virtually any simulation model. E.g., Multi-
VeStA only requires to implement a simulator-specific adaptor to perform basic
operations such as reset: reset simulator to do a new simulation, providing a
new random seed; oneStep: perform one step of simulation; and eval: evalu-
ate an observation on the current simulator state. However, this high generality
might come at the cost of low interpretability of results. Indeed, it might be
difficult to provide behavioral explanations about why a property is estimated to
a given value. SMC approaches like, e.g., [7], partially address this by providing
a counterexample — an example of problematic/relevant simulation. However,
to the best of our knowledge, no SMC technique has ever been integrated with
rich support for describing and reasoning upon the whole behavior that led to a
specific result. It is relevant to highlight that the methodology presented in this
paper can be applied to any simulation model and SMC tool, since it does not
rely on the internal mechanics of the analyzer or of the model, but exploits logs
of the computed simulations. In the next section we present a process-oriented
data-driven family of techniques known as process mining that we combine with
SMC to offer rich white-box behavioral interpretability of the analysis results.

2.3 Process Mining

Process Mining (PM) is the scientific discipline bridging the gap between data
science and process science [I]. It aims at using actual executions of a process
to infer relevant information about how the underlying behavior is observed in
action (as opposed to the intended behavior). PM consists of three main activi-
ties: (control-flow) discovery, enhancement, and conformance checking. Discovery
aims to identify an abstract representation of the executed process by combining
all the observed instances into a single model. Such a model can be enhanced
with additional information (e.g., how often activities/paths are executed). This
is called enhancement. Finally, conformance checking tries to understand the
extent to which a normative model is violated in actual executions.

In this paper, we are interested in the discovery and enhancement activities
since we aim at consuming the execution traces coming from SMC analyses to
see whether the generated behavior is aligned with the original expectations.

3 Extending (Black-box) SMC with Process Mining

In this section we discuss a novel methodology for white-box behavioral expla-
nation of SMC analysis results by process mining.

3.1 Methodology

Fig.[3a] graphically depicts the typical methodology adopted for the construction
and validation of simulation models based on SMC analysis. It starts with the
creation of the model, which is then analyzed producing numerical results, plots,

Process Mining meets Statistical Model Checking 5

b
Numerical
results and

single
counterexamp

e

Black-box
A > > SMC analysis < > > C)
— Model creation evaluation of
\T MuitNeSo [numerical results| X

Informed guess driven by numerical resuits

(a) State-of-the-art life-cycle of SMC-analysed simulation models.

OB ostcaten st s

(b) Novel SMC- and PM-guided methodology for white-box behavioral model valida-
tion. Additions wrt Fig. are shown in green.

Fig.3: SMC- and PM-based ethodology for white-box behavioral validation.

and possibly counterexamples for the studied properties. At this point, if the
modeler spots unexpected numerical results, e.g., the probability of success of an
attack is lower than expected, they might make an informed guess to hypothesize
changes to be applied to the model to improve its performance and fiz it. This
can be seen as an SMC-guided black-box validation of the model (we use the
term black-box, because there is no overview of the overarching behavior, but
just numerical values or single counterexamples).

Fig. depicts a new methodology we propose which enriches (black-box)
SMC with SMC- and PM-guided white-box behavioral model validation. The main
idea is to augment SMC, e.g., MultiVeStA, with the ability to generate logs for
the computed simulations, corresponding to one trace per simulation (here we
use the term trace to indicate one sequence of observed events, all belonging
to the same process instance). Once the analysis is concluded, we feed these
logs to existing PM tools, enabling a behavioral interpretation of the analysis
results. Indeed, the output of PM tools can be visually inspected to evaluate the
behaviors originating from the collected instances of the attacker behavior (the
simulations). Therefore, the result is not anymore given as raw numbers, which
require an important cognitive step for debugging the model and discovering if
and where something went wrong. Rather, PM provides interactive and navigable
(via abstraction and filtering of traces and connections) graphical results which
are closer and more comparable to the original model. This better supports and
guides the identification of flaws or enhancement opportunities.

