
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Unleashing Textual Descriptions of Business Processes

Josep Sànchez-Ferreres · Andrea Burattin ·
Josep Carmona · Marco Montali ·
Llúıs Padró · Lúıs Quishpi

the date of receipt and acceptance should be inserted later

Abstract Textual descriptions of processes are ubiquous in organizations, so that
documentation of the important processes can be accessible to anyone involved.
Unfortunately, the value of this rich data source is hampered by the challenge
of analyzing unstructured information. In this paper we propose a framework to
overcome the current limitations on dealing with textual descriptions of processes.
This framework considers extraction and analysis, and connects to process min-
ing via simulation. The framework is grounded in the notion of annotated textual
descriptions of processes, which represents a middle-ground between formaliza-
tion and accessibility, and which accounts for different modeling styles, ranging
from purely imperative to purely declarative. The contributions of this paper are
implemented in several tools, and case studies are highlighted.

Keywords Business Process Management · Natural Language Processing ·
Temporal Logics · Process Mining · Model Checking · Simulation

1 Introduction

Organizing business processes in an efficient and effective manner is the overarching
objective of Business Process Management (BPM). Process specifications are the
typical way of communicating how and in which order a given set of tasks or
activities should be executed [16]. Several formal languages have been developed
over the years to unambiguously define these processes. However, very often, these
specifications are provided simply using natural language [32,33,2,46]. Due to

J. Sànchez-Ferreres, J. Carmona, L. Padró and L. Quishpi
Universitat Politècnica de Catalunya, Barcelona, Spain.
E-mail: {jsanchezf, jcarmona, padro, quishpi}@cs.upc.edu

A. Burattin
Technical University of Denmark, Copenhagen, Denmark.
E-mail: andbur@dtu.tk

M. Montali
Free University of Bozen-Bolzano, Bolzano, Italy.
E-mail: montali@inf.unibz.it

2 Josep Sànchez-Ferreres et al.

Textual

Description
ATDP Reasoner

Event Log

Manual

Annotation

counterexample: 〈a1, a3, a7, a2〉

counterexample: 〈a1, a3, a7, a2〉

I1 property verified

I4 property verified

I2 property verified

... ...

I3 counterexample: 〈a1, a3, a7, a2〉

I5 counterexample: 〈a1, a3, a7, a2〉

Result

Business Rule

Temporal Formula

□(a → ◇b)

◇b → (¬bUa)

Event Log (Generated)Simulator

Extractor

[39]

Fig. 1 General framework for extraction, analysis and simulation of textual descriptions of
processes. The contributions introduced in [40] are highlighted.

the intrinsic ambiguities of natural languages, the exploitation of this information
sources has proven to be a real challenge for organizations [49].

Taking into account the process information that is present in natural language
texts brings completely fresh opportunities for organizations, such as enabling
the connection between conceptual models and textual based representation of
processes, or the ability to expose processes to a more general audience, among
others. In spite of this, only in the past few years Natural Language Processing

(NLP)-based analysis has been proposed in the BPM context, as reported in [26,
31,30,49].

This paper proposes a framework to enable formal process modelling on top
of natural language. But more importantly, this paper also aims at opening a
new direction for the use of textual description of processes in organizations: the
possibility of enabling disciplines like verification, simulation or query answering
on top of textual descriptions of processes (see Figure 1). This is possible due to the
introduction of textual annotations, which can be partially extracted from a raw
textual process description using advanced matching strategies [28] in combination
with NLP, and for which a formal semantics using temporal logics over finite
executions has been defined.

Part of the paper will be devoted to formalizing Annotated Textual Descrip-

tions of Processes (ATDP). This formalism, originally introduced in [40], naturally
enables the representation of a wide range of behaviors, ranging from procedural
to completely declarative, but also hybrid ones. This is due to the notion of scope,
that serves to frame the boundaries between declarative and imperative modelling
strategies. Remarkably, and different from classical conceptual modeling princi-
ples, we have chosen to not solve but highlight ambiguities that can arise from a
textual description of a process, so that a specification can have more than one
possible interpretation.

ATDP specifications can be translated into linear temporal logic over finite traces
[22,11], opening the door to formal reasoning. The formal analysis proposed in
this paper is mainly verification: to assess the compliance of a specification with
respect to certain business rules. In addition to the obvious use of verification

Unleashing Textual Descriptions of Business Processes 3

to detect problems in a specification of a business process, it can be used to
perform interpretation-aware reasoning. For instance, using verification one can
select among the possible interpretations of an ATDP, which ones (if any) satisfy the
reference business rules. Another use is to certify that any interpretation satisfies
the reference business rules, in turn witnessing that the apparent flexibility in the
process execution is not harmful.

Another interesting application of ATDP is simulation: to generate end-to-end
executions (i.e., an event log [53]) that correspond to the underlying process. This
would allow one to apply process mining techniques like discovery, so that a formal
process model can be extracted using well-known discovery algorithms. For this,
we introduce an approach combining state of the art techniques in the simulation
of imperative and declarative process models [24].

This paper presents a revised and extended version of [40], including new re-
lations and an iterated formalization, and a new positioning of the contribution
with respect to related work. Additionally, the following new contributions are
proposed in this paper:

– A new framework to automatically extract ATDP elements from textual descrip-
tions.

– A new technique to simulate ATDP specifications to obtain event data, that
has been tested on three realistic examples and validated using conformance
checking techniques.

– A new open-source implementation of the set of techniques presented.

The rest of the paper is structured as follows: the next section positions this
paper with respect to similar works in the literature. Then, Section 4 introduces the
necessary ingredients for the understanding of the contributions of this paper. The
formal description of ATDP specifications is provided in Section 5. Section 6 provides
an overview of the current uses of ATDP specifications. Section 7 describes the tool-
chain behind this work and illustrates its capabilities through some examples.
Finally, Section 8 summarizes the achievements of this work and provides links for
future work.

2 ATDP in a Nutshell

With the help of a realistic case, in this section we describe an example of ATDP

specification. This will serve as a running example throughout the paper. Specif-
ically, we use the textual description of the examination process of a hospital,
extracted from [45]. Figure 2 shows the full text, while Figure 3 contains a frag-
ment of the visualization for an ATDP specification of the description.

One of the key features of the ATDP approach is the ability to capture ambigu-

ity. In our example, we can see this at the topmost level: the text is associated
with three different interpretations I1, I2 and I3, providing three different process-
oriented semantic views on the text. Each interpretation is a completely unam-
biguous specification of the process, which fixes a specific way of understanding
ambiguous/unclear parts. Such parts could be understood differently in another
interpretation. A specification in ATDP then consists of the union of all the valid in-
terpretations of the process, which may partially overlap, but also contradict each
other. For instance, in the example from Figure 3, interpretations I1 and I2 differ

4 Josep Sànchez-Ferreres et al.

The process starts when the female patient is examined by an outpatient physician, who

decides whether she is healthy or needs to undertake an additional examination. In the former

case, the physician fills out the examination form and the patient can leave. In the latter case,

an examination and follow-up treatment order is placed by the physician, who additionally fills

out a request form. Furthermore, the outpatient physician informs the patient about potential

risks. If the patient signs an informed consent and agrees to continue with the procedure,

a delegate of the physician arranges an appointment of the patient with one of the wards.

Before the appointment, the required examination and sampling is prepared by a nurse of the

ward based on the information provided by the outpatient section. Then, a ward physician

takes the sample requested. He further sends it to the lab indicated in the request form and

conducts the follow-up treatment of the patient. After receiving the sample, a physician of the

lab validates its state and decides whether the sample can be used for analysis or whether it

is contaminated and a new sample is required. After the analysis is performed by a medical

technical assistant of the lab, a lab physician validates the results. Finally, a physician from

the outpatient department makes the diagnosis and prescribes the therapy for the patient.

Fig. 2 Textual description of a patient examination process.

Furthermore, the outpatient physician informs the patient
about potential risks. If the patient signs an informed consent
and agrees to continue with the procedure, a delegate of the
physician arranges an appointment of the patient with one of
the wards.

Before the appointment, the required examination and
sampling is prepared by a nurse of the ward based on the
information provided by the outpatient section. Then, a ward
physician takes the sample requested. He further sends it to
the lab indicated in the request form and conducts the follow-
up treatment of the patient.

After receiving the sample, a physician of the lab validates its
state and decides whether the sample can be used for
analysis or whether it is contaminated and a new sample is
required.

After the analysis is performed by a medical technical
assistant of the lab, a lab physician validates the results.
Finally, a physician from the outpatient department makes the
diagnosis and prescribes the therapy for the patient.

AGENT

AGENT

AGENT

PATIENT AGENT

AGENT AGENT

COREFERENCE

PATIENT

PATIENT

AGENT

AGENT

AGENT PATIENT

PATIENT

SUCC.

SUCC.

NO CO-OCCUR

SUCC.

PREC.

SEQUENTIAL

ITERATING

RESPONSE

I1
Furthermore, the outpatient physician informs the patient
about potential risks. If the patient signs an informed consent
and agrees to continue with the procedure, a delegate of the
physician arranges an appointment of the patient with one of
the wards.

Before the appointment, the required examination and
sampling is prepared by a nurse of the ward based on the
information provided by the outpatient section. Then, a ward
physician takes the sample requested. He further sends it to
the lab indicated in the request form and conducts the follow-
up treatment of the patient.

After receiving the sample, a physician of the lab validates its
state and decides whether the sample can be used for
analysis or whether it is contaminated and a new sample is
required.

After the analysis is performed by a medical technical
assistant of the lab, a lab physician validates the results.
Finally, a physician from the outpatient department makes the
diagnosis and prescribes the therapy for the patient.

AGENT

AGENT

AGENT

PATIENT AGENT

AGENT AGENT

COREFERENCE

PATIENT

PATIENT

AGENT

AGENT

AGENT PATIENT

PATIENT

SUCC.

SUCC.

NO CO-OCCUR

SUCC.