3.2 Operationalizing the Methodology

In order to enrich MultiVeStA with PM-oriented logging capabilities we have
extended its interface with simulators, and in particular the RisQFLan’s, with

6 R. Casaluce, A. Burattin, F. Chiaromonte, A. Vandin

two methods, namely createLogFile (invoked once per analysis by MultiVeStA
to create an empty log file); and addLogRow (invoked by MultiVeStA every time
we want to note down an event of interest). In principle, MultiVeStA could
be instructed in invoking addLogRow once or several times per simulation step,
or only when specific events arise. This would give freedom to the modeler in
deciding the coarseness-degree of the logs. Currently, we invoke the method
addLogRow once per simulation step, recording:

— The incremental counter of steps (the time stamp);

— The unique random seed used by the current simulation (the case ID);

— The executed action (the activity);

The target state of the executed transition (also part of the activity);
Relevant additional information, e.g., the achievement of (sub)-attack at-
tempts, the activation status of countermeasures, and further information
on the obtained simulation state.

The set of information recorded are then structured in a file that can be used
for the process mining analyses. Indeed, in order to analyse a log with process
mining tools, it is necessary to have: (i) a case identifier (i.e., case ID) which
is used to group together all the observations belonging to the same process
instance (i.e., the simulation number); (4) an activity name, indicating which
action has been executed in each event; (i7i) a timestamp (used for sorting the
events and producing a sequence). Additional attributes can also be used in
order to refine the analyses, for example, by applying some filters to focus only
on successful attacks or to remove executions involving some paths/actions. For
the actual process mining analyses we used Fluxicon Disco (https://fluxicon.
com/disco/) which allows importing CSV files and provides very useful tools
for interactive navigation and exploration of the results.

4 Experiments

Here we apply our proposed methodology to the discussed case study. In our
experiments, we use Fluxicon Disco to study the generated event logs of the at-
tacks. We investigate how the integration of SMC (MultiVeStA) and PM (Disco)
allows us to create two model refinements improving the performances of the at-
tacker, and fixing mistakes in the model. We will use SMC to analyze the original
model and the two devised refinements with respect to the following property:

What is the probability for the attacker to succeed in a robbing the bank
within 60 steps of simulation?

The property is purposely simple. We chose 60 steps Model Prob.
because we found it sufficient to cover the dynamics of the —
model. The results obtained by for the three variants are L5t ?er;igxilelient 8;1
given in Fig. [In all the three variants, we used a = 0.1, 9nd Lefinement 0.72
6 = 0.1, while MultiVeStA decided to run 240 simulations.
We start discussing how the bank robbery case study Fig.4: Probability
can be encoded in RisQFLan. of bank robbery.

https://fluxicon.com/disco/
https://fluxicon.com/disco/

Process Mining meets Statistical Model Checking 7

begin attributes
Cost = {BlowUp = 90, OpenVault = 0}

end attributes begin attack detection rates
BlowUp = 0.0
begin quantitative constraints end attack detection rates

{ value(Cost) <= 100 }
end quantitative constraints

Fig.5: RisQFLan: (Left) Nodes’ attributes and quantitative constraints. (Right)
Detection rates of attack nodes.

4.1 RisQFLan Encoding of the Running example

Fig. [1] and [2] were generated by RisQFLan starting from a textual description
which we detail here. The RisQFLan code for the tree-structure of the ADT itself
from Fig. [1]is straightforward, therefore we do not discuss it here. The nodes in
Fig. [[] contain quantitative information like Cost, Detection rate, and Defense
effectiveness. These are given in RisQFLan code blocks shown in Fig.] The
attributes block specifies quantitative attributes of nodes. In the example we
defined only Cost, which specifies that the cost of BlowUp and OpenVault attempts
is 90 and 0, resp. This means that every time succ(BlowUp) or fail(BlowUp) are
executed, a counter Cost is increased by 90. This has a strong impact on the
allowed simulations. Indeed, the block quantitative constraints imposes that,
no matter what, the value of such counter will never be allowed to be greater
than 100. Practically, this imposes that the attacker will only be allowed to
attempt at most one BlowUp attempt per simulation. This is obtained as follows:
at every simulation step, the weight (and therefore the probability of execution)
of actions violating constraints is scaled down to 0. Block attack detection
rates specifies that BlowUp attempts have probability 0 of being detected. This
de facto imposes that the countermeasure LockDown will never be activated. We
omit discussing Defense effectiveness because irrelevant to this paper.