SEQUENTIAL

ITERATING

S
E
Q

U
E
N

T
IA

L

I2

Furthermore, the outpatient physician informs the patient
about potential risks. If the patient signs an informed consent
and agrees to continue with the procedure, a delegate of the
physician arranges an appointment of the patient with one of
the wards.

Before the appointment, the required examination and
sampling is prepared by a nurse of the ward based on the
information provided by the outpatient section. Then, a ward
physician takes the sample requested. He further sends it to
the lab indicated in the request form and conducts the follow-
up treatment of the patient.

After receiving the sample, a physician of the lab validates its
state and decides whether the sample can be used for
analysis or whether it is contaminated and a new sample is
required.

After the analysis is performed by a medical technical
assistant of the lab, a lab physician validates the results.
Finally, a physician from the outpatient department makes the
diagnosis and prescribes the therapy for the patient.

AGENT

AGENT

AGENT

PATIENT AGENT

AGENT AGENT

COREFERENCE

PATIENT

PATIENT

AGENT

AGENT

AGENT PATIENT

PATIENT

SUCC.

SUCC.

NO CO-OCCUR

SUCC.

PREC.

SEQUENTIAL

ITERATING

SEQUENTIAL

I3

...
Fig. 3 Example annotation of a textual process description with multiple ambiguous inter-
pretations. Some relations are omitted for brevity.

Unleashing Textual Descriptions of Business Processes 5

on the scope of the iteration. When a physician of the lab determines a sample is
contaminated, the process needs to be restarted. The scope of this repetition is not
clear from the text alone, and thus, it is not known whether a new appointment
should be arranged or not. In spite of this ambiguity, there are common points in
all interpretations of the text that allow for reasoning to be made, even when the
process is not fully specified.

Each interpretation consists of a hierarchy of scopes, providing a recursive mech-
anism to isolate parts of the text that correspond to “phases” in the process. Each
scope represents a conceptual block, which in turn may be decomposed into a set of
lower-level scopes. Each scope dictates how its inner scopes are linked via control-
flow relations expressing the allowed orderings of execution of such inner scopes.
In our example, I1 contains two scopes. A sequential relation indicates that the
second scope is always executed when the first is completed, thus reconstructing
the classical flow relation of conventional process modeling notation. All in all, the
scope hierarchy resembles that of a process tree, following the variant used in [3].

Inside leaf scopes, text fragments are highlighted. There are different types of
fragments, distinguished by color in our visual front-end. Some fragments (shown
in red) describe the atomic units of behavior in the text, that is, activities and
events, while others (shown in blue) provide additional perspectives beyond control
flow. For example, outpatient physician is labelled as a role at the beginning
of the text, while informs is labelled as an activity. Depending on their types,
fragments can be linked by means of relations. Among such relations, we find:

Fragment relations that capture background knowledge induced from the text, such
as for example the fact that the outpatient physician is the role responsible
for performing (i.e., is the Agent of) the informs activity.

Temporal constraints linking activities so as to declaratively capture the acceptable
courses of execution in the resulting process, such as for example the fact that
informs and signs an informed consent are in succession (i.e., informs is
executed if and only if signs an informed consent is executed afterwards).

As for temporal relations, we consider a relevant subset of the well-known patterns
supported by the Declare declarative process modeling language [35]. In this light,
ATDP can be seen as a multi-perspective variant of a process tree where the control-
flow of leaf scopes is specified using declarative constraints over the activities and
events contained therein. Depending on the adopted constraints, this allows the
modeler to cope with a variety of texts, ranging from loosely specified to more
procedural ones. At one extreme, the modeler can choose to nest scopes in a fine-
grained way, so that each leaf scope just contains a single activity fragment; with
this approach, a pure process tree is obtained. At the other extreme, the modeler
can choose to introduce a single scope containing all activity fragments of the text,
and then add temporal constraints relating arbitrary activity fragments from all
the text; with this approach, a pure declarative process model is obtained instead.

3 Related Work

In order to automatically reason over a natural language process description, it is
necessary to construct a formal representation of the actual process. The gener-
ation of a formal process model starting from a natural language description has

6 Josep Sànchez-Ferreres et al.

been investigated from several angles in the literature. We can classify these tech-
niques along the spectrum of automation support: from fully manual to automatic.

The first available option consists in converting a textual description into a
process model by manually modeling the process. This approach, widely discussed
(e.g., [16,15]), has been thoroughly studied also from a psychological point of
view, in order to understand which are the challenges involved in the “process of
process modeling” [36,9]. These techniques, however, do not provide any automatic
support, and the possibility for automated reasoning is completely dependant on
the result obtained via the manual modeling. Therefore, ambiguities in the textual
description are subjectively resolved.

On the opposite side of the spectrum, there are approaches that autonomously
convert a textual description of a process model into a formal representation [21,
44,29]. In some cases, this representation is a final process model (e.g., using
BPMN) [21,44,13]. Moreover, if the context of the process description is narrowed
down (e.g., texts describing only cooking recipes [56], or phylogenetic analysis [23]),
a more tailored extraction can be done. The limit of these techniques, however, is
that they need to resolve ambiguities in the textual description, resulting in “hard-
coded” interpretations. For instance, the presence of certain ambiguous phrases in
a text such as “might” or “in the meantime” must be resolved into a concrete
process model, forcing the system to take a specific interpretation.

There has been a recent focus on the extraction of process knowledge from
textual descriptions, which is not necessarily aimed at providing formal process
representations [19,38]. Clearly, by the use of recent deep AI techniques, the afore-
mentioned frameworks have potential, but in order to be applicable, need to learn
over a great amount of training data, a fact which hampers their use in a practical
setting.

With a similar goal (autonomous generation of knowledge), but less related
to the derivation of (formal) process representations, the analysis of textual de-
scriptions to extract events, actions, states or state changes, sequences and similar
knowledge has also been recently studied in different works [6,57,48,27,10,20].
Most of the aforementioned work is aimed at a more general problem (i.e., they
are applicable even in textual descriptions that describe other phenomena, not only
processes), so we believe they can be adapted to the particular case of extracting
process knowledge.

In the middle of the spectrum, there are approaches that automatically process
the natural language text and generate an intermediate artifact, useful to support
consequent manual modeling by providing intermediate diagnostics [50,52,41,43,
14]. The problem of having a single interpretation for ambiguities is a bit miti-
gated in this case since a human modeler is still in charge of the actual modeling.
However, it is important to note that the system is biasing the modeler towards a
single interpretation.

The approach presented in this paper drops the assumption of resolving all
ambiguities in natural language texts. Therefore, if the text is clear and no ambi-
guities are manifested, then a precise process can be modeled. However, if this is
not the case, instead of selecting one possible ambiguity resolution, our solution
copes with the presence of several interpretations for the same textual description.
The work presented in [51] also kept all process interpretations for the analysis,
using the concept of behavioral space as a means to deal with the behavioral am-
biguity of textual process descriptions. Interestingly, reasoning in [51] is casted as

Unleashing Textual Descriptions of Business Processes 7

checking compliance of an execution trace with respect to the behavioral space rep-
resentation of a textual description. In contrast, our work presents a more general
reasoning scheme, in which the aforementioned reasoning from [51] is possible, but
also more general analyses like model checking, or even simulation, can be applied.

Another contribution of this paper is the simulation of ATDP. The generation
of event logs from a process representation has already been investigated in the
literature in the past. Logs generated from these systems can be used in sev-
eral contexts, in particular within the process/data mining research communities,
where having the golden standard (i.e., the reference model) is very important to
improve the outcomes of mining algorithms.

One of the first techniques able to generate actual executions is reported in [12].
The main idea is to enrich a Petri net model with the information needed for
simulation, using Colored Petri Net (CPN) tools as supporting infrastructure.
The approach, though extremely flexible, is tailored to the simulation of Petri nets
and the usage of the tool is also error-prone due to its intrinsic complexity. An
improvement over this manual technique has been proposed in [4], where the author
proposes a fully automatic technique capable of generating a Petri net or a model
described in a subset on BPMN into a process mining-ready event log with support
for data objects, representing not only the control-flow but the data perspective as
well. In [24] a technique for the simulation of large populations of event trees [3] is
reported. All the standard operators can be generated and, in addition, the data
perspective can be generated as well, by consuming a DMN [1] model. Finally, [7]
presents an approach for the generation of execution logs of Declare constraints.
The technique first translates the declarative constraints into regular expressions
and then generates an event log with possible executions compliant with the given
set of constraints.

All these techniques suffer from the problem of being able to use only one
specific type of models (either a Petri net, a BPMN, a Process Tree or a Declare
model) as input. In the context of this paper, however, it is necessary to simulate
specifications defined in a hybrid notation, i.e., imperative structures with declar-
ative models as leaves. In addition, to the best of our knowledge, our simulation
approach is the first one that accepts enriched textual descriptions as inputs.

4 Preliminaries

4.1 Linear Temporal Logics

In this paper, we use Linear Temporal Logic (LTL) [37] to define the semantics of
the ATDP language. While LTL is traditionally defined over infinite traces, we adopt
here a finite-trace interpretation, following [22,11]. This matches the intuition that
business process executions are all expected to reach, sooner or later, one of the
end states defined by the process.

The resulting logic, called LTLf , has the same syntax of LTL , but interprets
formulae on linear models with finitely many time instants. At each instant, the
model indicates which propositional symbols hold. Specifically, LTLf formulae are
built from a set P of propositional symbols and are closed under the boolean
connectives, the unary temporal operator ◦ (next-time) and the binary temporal

8 Josep Sànchez-Ferreres et al.

operator U (until):

ϕ ::= a | ¬ϕ | ϕ1 ∧ ϕ2 | ◦ϕ | ϕ1 U ϕ2 with a ∈ P

Intuitively:

– ◦ϕ says that the next instance exists (i.e., we are not at the end of the trace),
and in such a next instant ϕ holds.

– ϕ1 U ϕ2 says that at some future instant ϕ2 will hold and until that point ϕ1

always holds.

Common abbreviations used in LTL and LTLf include the ones listed below:
– Standard boolean abbreviations, such as >, ⊥, ∨, →.
– ♦ϕ = >U ϕ says that ϕ will eventually hold at some future instant.
– �ϕ = ¬♦¬ϕ says that from the current instant ϕ will always hold (until the

last instance of the trace).
– ϕ1 W ϕ2 = (ϕ1 U ϕ2∨�ϕ1) is interpreted as a weak until, and means that either

ϕ1 holds until ϕ2 or in all instants of the trace.
It is important to stress that, even though LTL and LTLf share the same syntax,
the intended meaning of the same formula may radically change when moving from
infinite to finite traces [11]. At the same time, it is possible to embed the finite-
trace semantics of LTLf into the standard LTL setting, at the price of adequately
manipulating the traces and the formulae [11].

4.2 Natural Language Processing and Annotation

Natural Language Processing (NLP) is a wide research area within Artificial Intel-
ligence that includes any kind of technique or application related to the automatic
processing of human language. NLP goals range from simple basic processing such
as determining in which language a text is written, to high-level complex appli-
cations such as Machine Translation, Dialogue Systems, or Intelligent Assistants.
Given the recent advances in many NLP areas, there is an increasing interest in
the applications and possibilities of these technologies to Business Process Man-
agement area [49].

Linguistic analysis tools can be used as a means to structure information con-
tained in texts for its later processing in applications less related to language itself.
This is our case: we use NLP analyzers to convert a textual description of a process
model into a structured representation.

The NLP processing software used in this work is FreeLing1 [34], an open–
source library of language analyzers providing a variety of analysis modules for a
wide range of languages. More specifically, the natural language processing layers
used in this work are:

Tokenization & sentence splitting: Given a text, split the basic lexical terms
(word, punctuation signs, numbers, ZIP codes, URLs, e-mail, etc.), and group
these tokens into sentences.

Morphological analysis: For each word in the text, find out its possible parts-of-
speech (PoS).

1 http://nlp.cs.upc.edu/freeling

http://nlp.cs.upc.edu/freeling

Unleashing Textual Descriptions of Business Processes 9

PoS-Tagging: Determine what is the right PoS for each word in a sentence. (e.g.
the word dance is a verb in I dance all Saturdays but it is a noun in I enjoyed

our dance together.)
Named Entity Recognition: Detect named entities in the text, which may be

formed by one or more tokens, and classify them as person, location, organi-

zation, time-expression, numeric-expression, currency-expression, etc.
Word sense disambiguation: Determine the sense of each word in a text (e.g. the

word crane may refer to an animal or to a weight-lifting machine). We use
WordNet [18] as the sense catalogue and synset codes as concept identifiers.

Constituency/dependency parsing: Given a sentence, get its syntatic structure as
a constituency/dependency parse tree.

Semantic role labeling: Given a sentence identify its predicates and the main ac-
tors in each of them, regardless of the surface structure of the sentence (ac-
tive/passive, main/subordinate, etc.)

Coreference resolution: Given a document, group mentions referring to the same
entity (e.g. a person can be mentioned in the text as Mr. Peterson, the director,
or he)

The three last steps are of special relevance since they allow the top-level
predicate construction, and the identification of actors throughout the whole text:
dependency parsing identifies syntactic subjects and objects (which may vary de-
pending, e.g., on whether the sentence is active or passive), while semantic role
labelling identifies semantic relations (the agent of an action is the same regard-
less of whether the sentence is active or passive). Coreference resolution identifies
several mentions of the same actor as referring to the same entity (e.g. in Figure 3,
a delegate of the physician and the latter refer to the same person, as well as the
same object is mentioned as the sample requested and it).

Creating annotated versions of texts is customary in the NLP field, where many
approaches are based on machine learning and require annotated text corpora both
for training and for evaluating the performance of the developed systems. This need
for annotated text has led the NLP community to develop several general-purpose
annotation tools (e.g., Brat [47]). The next section shows how to describe processes
by relying on textual annotations.

5 Processes as Annotated Textual Descriptions

One of the main elements in our framework is the Annotated Textual Descriptions

of Processes, formalized as the ATDP language. We start this section by briefly
introducing the foundational design principles of ATDP language (Section 5.1). Next,
we present the core constructs of the language (Section 5.2) and formally define
its semantics in LTL (Section 5.3).

Note that the aim of this section is not to provide an exhaustive enumeration
of all patterns in ATDP, but rather to set a formal basis for the language allowing
for future extensions to cover control-flow patterns in a more convenient way or
help document other data-oriented aspects of a textual process description.

10 Josep Sànchez-Ferreres et al.

5.1 ATDP Design Principles

We have designed ATDP as a flexible modelling language that can capture well the
subtleties of textual descriptions, while still remaining a formal representation to
allow for automatic reasoning. During the design of ATDP, we have chosen to stick
to the following design principles:

1. Models in ATDP are represented as annotations over plain text. This avoids
misalignments between the informal plain text and the formal representation
underneath.

2. ATDP combines imperative and declarative aspects of modelling notations. This
ensures it can capture a wider range of behavioral constructs which we have
found to naturally occur in textual process descriptions.

3. The language needs to directly address ambiguity, because most textual de-
scriptions of processes contain some form of ambiguity. Partial reasoning must
be possible even in the presence of ambiguity.

4. Automatic reasoning over models is paramount. This is why the formal seman-
tics of ATDP are inspired by linear temporal logics and process trees.

5.2 ATDP Models

ATDP models are defined starting from an input text, which is split into typed

text fragments. We now go step by step through the different components of our
approach, finally combining them into a coherent model.

Fragment types. Fragments have no formal semantics associated by themselves.
They are used as basic building blocks for defining ATDP models. We distinguish
fragments through the following types.

Activity. This fragment type is used to represent the atomic units of work within
the business process described by the text. Usually, these fragments are as-
sociated with verbs. An example activity fragment would be validates (the

sample state). Activity fragments may also be used to annotate other occur-
rences in the process that are relevant from the point of view of the control
flow, but are exogenous to the organization responsible for the execution of
the process. For instance, (the sample) is contaminated is also an activity
fragment in our running example.

Role. The role fragment type is used to represent types of autonomous actors
involved in the process, and consequently responsible for the execution of ac-
tivities contained therein. An example is outpatient physician.

Business Object. This type is used to mark all the relevant elements of the process
that do not take an active part in it, but that are used/manipulated by ac-
tivities contained in the process. An example is the (medical) sample obtained
and analyzed by physicians within the patient examination process.

When the distinction is not relevant, we may refer to fragments as the entities
they represent (e.g. activity instead of activity fragment).

Given a set F of text fragments, we assume that the set is partitioned into
three subsets that reflect the types defined above. We also use the following dot

Unleashing Textual Descriptions of Business Processes 11

notation to refer to such subsets: (i) F.activities for activities; (ii) F.roles for roles;
(iii) F.objects for business objects.

Fragment relations. Text fragments can be related to each other by means of
different non-temporal relations, used to express multi-perspective properties of
the process emerging from the text. We consider the following relations over a set
F of fragments.

Agent. An agent relation over F is a partial function

agentF : F.activities→ F.roles

indicating the role responsible for the execution of an activity. For instance,
in our running example we have agent(informs) = physician, witnessing that
informing someone is under the responsibility of a physician.

Patient. A patient relation2 over F is a partial function

patientF : F.activities→ F.roles ∪ F.objects

indicating the role or business object constituting the main recipient of an
activity. For instance, in our running example, we have patient(prepare) =
sample, witnessing that the prepare activity operates over a sample.

Coreference. A coreference relation over F is a (symmetric) relation

coref F ⊆ F.roles× F.roles ∪ F.objects× F.objects

that connects pairs of roles and pairs of business objects when they represent
different ways to refer to the same entity. It consequently induces a coreference
graph where each connected component denotes a distinct process entity. In our
running example, all text fragments pointing to a patient role corefer to the
same entity, whereas there are three different physicians involved in the text:
the outpatient physician, the ward physician and the physician of the lab.
These form disconnected coreference subgraphs.

Text scopes. To map the text into a process structure, we suitably adjust the
notion of process tree used in [3]. In our approach, the blocks of the process tree
are actually text scopes, where each scope is either a leaf scope, or a branching scope

containing one or an ordered pair3 of (leaf or branching) sub-scopes.
Each activity is associated with one and only one leaf scope, whereas each leaf

scope contains one or more activities, so as to non-ambiguously link activities to
their corresponding process phases.

Each Branching scope, instead, is associated with a corresponding control-flow
operator, which dictates how the sub-scopes are composed when executing the
process. At execution time, each scope is enacted possibly multiple times, each
time taking a certain amount of time (marked by a punctual scope start, and a
later completion). We consider in particular the following scope relation types,
together with their intuitive execution semantics:

2 The term patient, as used in the formalization, is not related to the medical term used in
the running example. Instead, it is borrowed from the related concept in the field of linguistics.

3 We keep a pair for simplicity of presentation, but all definitions carry over to n-ary tuples
of sub-blocks.

12 Josep Sànchez-Ferreres et al.

Sequential (→) A sequential branching scope s with children 〈s1, s2〉 indicates that
each execution of s amounts to the sequential execution of its sub-scopes, in
the order they appear in the tuple. Specifically: (i) when s is started then s1
starts; (ii) whenever s1 completes, s2 starts; (iii) the completion of s2 induces
the completion of s.

Conflicting (×) A conflicting branching scope s with children 〈s1, s2〉 indicates
that each execution of s amounts to the execution of one and only one of its
children, thus capturing a choice. Specifically: (i) when s is started, then one
among s1 and s2 starts; (ii) the completion of the selected sub-scope induces
the completion of s.

Inclusive (∨) An inclusive branching scope s with children 〈s1, s2〉 indicates that
each execution of s amounts to the execution of at least one of s1 and s2, but
possibly both.

Concurrent (∧) A concurrent branching scope s with children 〈s1, s2〉 indicates
that each execution of s amounts to the interleaved, concurrent execution of
its sub-scopes, without ordering constraints among them. Specifically: (i) when
s is started, then s1 and s2 start; (ii) the latest, consequent completion of s1
and s2 induces the completion of s.