We now move our attention to the probabilistic attacker behavior in Fig. 2]
given by the block in Fig. [f] We note an almost one-to-one correspondence among
Fig.[2]and Fig.[6] Looking at the first transition, we see how those are given by a
source (Start) and target state (Complete), the executed action (succ(RobBank)),
the weight (3), and an optional transition constraint (a guard) that blocks the
execution of the transition if not satisfied. In this case, allowed (RobBank) imposes
that we can attempt RobBank attacks only if allowed by the constraints from the
ADT. This models a sort of smart attacker that does not waste resources in
attempting the attack until s/he knows to have chances of success. Indeed, the
semantics of RisQFLan imposes that, without such guard, only fail(RobBank)
(and not succ(RobBank)) would be allowed to execute if the the constraints
coming from the ADT are not satisfied [4]. Finally, in the figure we also see that
the modeler can add model-specific actions on top of the succ and fail ones.

4.2 Analysis and Refinement of the Original Model

Behavioral analysis of results. As shown in Fig. [d in the original model the
attacker has only 0.17 probability in succeeding in its attack. By feeding the

8 R. Casaluce, A. Burattin, F. Chiaromonte, A. Vandin

begin attacker behavior
begin attack
attacker = Thief
states = Start, TryOpenVault, TryBlowUp, Complete
transitions =
// If vault open or blown up, attacker can rob
Start - (succ(RobBank), 3, allowed(RobBank)) -> Complete,

Start - (fail(RobBank), 1, allowed(RobBank)) -> Complete, begin actions

// Strategy where the attacker can open the vault chooseQV

Start -(chooseOV, 2) -> TryOpenVault, chooseBU
TryOpenVault - (succ(OpenVault), 2) -> Start, end actions

TryOpenVault -(fail(OpenvVault), 1) -> Start,
// Strategy where the attacker tries to blow up the vault
Start -(chooseBU, 4) -> TryBlowUp,
TryBlowUp -(succ(BlowUp), 2) -> Start,
TryBlowUp - (fail(BlowUp), 10000) -> Start
end attack
end attacker behavior

Fig. 6: RisQFLan: Probabilistic attacker behavior.

obtained logs into Disco (with filters set to 100% for both the activities and
the path), we obtain the process in Fig. [/l We can see that the starting state is
Start-reset, where Start is the initial state of Fig. [2| while reset is a special
action implicitly execute by MultiVeStA when resetting the simulator before
performing a new simulation. For example, we have a transition from the root
state to TryBlowUp-chooseBU, labeled 167, to denote that 167 times out of 240
the attacker attempts a BlowUp attack. This is about twice the number of times
(73) that OpenVault is chosen as first attack, coherently with the weights of the
transitions in Fig. [f] with action choose0V (2), and cooseBU, respectively.

Let us look at the process state Complete-succ(RobBank) at the bottom-left
of Fig.[7} No other process state contains succ (RobBank). Therefore, all and only
the simulations reaching this configu- ®
ration represent executions in which
the attacker succeeded in robbing. The
label 41 in the process state denotes
that this happens 41 times. Indeed,
41/240 = 0.17, the probability given in

Fig. [At the bottom-left of Fig. [7] we q
also find state Start-succ(OpenVault).
Once we get into such state, we have

succeeded in attacking OpenVault (the

attacker successfully completed the left-

most strategy in Fig. and went §

back in state Start). According to the
constraints expressed in the ADT in
Fig. [I] the attacker could now attempt

Start-reset
240

TryBlowUp-chooseBU
38¢

TryOpenVault-chooseOV
147
Start-fail(OpenVault)
53

Start-succ(Openvault)
o

RobBank attacks. This is because the [c i] [.]
ADT requires that at least one among
OpenVault or BlowUp is necessary. ®

Indeed, the two downward process Fig.7: Process model generated by
transitions outgoing from procees state Disco for the Original model.