Iterating (�) An iterating branching scope s with child s1 indicates that each exe-
cution of s amounts to the iterative execution of s1, with one or more iterations.
Specifically: (i) when s is started, then s1 starts; (ii) upon the consequent com-
pletion of s1, then there is a non-deterministic choice on whether s completes,
or s1 is started again.

All in all, a scope tree TF over the set F of fragments is a binary tree whose leaf
nodes Sl are called leaf scopes and whose intermediate/root nodes Sb are called
branching nodes, and which comes with two functions:

– a total scope assignment function parent : F.activities→ Sl mapping each activity
in F to a corresponding leaf scope, such that each leaf scope in Sl has at least
one activity associated to it;

– a total branching type function btype : Sb → {→,×,∨,∧,�} mapping each
branching scope in Sb to its control-flow operator.

Temporal constraints among activities. Activities belonging to the same leaf
scope can be linked to each other by means of temporal relations, inspired by the
Declare notation [35]. These can be used to declaratively specify constraints on the
execution of different activities within the same leaf scope. Due to the interaction
between scopes and such constraints, we follow here the approach in [17], where,
differently from [35], constraints are in fact scoped.4

We consider in particular the following constraints:

Scoped Precedence Given activities a1, . . . , an, b, Precedence({a1, . . . , an}, b) indi-
cates that b can be executed only if, within the same instance of its parent
scope, at least one among a1, . . . , an have been executed before.

Scoped Response Given activities a, b1, . . . , bn, Response(a, {b1, . . . , bn}) indicates
that whenever a is executed within an instance of its parent scope, then at
least one among b1, . . . , bn has to be executed afterwards, within the same scope
instance.

4 It is interesting to notice that Declare itself was defined by relying on the patterns originally
introduced in [17].

Unleashing Textual Descriptions of Business Processes 13

Scoped Weak Order Given two activities a, b, WeakOrder(a, b) indicates that, when-
ever a and b are both present in a scope instance, a must appear always first.
Further executions of a cannot occur without an execution of b in between.
However, the execution of either a or b does not imply the other’s. Later on,
in Section 6.1.4 we justify the need for this constraint.

Scoped Non-Co-Occurrence Given activities a, b, NonCoOccurrence(a, b) indicates
that whenever a is executed within an instance of its parent scope, then b

cannot be executed within the same scope instance (and vice-versa).
Scoped Alternate Response Given a sequence of activities a, b1, . . . , bn,

AlternateResponse(a, {b1, . . . , bn}) indicates that whenever a is executed
within an instance of its parent scope, then a cannot be executed again until,
within the same scope, at least one among b1, . . . , bn is eventually executed.

Terminating Given activity a, Terminating(a) indicates that the execution of a

within an instance of its parent scope terminates that instance.
Initial Given activity a, Initial(a) indicates a must be the first activity executed in

its scope.
Mandatory Given activity a, Mandatory(a) indicates that the execution of a must

occur at least once for each execution of its scope.

Interpretations and models. We are now ready to combine the components de-
fined before into an integrated notion of text interpretation. An ATDP interpretation

IX over text X is a tuple 〈F, agentF , patientF , coref F , TF , CF , 〉, where: (i) F is a
set of text fragments over X; (ii) agentF is an agent function over F ; (iii) patientF
is a patient function over F ; (iv) coref F is a coreference relation over F ; (v) TF is a
scope tree over the activities in F ; (vi) CF is a set of temporal constraints over the
activities in F , such that if two activities are related by a constraint in, then they
have to belong to the same leaf scope according to TF .

An ATDP model MX over text X is then simply a finite set of ATDP interpretations
over X.

5.3 ATDP Semantics

We now describe the execution semantics of ATDP interpretations, in particular
formalizing the three key notions of scopes, scope types (depending on their cor-
responding control-flow operators), and temporal constraints over activities. This
is done by using LTLf , consequently declaratively characterizing those execution
traces that conform to what is prescribed by an ATDP interpretation. We consider
execution traces as finite sequences of atomic activity executions using interleaving
semantics to represent concurrency.

Scope Semantics.

To define the notion of scope execution, for each scope s, we introduce a pair
of artificial activities sts and ens which do not belong to F.activities. The execution
of s starts with the execution of sts , and ends with the execution of ens. The
following axioms define the semantics of scopes:

A1. An activity a inside a scope s can only be executed between sts and ens:

¬aW sts ∧�(ens → ¬aW sts)

14 Josep Sànchez-Ferreres et al.

A2. A scope s can only be started and ended inside of its parent s′:

¬(sts ∨ ens)W sts′ ∧�(ens′ → ¬(sts ∨ ens)W sts′)

A3. Executions of the same scope cannot overlap in time. That is, for each exe-
cution of a scope s’s start there is a unique corresponding end:

(¬ens W sts) ∧ �(sts → ♦ens) ∧

�(sts → ◦(¬sts U ens)) ∧

�(ens → ◦(¬ens U sts))

A4. Iterating scopes may be affected by the presence of terminating activities, as
defined by the following property: A terminating activity at inside an iterating
scope s, child of s′, stops the iteration. That is, the execution of s cannot be
repeated anymore inside its parent:

�(sts′ → ((at → (¬sts U ens′))U ens′))

Temporal Constraint Semantics. Next, we define the semantics of temporal
constraints between activities. Note that, in all definitions we will use the subindex
s to refer to the scope of the constraint.

Precedences({a1, .., aK}, b) :=
N∨
i=1

�(sts → (¬bW ai))

Responses(a, {b1, .., bN}) :=
N∨
i=1

�(sts → (a→ (¬ens U bi)))

NonCoOccurrences(a, b) := �(sts → (a→ (¬b U ens))) ∧
�(sts → (b→ (¬aU ens)))

AlternateResponses(a, b) := Responsep(a, b) ∧
�(sts → (a→ ◦(¬aU(b ∨ ens))))

WeakOrders(a, b) := �(sts → ((¬ens W a ∧ ¬ens W b)→
AlternateResponses(a, b)))

Terminatings(a) := �(a→ ◦ens)

Initials(a) := �(sts → ◦a)

Mandatorys(a) := �(sts → (¬ens U a))

Scope Relation Semantics. In all our definitions, let 〈s1, s2〉 denote the children
of a branching scope s, associated to the control-flow operator being defined. Note
that by Sequence(a, b) we refer to the formula Precedence({a}, b) ∧ Response(a, {b})
and the ⊕ operator is the logical exclusive or.

Unleashing Textual Descriptions of Business Processes 15

NLP Tool ATDP

Extractor

Tregex

Patterns

Textual

Description

Dependency

 Tree

ATDP

Fig. 4 Overview of automatic extraction.

Sequential (→) : Sequences(ens1 , sts2) ∧Mandatorys(sts1) ∧Mandatorys(sts2)

Conflicting (×) : �(sts → (¬ens U sts1)⊕ (¬ens U sts2))

Inclusive (∨) : �(sts → (¬ens U sts1) ∨ (¬ens U sts2))

Concurrent (∧) : �(sts → (¬ens U sts1) ∧ (¬ens U sts2))

Iterating (�) : This relation is defined by negation, with any non-iterating
scope s, child of s′, fulfilling the property:

(sts′ → (¬ens′ U sts ∧ (sts → ◦(¬sts U ens′))U ens′))

6 Using ATDP Specifications in Organizations

We now revisit more carefully the general overview of the current uses and re-
quired steps for using ATDP specifications in organizations, that were overviewed
in the introduction and depicted in Figure 1. Starting from a textual description,
a combination of automatic and manual annotation would enable extracting an
ATDP. In Section 6.1 we propose a strategy to automate the extraction of ATDP

specifications so that only a limited manual effort is required. Once an ATDP spec-
ification is obtained, different alternatives are possible. If reference business rules
are available, one can cast the verification of these rules with the specification as
a model checking instance, as it is fully described in Section 6.2. Finally, one can
simulate the ATDP specification into a new event log, which then paves the way
towards process mining practices like discovery, as seen in Section 6.3

6.1 Automating the Extraction of ATDP through Tree Query

In this section, we provide the necessary concepts and a general overview on how
to automatically extract some elements of the ATDP for a textual description of a
process. Figure 4 illustrates the main steps of the methodology: given a textual

16 Josep Sànchez-Ferreres et al.

Operator Meaning

A << B A dominates B
A >> B A is dominated by B
A < B A immediately dominates B
A > B A is immediately dominated by B
A >- B A is the last child of B
A >: B A is the only child of B
A $-- B A is a right sister of B

Table 1 Basic operators to create Tregex patterns

Fig. 5 Dependency tree representation used to apply patterns.

description, NLP analysis is done to extract, among other information, a depen-
dency tree for each sentence (see Section 4.2). Then tree query is performed on the
forest of dependency trees arising from a textual description; to accomplish this,
tree patterns match parts of a dependency tree that reflect with high confidence
a certain ATDP fragment or relation. The remainder of this section will provide the
necessary details to accomplish this step.

Tregex5 [28] is a pattern matching algorithm that allows matching regular-
expression-like patterns on tree structures. If applied on a dependency tree, this
technique can search for complex labeled tree dominance relations involving dif-
ferent types of information in the nodes (e.g. PoS tags, word forms, lemmas). A
Tregex pattern is a regular expression-like pattern that is designed to match node
configurations within a tree where the nodes are labeled, and the expression com-
bines those labels via a set of operators. The basic operators used in this work to
specify Tregex tree queries are listed in Table 1.

To be able to search for ATDP elements, we transform the dependency tree
nodes obtained from the NLP analyzers to a format suitable for Tregex patterns:
A node in the transformed dependency tree is a structured string, containing
information about the lemma and PoS tag of each word. Additionally, some nodes
include an <ACTION> label to mark nodes corresponding to activity fragments in
the process model ATDP, based on the results from the semantic role labelling
step. Figure 5 shows an example of such tree for the input sentence “If he wants

an individual membership, he must prepare his personal information.” The nodes for

5 See https://nlp.stanford.edu/software/tregex.html

https://nlp.stanford.edu/software/tregex.html

Unleashing Textual Descriptions of Business Processes 17

the verbs want and prepare contain [want <verb> <ACTION>] and [prepare <verb>

<ACTION>], respectively.
In each generated dependency tree we apply a cascade of several Tregex pat-

terns, each of which detects a particular ATDP element. Below we provide several
examples of tree queries to extract specific ATDP elements. The description of the
whole set of tree queries to extract the rest of ATDP elements is left out of this work
for the sake of space.

The techniques described in this section can be used to quickly bootstrap an
initial annotation of a textual description. We have found the proposed techniques
to be empirically accurate for the chosen domains and writing styles. However, it is
still required for a domain expert to audit the output of the automatic annotator,
and very different writing styles or document structures may require a partial
redesign of the extraction rules.

6.1.1 Extraction of activity fragments

Activity fragments represent the units of execution inside the process model. In
order to extract activity fragments we rely on the output of FreeLing NLP pro-
cessing, which marks as predicates all non-auxiliary verbs as well as some nominal
predicates (e.g. reception, delivery, etc). However, many verbs in a process descrip-
tion may be predicates from a linguistic perspective, but do not correspond to
actual process activities. Thus, we use a set of patterns that discard predicates
unlikely to be describing a relevant process task. Some examples are the following:

– /want/=toRemove

This pattern simply removes the verb want as an activity. Subjective verbs
(e.g. want, think, believe) are unlike to describe activities and thus are filtered
out. For instance in the sentence “If the customer wants an individual ticket, he

must prepare his personal information”, wants is removed from the activity list,
while prepare is kept.

– /<ACTION>/=toRemove >> /<ACTION>/=result !>> /and|or/

The second pattern removes any action candidate that is in a subordinate
clause under another action. The idea is that a subordinate clause is describing
some details about one actor in the main clause, but not a relevant activity. For
instance, in the sentence “the examination is prepared based on the information

provided by the outpatient section”, the verbs base and provide would be removed
as activities, since the main action described by this sentence is just prepare

(examination). The pattern has an additional constraint checking that the tree
does not contain a coordinating conjunction (and/or), since in that case, both
predicates are likely to be activities (e.g. in “He sends it to the lab and conducts

the follow-up treatment”, although conduct is under the tree headed by send, the
presence of and in between blocks the rule application).

6.1.2 Extraction of role entity fragments

To identify the roles –or autonomous actors– of the process we leverage the results
from the NLP analysis and focus on the elements with a semantic role of Agent. For
each of those elements, the extracted text should be modified to better represent
the role: fragments that begin with the or prepositions such as by, of or from

18 Josep Sànchez-Ferreres et al.

can be modified to not contain these elements. For example, in the sentence “The

process starts when the female patient is examined by an outpatient physician, who

decides whether she is healthy or needs to undertake an additional examination” the
results of the semantic role labelling step would return the whole subtree headed
by physician (i.e. an outpatient physician, who decides. . .). The role entity fragments
rule will stript down such a long actor removing the determiner and the relative
clause, while keeping the core actor and its main modifiers: outpatient physician.
To that end, the following Tregex pattern is recursively applied to the dependency
tree to obtain the relevant modifiers of the main entity word:

– /noun|adjective/=result > /mainEntityWord/

6.1.3 Extraction of conflict temporal relations

Conflict relations naturally arise when conditions are introduced in a process de-
scription. In ATDP the only conflict relation is NonCoOccurrence. To that end, we
consider discourse markers that mark conditional statements, like: if, whether, ei-

ther and in case of. Each discourse marker needs to be tailored to a specific gram-
matical structure.

For instance, the following pattern would extract the knowledge that the sam-
ple can’t both be safely used and contaminated at the same time from the sentence
“she decides whether the sample can be used for analysis or whether it is contaminated”:

– /whether/ << (<ACTION>/=origin << (/or/ << /<ACTION>/=destination))

6.1.4 Extraction of some order temporal relations

The Precedence, Response and WeakOrder constraints are used to express the order
of execution of the activities in an ATDP specification. This first pattern can be
used to identify a particular case of Response that typically occurs in conditional
sentences:

– /<ACTION>/=destination >: (/if/ > /<ACTION>/=origin)

The pattern captures the case where an identified condition is inside an if

clause (that is, below the if token in the dependency tree), which has a candidate
action as the condition’s consequent. In those cases, it is safe to assume that the
action in the consequent responds to the occurrence of the condition. For example,
in the sentence “If the bank confirms the payment request, the total amount is then

charged to the user account.”, this rule would extract the knowledge that charge

(total amount) responds to confirm (payment request).
For more general cases, the subtleties between the different order constraints

cannot be easily distinguished by an automatic analyzer. In those cases, we take
a conservative approach and extract the least restrictive constraint, WeakOrder.
To illustrate this, we can infer that generates and pays are in WeakOrder in the
sentence “The Payment Office of SSP generates a payment report and then pays the

vendor” by using the following pattern:

– /<ACTION>/=origin < (/and/ << (/<ACTION>/=destination < /then/))

Using this kind of local information alone, it is not safe to infer neither
Precedence nor Response in the above example. We thus defer the strengthening
of these constraints to a manual annotator.

Unleashing Textual Descriptions of Business Processes 19

a1 .. an

STOP

STOP

Fig. 6 Automata representation of the transition system used for the model checker encod-
ing. Activities in a1..an represent both the activity fragments modelled by the user and the
start/end activities for every scope in the ATDP specification.

6.2 Reasoning on ATDP Specifications

A specification in ATDP is the starting point for reasoning over the described pro-
cess. This section shows how to encode the reasoning as a model checking instance,
so that a formal analysis can be applied on the set of interpretations of the model.
Furthermore, we present three use cases in the scope of business process manage-
ment: checking model consistency, compliance checking and conformance checking.

6.2.1 Casting Reasoning as Model Checking

Reasoning on ATDP specifications can be encoded as an instance of model checking,
which allows performing arbitrary temporal LTLf queries ((cf. Section 5.3) on the
model. We do this in two steps.

As a first step, we observe that determining whether an ATDP specification
entails a given LTLf formula Q can be encoded as standard LTLf satisfiability

checking for the following formula:

(A ∧ CF ∧ CTF
) =⇒ Q (1)

where A is the conjunction of all LTLf formulae defined by the axioms, CF is
the conjunction of the activity temporal constraints, CTF

is the conjunction of all
LTLf defined by the semantics of the process tree.

As a second step, we recall that satisfiability via model checking can in principle
be realized, as described in [39], by building a so-called universal transition system

that generates all possible traces over a given alphabet, then verifying whether
such system satisfies the formula of interest (in our case, (1)).

We adopt this idea to encode reasoning on ATDP processes into the well-
established NuSMV model checker [8]. To make the approach operationally correct,
we have to consider two crucial aspects of our approach:

(Interleaving semantics) At each moment in time, only one propositional symbol
is true, witnessing that the corresponding activity is executed.

(Finite-trace semantics) Formula (1) is interpreted over finite traces, whereas
NuSMV natively works over infinite traces.

We tackle these two aspects as follows. The universal transition system is con-
structed following the schema of the state machine (with activity-labeled edges)
in Figure 6.

Essentially, the universal transition system picks an arbitrary number of times
activities to be executed (at each time, just one activity is actually executed, as

20 Josep Sànchez-Ferreres et al.

the interleaving semantics dictates). Then, a special STOP activity (not present in
the original ATDP, but introduced artificially) signals that the trace has reached its
end, and once this occurs, then STOP is repeated forever. If we ensure that, on top
of this transition system, STOP is eventually selected, then the resulting universal
transition system generates infinite traces containing an initial, finite prefix with
genuine activities, followed by an infinite suffix where STOP is repeated forever.

On top of this universal transition system, we then verify a variant of formula
(1) defined as follows:

(A ∧ CF ∧ CTF
∧ ♦STOP) =⇒ f(Q) (2)

This formula differs from (1) in two respects. First, it contains ♦STOP in the body
of the implication, so as to enforce that the universal transition systems generates
trace of the shape described above (i.e., finite trace prefixes followed by an infi-
nite repetition of STOP). Second, it does not use Q directly, but instead applies a
translation function f to it. This translation function is needed because Q is an
LTLf formula, while NuSMV adopts LTL over infinite traces. In fact, f is inductively
defined as in [22,11], in such a way that the original LTLf formula becomes a cor-
responding LTL formula that can be checked over the universal transition system
defined above:

f(a) = a

f(◦ϕ) = ◦(f(ϕ) ∧ ¬STOP)
f(¬ϕ) = ¬f(ϕ)

f(ϕ1Uϕ2) = f(ϕ1)U(f(ϕ2) ∧ ¬STOP)
f(ϕ1 ∧ ϕ2) = f(ϕ1) ∧ f(ϕ2)

One may wonder why this translation function is not applied to the entire formula,
but only to Q. The reason is that while Q is an arbitrary LTLf formula, the premise
of the implication of (2) has a fixed shape, determined by the LTLf encoding of
the ATDP semantics, and this shape is so that the formula and its translation are
semantically equivalent. This means that the premise is not able to distinguish
finite from infinite formulae or, using the technical terminology introduced in [11],
that the premise is “insensitive to infinity”.

Non-temporal information can be introduced in the queries without increasing
the problem complexity, since the information is statically defined. For example,
when the text mentions that several activities are performed by a certain role,
this information remains invariant during the whole model-checking phase. Thus,
queries concerning roles can be translated directly into queries about the set of
activities performed by that role. A possible encoding of this into a model checker
consists of adding additional variables during the system definition.

When dealing with multiple interpretations, the above framework is extended
with two types of queries:

Existential: Is the proposition true in any interpretation of the process?
∃I ∈ ATDP : (AI ∧ CFI

∧ CTFI
) =⇒ Q

Complete: Is the proposition true in all interpretations of the process?
∀I ∈ ATDP : (AI ∧ CFI

∧ CTFI
) =⇒ Q

Existential and complete queries can be used to reason in uncertain or incomplete
specifications of processes.

An application of complete queries would be finding invariant properties of
the process. That is, a property that holds in all possible process interpretations.