Process Mining meets Statistical Model Checking 9

// We add the !allowed(RobBank)

Start -(chooseBU, 4, 'allowed(RobBank)) -> TryBlowUp,
TryBlowUp -(succ(BlowUp), 2) -> Start,

TryBlowUp -(fail(BlowUp), 10000) -> Start

Fig.8: First model refinement: we fix the non-parsimonious attacker problem.

Start-succ(OpenVault) attempt the root attack, failing 17 times, and succeeding
32 times. Instead, the upward transition entering in TryBlowUp-chooseBU depicts
that in many cases, 45, the attacker decided to first attempt also a BlowUp attack.
This is permitted by the model and the ADT. However, it might be somehow
unexpected or irrational by the attacker. Clearly, this will lead to higher expenses
(BlowUp attempts have high cost), and lower success rate (due to fail actions
possibly execute).

Model refinement. Leveraging the analysis in Disco we discovered that the
original model erroneously, or at least unexpectedly, describes a sort of non
parsimonious attacker that attempts non-necessary BlowUp attacks even if they
already succeeded in OpenVault ones. We can solve this issue by changing the
transition with action chooseBU from Fig. [f] as shown in Fig.[8] The fix is simple:
we only need to add a guard !allowed(RobBank). As we shall see in the next
section, this guarantees that the attacker will not attempt BlowUp attacks if they
already met the ADT requirements to attempt the root goal.

4.3 Analysis of the First Refinement

Behavioral analysis of results. As shown in Fig.] in the first refinement, the
probability of success of the attacker increased to 0.31. By feeding the obtained
logs into Disco, we obtain the process in Fig. |§| (left). Here, we can see that we
have solved the issue from Section [£:2} from state Start-succ(OpenVault) we
only have the two downward transitions attempting RobBank attacks.

From the discovered process, we can see a further issue in the model. We can
see that 3 process states have a grey dashed transition towards the bottom-most
small grey circle with an inscribed square. These are three endpoints, meaning
that simulations terminated in such states. The two bottom endpoints related
to Complete are expected, because Fig. [6] dictates that we do not have outgoing
transitions from state Complete. Instead, the third endpoint was not expected
because TryBlowUp was not expected to be a terminal state, and therefore it
can be considered as a deadlock problem. Notably, as shown in the label of the
corresponding dashed transition, this issue has a particularly strong impact, as
138 simulations out of 240 terminate getting stuck in state TryBlowUp.

Using Disco, it is easy to zoom in specific behavior. Fig. |§| (right) shows a
process generated by Disco by focusing only on the 138 simulations getting stuck
in TryBlowUp. We can see that the endpoint state is visited 276 times, twice per
simulation. This clearly highlights a conflict among the cost of attempting BlowUp
attacks (90), and the constraint on maximum allowed cost (100), both shown in
Fig. 5| (left). What happens is that the second time the attacker gets in state
TryBlowUp, they have spent already 90. Looking at Fig.[6] we can see that the two
transitions outgoing from this state have action succ/fail(BlowUp), modeling

10 R. Casaluce, A. Burattin, F. Chiaromonte, A. Vandin

Start-reset
240

TryBlowUp-chooseBU
276

TryBlowUp-chooseBU
318

TryOpenVault-chooseOV
23

LN

Start-fail(OpenVault)
23

® ®

Fig.9: Behavioral analysis of first refinement. (Left) PM process. (Right) Fil-
tered process for end-point TryBlowUp.