Unleashing Textual Descriptions of Business Processes 21

Furthermore, the outpatient physician informs the patient
about potential risks. If the patient signs an informed consent
and agrees to continue with the procedure, a delegate of the
physician arranges an appointment of the patient with one of
the wards.

Before the appointment, the required examination and
sampling is prepared by a nurse of the ward based on the
information provided by the outpatient section. Then, a ward
physician takes the sample requested. He further sends it to
the lab indicated in the request form and conducts the follow-
up treatment of the patient.

After receiving the sample, a physician of the lab validates its
state and decides whether the sample can be used for
analysis or whether it is contaminated and a new sample is
required.

After the analysis is performed by a medical technical
assistant of the lab, a lab physician validates the results.
Finally, a physician from the outpatient department makes the
diagnosis and prescribes the therapy for the patient.

AGENT

AGENT

AGENT

PATIENT AGENT

AGENT AGENT

COREFERENCE

PATIENT

PATIENT

AGENT

AGENT

AGENT PATIENT

PATIENT

SUCC.

SUCC.

NO CO-OCCUR

SUCC.

PREC.

SEQUENTIAL

ITERATING
(a)

(b)

(c)

(d)

(f)

(g)

(h)

(i)

(j)

(e)

(k)

(l) (m)

Fig. 7 Scope I1 from the ATDP specification of Figure 3, inserting short letter aliases per
activity. Some relations have been omitted for brevity.

Existential queries, in turn, fulfill a similar role when the proposition being checked
is an undesired property of the process. By proving invariant properties, it is
possible to extract information from processes even if these are not completely
specified or in case of contradictions. A negative result for this type of query
would also contain the non-compliant interpretations of the process, which can
help the process owner in gaining some insights about which are the assumptions
needed to comply with some business rule.

6.3 Simulation of ATDP Specifications

The simulation of a process model consists of generating event logs that conform
to the process description. The generated logs can be used to infer statistical
information from the processes described therein. Another common use case for

22 Josep Sànchez-Ferreres et al.

a

b

a,o

b,o

a,o

b

a

b,o o a,b,o
b

a

Fig. 8 Automata implementing two ATDP constraints: Response(a, b) (left) and NonCoOccur-
rence(a, b) (right). The symbol o is used to indicate any other activities in the scope not affected
by this constraint.

S1

S2

Fig. 9 Process Tree visualization of the scope-level behaviour of the ATDP in Figure 7

simulation is the evaluation of process mining algorithms. In this section we detail
how to generate event logs from ATDP specifications.

As previously mentioned, ATDP specifications can be seen as a multi-perspective
variant of process trees, where each of the leaf elements are declarative process
models instead of atomic activities. Thus, in order to implement the simulation of
ATDP, we combine two well-known algorithms [24,7] for the simulation of Process
Trees and Declare models respectively. An outline of the algorithm is shown in
Algorithm 1.

Simulation of Process Trees follows the implementation described in [24]. The
algorithm simulates each of the tree operator nodes by recursively simulating its
children, and combining the traces that are obtained according to the semantics
of each operator. Following our running example, let us focus on the scope I1,
shown in Figure 7. If the first scope generates trace t1 = 〈a, b, c, d, e, g, f, h, i〉 and
the second scope generates trace t2 = 〈k, l,m〉. The Sequential operator between
the first and second scope would combine t1 and t2 by concatenating them. To
better illustrate this example, Figure 9 shows the Process Tree corresponding
to interpretation I1 of Figure 3. Other operators are implemented in a similar
fashion: The Exclusive operator would choose one of t1 and t2 at random, and the
Concurrent operator would randomly interleave t1 and t2. See [24] for more details
on how to simulate process trees.

Being closely related to the Declare modeling language, the simulation of Leaf
Scopes is implemented by following the algorithm described in [7]. The algorithm
works by implementing the Declare semantics with regular expressions. Each of
the temporal constraints defines a Deterministic Finite Automaton (DFA). For
instance, Figure 8 shows the resulting automata for two basic Declare constraints

Unleashing Textual Descriptions of Business Processes 23

Algorithm 1 Simulation of an ATDP

def simulate_scope(scope):
result = []

if scope.type == "Leaf":
constraints = scope.constraints
automata = [constraint_to_automaton(c)

for c in constraints]
leaf_automaton = intersect_all(automata)
result = random_walk(leaf_automaton)

else if scope.type == "Iterating":
while not stop_criterion():

result = concatenate(result,
simulate_scope(scope.children[0])

else:
left_trace = simulate_scope(scope.children[0])
right_trace = simulate_scope(scope.children[1])

if scope.type == "Sequential":
return concatenate(left_trace, right_trace)

else if scope.type == "Conflicting":
return choose_one(left_trace, right_trace)

else if scope.type == "Concurrent":
return interleave_at_random(left_trace,

right_trace)

else if scope.type == "Inclusive":
return choose_one(

left_trace,
right_trace,
interleave_at_random(left_trace, right_trace))

return result

also present in ATDP. The DFA for all temporal constraints in the leaf scope are
then intersected to form an automaton that accepts the regular language of the
traces accepted by that scope. By performing random walks on this automaton,
random traces can be obtained that conform to each Leaf Scope specification. By
random-walking the automaton for Response(a,b) in Figure 8, one may obtain the
traces t3 = 〈a, b〉 and t4 = 〈a, a, b, a, b〉 but not t5 = 〈a, b, a〉.

7 Tool Support and Use Case Examples

The techniques described in this paper have been implemented and are available
as five standalone tools:

– The ATDP library. The library is available at https://github.com/PADS-UPC/

atdplib-model.
– The ATDP extractor, which extracts ATDP elements from textual descriptions,

using tree query techniques on the result of NLP analysis. The tool is available
at https://github.com/PADS-UPC/atdpextractor.

– The ATDP reasoner, which translates ATDP specifications into the model check-
ing language for NuSMV tool, thus enabling to use this model checking envi-

https://github.com/PADS-UPC/atdplib-model
https://github.com/PADS-UPC/atdplib-model
https://github.com/PADS-UPC/atdpextractor

24 Josep Sànchez-Ferreres et al.

Fig. 10 Example of automatic ATDP extraction used in real application.

ronment for reasoning. The tool is available at https://github.com/PADS-UPC/

atdp2nusmv.
– The ATDP simulator, which enables simulating ATDP specifications for deriving an

event log in XES format corresponding to the simulated traces. The simulator
is available at https://github.com/PADS-UPC/atdp-simulator.

– The ATDP editor, which enables to edit manually an ATDP specification for some
of the relations of this paper. The tool is available at https://github.com/

PADS-UPC/atd-editor.

In the remainder of this section, we focus in the three ones presented in this
paper: the ATDP extractor, the ATDP reasoner and the ATDP simulator.

7.1 ATDP Extractor: a Tool to Annotate Textual Descriptions

Figure 10 is an example of what a text looks like before and after using the ATDP

extractor. On the left, a textual description of a process is shown, and its automatic
annotation is reported on the right part of the figure.

Use Case: The Model Judge

A real application currently using the ATDP extractor is the Model Judge [14,42],
available at https://modeljudge.cs.upc.edu.

Model Judge is an educational platform for learning and teaching process mod-
els in the Business Process Model and Notation (BPMN) graphical language.

Instructors of the Model Judge can select exercises for their students to practice
modeling. An exercise consists of a textual description of a process that the student
needs to model in BPMN. At anytime, a student can validate its solution, which
is compared against the gold standard ATDP solution provided by the platform.

In order to make the platform extensible, instructors can propose new exercises.
For this, they can use an exercise editor that is provided with the platform, so that

https://github.com/PADS-UPC/atdp2nusmv
https://github.com/PADS-UPC/atdp2nusmv
https://github.com/PADS-UPC/atdp-simulator
https://github.com/PADS-UPC/atd-editor
https://github.com/PADS-UPC/atd-editor
https://modeljudge.cs.upc.edu

Unleashing Textual Descriptions of Business Processes 25

Fig. 11 Automatic annotation of an exercise in the Model Judge platform.

some of the annotations of this paper can be manually inserted by the instructor
in a plain textual description of a process. To alleviate the annotation effort, the
ATDP extractor is enabled in the exercise editor to propose a first set of annotations
automatically. Figure 11 shows an example of automatic annotation obtained in
the exercise editor.

7.2 ATDP Reasoner: Model Checking ATDP Specifications

The encoding technique described in Section 6.2.1 has been implemented in a
prototype tool, ATDP2NuSMV. The tool can be used to convert an ATDP specifica-
tion into a NuSMV instance. ATDP2NuSMV is distributed as a standalone tool, that
can be used in any system with a modern Java installation, and without further
dependencies.

In the remainder of this subsection, we present use cases that have been tested
with ATDP2NuSMV and NuSMV. The ATDP specifications as well as the exact query
encodings can be found in the repository. The use case examples are based on a
full version of the specification presented in Figure 3.

Use Case 1: Model Consistency.

An ATDP specification can be checked for consistency using proof by contradiction.
Specifically, if we set Q = ⊥, the reasoner will try to prove that A∧CF ∧CTF

→ ⊥,
that is, whether a false conclusion can be derived from the axioms and constraints

26 Josep Sànchez-Ferreres et al.

describing our model. Since this implication only holds in the case ⊥ → ⊥, if the
proof succeeds we will have proven that A ∧ CF ∧ CTF

≡ ⊥, i.e. that our model is
not consistent. On the contrary, if the proof fails we can be sure that our model
does not contain any contradiction.

To illustrate this use case, we use interpretations hosp-1 and hosp-1-bad, avail-
able in our repository. The first interpretation consists of a complete version of
the specification in Figure 3, where F.activities includes a1 = takes (the sample)

and a2 = validates (sample state), and constraints in CF include: Mandatory(a1),
Precedence({a1}, a2) and Response(a1, {a2}). NuSMV falsifies the query in interpreta-
tion hosp-1 with a counter-example. When the model is consistent, the property
is false, and the resulting counter example can be any valid trace in the model.

The second specification, hosp-1-bad adds Precedence({a2}, a1) to the set of
relations R. This relation contradicts the previously existing Precedence({a1}, a2),
thus resulting in an inconsistent model. Consequently, NuSMV cannot find a counter-
example for the query in interpretation hosp-1-bad. This result can be interpreted
as the model being impossible to fulfill by any possible trace, and thus inconsistent.

Use Case 2: Compliance Checking.

Business rules, as those arising from regulations or SLAs, impose further restric-
tions that any process model may need to satisfy. On this regard, compliance
checking methods assess the adherence of a process specification to a particular
set of predefined rules.

The presented reasoning framework can be used to perform compliance check-
ing on ATDP specifications. An example rule for our running example might be:
“An invalid sample can never be used for diagnosis”. The relevant activities
for this property are annotated in the text: a3 = (the sample) can be used,
a4 = (the sample) is contaminated, a5 = makes the diagnosis, and the prop-
erty can be written in LTL as: Q = �(a4 → (¬a5 U a3)).

In the examples from our repository, interpretations hosp-2-i, with i={1,2,3},
correspond to the three interpretations of the process shown in Figure 3. Particu-
larly, the ambiguity between the three interpretations is the scope of the repetition
when the taken sample is contaminated. The three returning points correspond
to: sign an informed consent, sampling is prepared and take the sample. NuSMV
finds the property true for all three interpretations, meaning that we can prove the
property �(a4 → (¬a5 U a3)) without resolving the main ambiguity in the text.

Use Case 3: Conformance Checking.

Conformance checking techniques put process specifications next to event data, to
detect and visualize deviations between modeled and observed behavior [5]. On its
core, conformance checking relies on the ability to find out whereas an observed
trace can be reproduced by a process model.

A decisional version of conformance checking can be performed, by encoding
traces inside Q as an LTL formulation. Given a trace t = 〈a1, a2, · · · , aN 〉, we can
test conformance against an ATDP interpretation with the following query6:

6 The proposed query does not account for the start and end activities of scopes, which are
not present in the original trace. A slightly more complex version can be crafted that accounts

Unleashing Textual Descriptions of Business Processes 27

Q = ¬(a1 ∧ ◦(a2 ∧ ◦(... ∧ ◦(aN ∧ ◦STOP))))

This query encodes the proposition “Trace t is not possible in this model”.
This proposition will be false whenever the trace is accepted by the model. Other
variants of this formulation allow for testing trace patterns: partial traces or pro-
jections of a trace to a set of activities. In this case, the counter-example produced
will be a complete trace which fits the model and the queried pattern.

As an example of this use-case, we provide the example ATDP interpre-
tation hosp-3 in our repository. We project the set of relevant activities to
the set a6 = informs (the patient), a7 = signs (informed consent) a8 =
arranges (an appointment). Two trace patterns are tested, the first: t1 =
〈· · · a6, a7, a8, · · · 〉 and t2 = 〈· · · a7, a6, a8, · · · 〉. NuSMV finds the trace pattern t1 fit-
ting the model, and produces a full execution trace containing it. On the other
hand, t2 does not fit the model, which is successfully proven by NuSMV.

7.3 ATDP Simulator: Extracting Event Logs from ATDP Simulations

The ATDP Simulator is an implementation of the algorithm described in Section 6.3.
The implementation uses the atdplib-model library as the reference Java imple-
mentation to parse and handle the ATDP file format. The ATDP Simulator itself, is
available as a separate tool and is implemented in Clojure, a functional language
for the Java Virtual Machine.

The ATDP Simulator is implemented as a command line tool which takes an
ATDP specification with a single interpretation, and will produce a log file in the
XES[55] file format with the requested number of traces.

We now use the ATDP specification of an academic example text describing the
process of a client obtaining a membership at Barcelona’s Zoo. Figure 12 shows
the complete ATDP specification for this example. In the visual representation, some
high-level abbreviations for temporal constraints not described in [40] are used:
Alternatives (in the figure, ALTS.), used to describe multiple branches of a decision
and Succession (in the figure, SUCC.), which combines the Precedence and Response

relations. These relations use the base relations from [40] as building blocks and
can thus be considered syntactic sugar. In this specification, only the temporal
aspects of the process is shown for illustrative purposes.

We used the ATDP Simulator to produce example traces for the process in
Figure 12. Table 2 shows some example traces. In order to validate the resulting
traces, we used the well-known Inductive Miner [25] to discover a process model.
As seen in Figure 13, the resulting BPMN is consistent with the ATDP specification.

In order to validate the simulation, we have done another experiment: we have
used three realistic examples to test the simulation method. The experiment con-
sists in three pairs of process representations, where each pair is a process model as
a Petri net, and the corresponding faithful textual description as an ATDP specifica-
tion. Then we have simulated the textual description and tested the conformance
of the generated event log with respect to the process model. In particular, we

for any invisible activity to be present between the visible activities of the trace. We do not
show it here for the sake of simplicity.

28 Josep Sànchez-Ferreres et al.

When a visitor wants to become a member of Barcelona's
ZooClub, the following steps must be taken. First of all, the
customer must decide whether he wants an individual or
family membership.If he wants an individual membership, he
must prepare his personal information. If he wants a family
membership instead, he should prepare the information for its
spouse and spawn as well.

The customer must then give this information to the ZooClub
department. The ZooClub department introduces the visitor's
personal data into the system and takes the payment request
to the Billing department. The ZooClub department also
forwards the visitor's information to the marketing
department. The billing department sends the payment
request to the bank.

The bank processes the payment information and, if
everything is correct, charges the payment into the user's
account. Once the payment is confirmed, the ZooClub
department can print the card and deliver it to the visitor.

In the meantime, the Marketing department makes a request
to mail the Zoo Club's magazine to the visitor's home. Once
the visitor receives the card, he can go home.

ALTS.

SUCC.

SUCC.

1..1

S
E
Q
U
E
N
T
IA
L

SUCC.

SUCC.

SUCC.

S
U
C
C
.

SUCC.

SUCC.

SUCC.

S
U
C
C
.

SUCC.

1..1

(a)
(b)

(c) (d)

(e)

(g)
(f)

(h)

(j)
(i)

(k)

(l)

(m) (n)

(o)

(p)

Fig. 12 Control-flow projection of scope the ATDP specification of the Zoo process.

Wants indiv.
membership

(b)

Prepare
pers. info.

(c)

Give info. to
ZooClub dpt

(f)

Decide type
membership

(a)

Wants fam.
membership

(d)

Prepare fam.
information

(e)

Take paym.
req. to bank

(h)

Send req.
to bank

(j)

Process
payment

(k)

Charge
user acc.

(l)

Print
card

(m)

Deliv. card
to visitor

(n)

Receive
card

(p)

Introduce
visitor data

(g)

Forward info
to mkt. dpt.

(i)

Mail ZooClub
magazine

(o)

Fig. 13 BPMN Model obtained by mining the log from Table 2 using the Inductive Miner.

Unleashing Textual Descriptions of Business Processes 29

Trace Frequency

〈a, b, c, f, g, i, o, h, j, k, l,m, n, p〉 34
〈a, d, e, f, g, i, o, h, j, k, l,m, n, p〉 27
〈a, d, e, f, g, h, i, o, j, k, l,m, n, p〉 22
〈a, b, c, f, g, h, i, o, j, k, l,m, n, p〉 22

· · · · · ·

Table 2 Example log with several traces obtained by simulating the ATDP specification of
Figure 12.

have analyzed the fitness of each pair, i.e., the ability of the model in reproduc-
ing the traces of the log generated, a real number between 0 and 1 [5]. A high
fitness indicates that the model and the log agree on the main behavior described
in both process representations. For analyzing fitness, we have used the ProM
platform [54].

From the results on Table 3 one can see that the results match the expecta-
tions one may have when relating structured information (i.e., a formal graphical
notation like a Petri net), and a less structured information like an ATDP specifi-
cation where some of the relations have a declarative form and the main actions
and relations highlighted in each may differ. Still, in spite of this representational
difference, the simulation obtains an object that keeps in average a significant
portion of the behavior as described in the original model.

Aside from validation of the generated event logs, we believe enabling synthetic
event log generation for ATDP specifications can open new applications for this
paradigm. Allowing use of well-established techniques from the field of process
mining on top of semi-structured representations. A more thorough exploration of
this topic has been considered for future work.

7.4 Discussion

Although the previous use cases provide applications of the paradigm introduced
in this paper, further investigation needs to be carried out to relate the design
decisions made with the actual deployment of the ideas as reported in this section.
On the automatic extraction of ATDP from text, for instance, we have realized
that the notion of scopes is a real challenge, since it requires a deep analysis of the
textual description. Another challenge arises when operationalizing the reasoning
of ATDP specifications, where the proposed translation to LTLf (as described in
Section 6.2.1) needs to be adapter for enabling current model checking technology
to be applied, due to the state-explosion problem. Finally, we have realized that
when simulating an ATDP specification there may be some hidden biases arising
from its structure.

8 Conclusions and Future Work

This paper presents a first attempt to automatically bridge the existing gap be-
tween unstructured process information and its operational use in organizations.

30 Josep Sànchez-Ferreres et al.

Process Fitness

Reimbursement Process 0.69

Dispatch Process 0.64

Zoo Process 0.96

Average 0.76

Table 3 Conformance checking for simulated ATDP specifications and the corresponding gold
models.

The paper proposes annotated textual descriptions of process as the right balance
between formalization and accessibility, and contributes in all the necessary steps
to make the operationalization of unstructured data that talks about processes
possible.

We formalize ATDP specifications, and express its semantics in temporal logic,
thus opening the door to formal reasoning. We show how this reasoning can be
done by casting questions as model checking queries; several examples are provided
that witness the reasoning capabilities of our approach.

We also show that current NLP technology can assist into the automatic ex-
traction of ATDP elements. In particular, we propose methods for extracting au-
tomatically fragments of ATDP specifications, using NLP analysis and tree queries
over the dependency trees corresponding to sentences describing a process. We
show how this method is currently used in an educational platform for process
modeling.