Start-fail(BlowUp)
180

// Strategy where the attacker tries to blow up the vault begin actions
Start -(chooseBU, 4, !'allowed(RobBank)) -> TryBlowUp, chooseOV
TryBlowUp - (succ(BlowUp), 2) -> Start, chooseBU
TryBlowUp -(fail(BlowUp), 10000) -> Start, goBack
TryBlowUp -(goBack, 0.00001) -> Start end actions

Fig. 10: Second model refinement: we fix the deadlock TryBlowUp.

the success or failure of this attack, and target state Start. Unfortunately, both
actions would lead to a cost of 180, violating the constraint of maximum cost. In
other words, both transitions or disabled on second visit of TryBlowUp, making
it a terminal state.

Model refinement. This behavior was unintended. We would like the attacker
to be able to always get back to state Start to attempt further attack strategies
without remaining stuck in state TryBlowUp.

This can be easily solved by adding a third outgoing transition from state
TryBlowUp as shown in Fig. Here, with a very low weight, we can take a
transition with new action goBack to go back to state Start without attempting
any attack. Being the weight so small, this transition will almost always be
selected only in the cases that were creating a deadlock in the previous variant.
As we shall see in the next section, this guarantees that we find only the two
expected complete-related endpoints.

4.4 Analysis of the Second Refinement

Behavioral analysis of results. As shown in Fig.[4 in the second refinement,

Process Mining meets Statistical Model Checking 11

the success probability of the attacker ®
increases considerably from to 0.31 to

0.72. This is coherent with the fact S
that we expect to have improved on the
138 simulations that were getting stuck
in state TryBlowUp. By feeding the ob-
tained logs into Disco, we obtain the
process in Fig. [[I] The process gener-
ated by Disco confirms that we now
have only the two expected endpoints.
From the process we see we get in pro-
cess state Complete-succ(RobBank) 173
times, with 173/240 = 0.72 as indicated

TryBlowUp-chooseBU
617

Start-goBack

Start-fail(BlowUp)
177

Start-fail(OpenVault)
107

in Fig. [4
Finally, we note that we never enter / ‘ \i
in a process state involving succBlowUp. [i } [C - }
This is expected from the very high
weight (10K) of succBlowUp. This was ®

on purpose, to allow for an easier pre- Fig.11: PM behavior of 2" refinement
sentation of the results instrumental for presenting the methodology.

5 Conclusions and Future Work

We proposed a novel methodology for validating and enhancing simulation mod-
els to make them more reliable. The methodology is based on the integration of
simulation-based analysis techniques known as statistical model checking (SMC),
with process-oriented data-driven techniques known and process mining (PM). A
simulation in SMC corresponds to a trace in PM. To the best of our knowledge,
this is the first integration of SMC and PM. We obtained a novel methodology for
SMC- and PM-guided white-box behavioral model validation and enhancement.

We demonstrated our methodology on a toy example from the threat model-
ing domain. We have seen how PM can discover issues in the model by inspecting
the simulations generated by SMC. Notably, given that SMC is able to decide
the correct number of simulations necessary to perform an analysis, in some
sense we also obtain statistically-reliable event logs for being used with PM.

As future work, we will consider more realistic models, from several domains.
E.g., agent-based models from the social sciences, given that the SMC tool Mul-
tiVeStA has been recently redesigned and extended to tailor them [4]. Addition-
ally, conformance checking techniques might become relevant in order to ensure
that the simulations produced by SMC fulfill normative models. We also foresee
a richer integration of PM and SMC. Currently, we use PM after SMC comple-
tion. We might consider scenarios where streaming process mining techniques
are performed during SMC in order to tailor the SMC analysis. In addition, PM
might also be used before SMC. E.g., discovery algorithms might be applied to
real data to synthesize attack-defense trees and/or attacker behaviors.

12 R. Casaluce, A. Burattin, F. Chiaromonte, A. Vandin
References
1. van der Aalst, W.M.: Process Mining. Springer, 2nd edn. (2016)

2.

3.

10.

11.

12.

13.
14.
15.
16.
17.
18.

19.
20.

21.

22.

23.

24.

25.

Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comp. Simul. 28(1), 6:1-6:39 (2018)

Aslanyan, Z., Nielson, F., Parker, D.: Quantitative Verification and Synthesis of
Attack-Defence Scenarios. In: Proc. CSF’16. pp. 105-119. IEEE (2016)

ter Beek, M.H., Legay, A., Lafuente, A.L., Vandin, A.: Quantitative security risk
modeling and analysis with RisQFLan. Computers & Security 109, 102381 (2021)
ter Beek, M.H., Legay, A., Lluch-Lafuente, A., Vandin, A.: A Framework for Quan-
titative Modeling and Analysis of Highly (Re)configurable Systems. IEEE Trans.
Software Eng. 46(3), 321-345 (2020)

Belzner, L., De Nicola, R., Vandin, A., Wirsing, M.: Reasoning (on) service com-
ponent ensembles in rewriting logic. In: Spec., Alg., and Soft. pp. 188-211 (2014)
Bulychev, P.E., David, A., Larsen, K.G., Mikucionis, M., Poulsen, D.B., Legay, A.,
Wang, Z.: UPPAAL-SMC: statistical model checking for priced timed automata.
In: Proc. QAPL’12. vol. 85, pp. 1-16 (2012)

Ciancia, V., Latella, D., Massink, M., Pagkauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: ISOLA’17
Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., Vandin, A.: A formal
approach for the analysis of BPMN collaboration models. JSS 180, 111007 (2021)
Gilmore, S., Reijsbergen, D., Vandin, A.: Transient and steady-state statistical
analysis for discrete event simulators. In: IFM. pp. 145-160. Springer (2017)
Gilmore, S., Tribastone, M., Vandin, A.: An analysis pathway for the quantitative
evaluation of public transport systems. In: IFM (2014)

Hu, J., Niu, H., Carrasco, J., Lennox, B., Arvin, F.: Fault-tolerant cooperative
navigation of networked uav swarms for forest fire monitoring. Aerospace Science
and Technology 123, 107494 (2022)

Kordy, B., Mauw, S., Radomirovié¢, S., Schweitzer, P.: Foundations of Attack-
Defense Trees. In: Proc. FAST 10 (2011)

Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative Attack Tree Analysis via
Priced Timed Automata. In: Proc. of FORMATS. pp. 156-171. Springer (2015)
Law, A.M.: Simulation Modeling and Analysis. McGraw-Hill, 5th edn. (2015)
Mauw, S., Oostdijk, M.: Foundations of Attack Trees. In: ICISC (2005)

Pianini, D., Sebastio, S., Vandin, A.: Distributed statistical analysis of complex
systems modeled through a chemical metaphor. In: HPCS. pp. 416-423 (2014)
Research and Technology Organisation of NATO: Improving Common Security
Risk Analysis report. RTO Technical Report TR-IST-049 (2008)

Schneier, B.: Attack trees. Dr. Dobb’s Journal (1999), bit.ly/3tcfuoZ

Sebastio, S., Vandin, A.: MultiVeStA: statistical model checking for discrete event
simulators. In: 7th Int. Conf ValueTools’13. pp. 310-315. ICST/ACM (2013)

Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: CAV 2004. pp. 202-215. Springer (2004)

U.S. Department of Defense: Defense Acquisition Guidebook, Section 8.5.3.3
(2009), |https://bit.ly/3NJjs07

Vandin, A., ter Beek, M.H., Legay, A., Lluch-Lafuente, A.: QFLan: A Tool for the
Quantitative Analysis of Highly Reconfigurable Systems. In: FM (2018)

Vandin, A., Giachini, D., Lamperti, F., Chiaromonte, F.: Automated and dis-
tributed statistical analysis of economic agent-based models. Journal of Economic
Dynamics and Control p. 104458 (2022)

Younes, H.L.: Probabilistic verification for “black-box” systems. In: CAV 2015. pp.
253-265. Springer (2005)

bit.ly/3tcfuoZ
https://bit.ly/3NJjs07

	Process Mining meets Statistical Model Checking: Towards a Novel Approach to Model Validation and Enhancement