Finally, we connect ATDP specifications with process mining [53], by proposing
a simulation approach that enables generating an event log that encompasses the
main behavior of the process. Techniques like process discovery or conformance

checking are then possible, to discover formal process models or to analyse the
conformance against real-life event data, respectively.

Several future research avenues are ahead of us, so we report on the most
promising ones. First, extending the extraction of ATDP specifications to capture all
the possible annotations is an investigation that we are currently tackling. Second,
to extend the formal connection between reasoning and model checking, and to
propose alternative encodings so that it can be applied on larger specifications,
will be an important matter to consider. Finally, to validate the usability of the
ATDP specifications with real users would let us to have a better understanding of
the accessibility of the language proposed.

Acknowledgments

This work has been supported by MINECO and FEDER funds under grant
TIN2017-86727-C2-1-R.

References

1. Decision Model and Notation (DMN). Standard, OMG - Object Management Group,
2016.

Unleashing Textual Descriptions of Business Processes 31

2. Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, and Frank Zimmer. Automated check-
ing of conformance to requirements templates using natural language processing. IEEE
Transactions on Software Engineering, 41(10):944–968, October 2015.

3. Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. A ge-
netic algorithm for discovering process trees. In Proceedings of the IEEE Congress on
Evolutionary Computation (CEC), pages 1–8, 2012.

4. Andrea Burattin. PLG2: multiperspective process randomization with online and offline
simulations. In BPM Demo Track, 2016.

5. Josep Carmona, Boudewijn F. van Dongen, Andreas Solti, and Matthias Weidlich. Con-
formance Checking - Relating Processes and Models. Springer, 2018.

6. Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. Event extraction via
dynamic multi-pooling convolutional neural networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages 167–176,
Beijing, China, July 2015. Association for Computational Linguistics.

7. Claudio Di Ciccio, Mario Luca Bernardi, Marta Cimitile, and Fabrizio Maria Maggi. Gen-
erating event logs through the simulation of declare models. In EOMAS 2015, pages 20–36,
2015.

8. Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri. NUSMV:
A new symbolic model checker. STTT, 2(4):410–425, 2000.

9. Jan Claes, Irene Vanderfeesten, J. Pinggera, H.A. Reijers, B. Weber, and G. Poels. A
visual analysis of the process of process modeling. Information Systems and e-Business
Management, 13(1):147–190, 2015.

10. Rajarshi Das, Tsendsuren Munkhdalai, Xingdi Yuan, Adam Trischler, and Andrew McCal-
lum. Building dynamic knowledge graphs from text using machine reading comprehension.
In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019.

11. Giuseppe De Giacomo, Riccardo De Masellis, and Marco Montali. Reasoning on LTL on
finite traces: Insensitivity to infiniteness. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence, pages 1027–1033. AAAI Press, 2014.

12. Ana Karla Alves de Medeiros and Christian W. Günther. Process Mining: Using CPN
Tools to Create Test Logs for Mining Algorithms. In Proceedings of the Sixth Workshop
and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, pages 177–190,
2005.

13. Luis Delicado, Josep Sanchez-Ferreres, Josep Carmona, and Llúıs Padró. NLP4BPM -
Natural Language Processing Tools for Business Process Management. In BPM Demo
Track, 2017.

14. Luis Delicado, Josep Sanchez-Ferreres, Josep Carmona, and Lluis Pardo. The Model Judge
- A Tool for Supporting Novices in Learning Process Modeling. In BPM Demo Track, 2018.

15. Remco Dijkman, Irene Vanderfeesten, and Hajo A. Reijers. Business process architectures:
overview, comparison and framework. Enterprise Information Systems, 10(2):129–158, feb
2016.

16. Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. Fundamentals of
Business Process Management. Springer, 2018.

17. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property
specifications for finite-state verification. In Proceedings of ICSE, pages 411–420. ACM,
1999.

18. Christiane Fellbaum. WordNet. An Electronic Lexical Database. Language, Speech, and
Communication. The MIT Press, 1998.

19. Wenfeng Feng, Hankz Hankui Zhuo, and Subbarao Kambhampati. Extracting action
sequences from texts based on deep reinforcement learning. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pages 4064–
4070. International Joint Conferences on Artificial Intelligence Organization, 7 2018.

20. Günther Fliedl, Christian Kop, and Heinrich C Mayr. From textual scenarios to a con-
ceptual schema. Data & Knowledge Engineering, 55(1):20–37, 2005.

21. Fabian Friedrich, Jan Mendling, and Frank Puhlmann. Process model generation from nat-
ural language text. In Haralambos Mouratidis and Colette Rolland, editors, Advanced In-
formation Systems Engineering, pages 482–496, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

22. Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In IJCAI, 2013.

32 Josep Sànchez-Ferreres et al.

23. A. Halioui, P. Valtchev, and A. B. Diallo. Bioinformatic workflow extraction from scientific
texts based on word sense disambiguation. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 15(6):1979–1990, 2018.

24. Toon Jouck. Empirically Evaluating Process Mining Algorithms: Towards Closing the
Methodological Gap. PhD thesis, University of Hasselt, 2018.

25. Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Discovering block-
structured process models from event logs - A constructive approach. In Proceedings of
PETRI NETS, pages 311–329. Springer, 2013.

26. Henrik Leopold. Natural language in business process models. PhD thesis, Springer, 2013.
27. Henrik Leopold, Han van der Aa, and Hajo A. Reijers. Identifying candidate tasks for

robotic process automation in textual process descriptions. In Jens Gulden, Iris Reinhartz-
Berger, Rainer Schmidt, Sérgio Guerreiro, Wided Guédria, and Palash Bera, editors, En-
terprise, Business-Process and Information Systems Modeling - 19th International Con-
ference, BPMDS 2018, 23rd International Conference, EMMSAD 2018, Held at CAiSE
2018, Tallinn, Estonia, June 11-12, 2018, Proceedings, volume 318 of Lecture Notes in
Business Information Processing, pages 67–81. Springer, 2018.

28. Roger Levy and Galen Andrew. Tregex and tsurgeon: tools for querying and manipulating
tree data structures. In LREC, pages 2231–2234. Citeseer, 2006.

29. Bilal Maqbool, Farooque Azam, Muhammad Waseem Anwar, Wasi Haider Butt, Jahan
Zeb, Iqra Zafar, Aiman Khan Nazir, and Zuneera Umair. A Comprehensive Investigation
of BPMN Models Generation from Textual Requirements - Techniques, Tools and Trends.
In Information Science and Applications 2018 - ICISA 2018, Hong Kong, China, June
25-27th, 2018, volume 514 of Lecture Notes in Electrical Engineering, pages 543–557.
Springer, 2019.

30. Jan Mendling, Bart Baesens, Abraham Bernstein, and Michael Fellmann. Challenges of
smart business process management: An introduction to the special issue. DSS, 100:1–5,
2017.

31. Jan Mendling, Henrik Leopold, and Fabian Pittke. 25 challenges of semantic process
modeling. International Journal of Information Systems and Software Engineering for
Big Companies, 1(1):78–94, 2015.

32. Vanessa Tavares Nunes, Flávia Maria Santoro, and Marcos R.S. Borges. A context-based
model for knowledge management embodied in work processes. Information Sciences,
179(15):2538 – 2554, 2009.

33. Avner Ottensooser, Alan Fekete, Hajo A. Reijers, Jan Mendling, and Con Menictas. Mak-
ing sense of business process descriptions: An experimental comparison of graphical and
textual notations. Journal of Systems and Software, 85(3):596–606, 2012.

34. Llúıs Padró and Evgeny Stanilovsky. Freeling 3.0: Towards wider multilinguality. In Pro-
ceedings of the Eighth International Conference on Language Resources and Evaluation
(LREC), pages 2473–2479, 2012.

35. M. Pesic, H. Schonenberg, and W. M. P. van der Aalst. DECLARE: Full support for
loosely-structured processes. In Proc. of the IEEE Int. Enterprise Distributed Object
Computing Conference, pages 287–298. IEEE Computer Society, 2007.

36. J. Pinggera. The Process of Process Modeling. PhD thesis, University of Innsbruck,
Department of Computer Science, 2014.

37. Amir Pnueli. The temporal logic of programs. pages 46–57. IEEE, 1977.
38. Chen Qian, Lijie Wen, Akhil Kumar, Leilei Lin, Li Lin, Zan Zong, Shu’ang Li, and Jian-

min Wang. An approach for process model extraction by multi-grained text classification.
In Schahram Dustdar, Eric Yu, Camille Salinesi, Dominique Rieu, and Vik Pant, edi-
tors, Advanced Information Systems Engineering, pages 268–282, Cham, 2020. Springer
International Publishing.

39. Kristin Y. Rozier and Moshe Y. Vardi. LTL satisfiability checking.
40. Josep Sànchez-Ferreres, Andrea Burattin, Josep Carmona, Marco Montali, and Llúıs

Padró. Formal reasoning on natural language descriptions of processes. In Proceedings of
BPM, pages 86–101, 2019.

41. Josep Sànchez-Ferreres, Josep Carmona, and Llúıs Padró. Aligning textual and graphical
descriptions of processes through ILP techniques. In Proceedings of CAiSE, pages 413–427,
2017.

42. Josep Sànchez-Ferreres, Luis Delicado, Amine Abbad Andaloussi, Andrea Burattin,
Guillermo Calderón-Ruiz, Barbara Weber, Josep Carmona, and Llúıs Padró. Support-
ing the process of learning and teaching process models. IEEE Trans. Learn. Technol.,
13(3):552–566, 2020.

Unleashing Textual Descriptions of Business Processes 33

43. Josep Sànchez-Ferreres, Han van der Aa, Josep Carmona, and Llúıs Padró. Aligning
textual and model-based process descriptions. Data & Knowledge Engineering, 118:25–
40, 2018.

44. Pol Schumacher. Workflow Extraction from Textual Process Descriptions. PhD thesis,
Johann Wolfgang Goethe Universität Frankfurt/Main, 2016.

45. Franziska Semmelrodt. Modellierung klinischer Prozesse und Compliance Regeln mittels
BPMN 2.0 und eCRG. PhD thesis, University of Ulm, 2013.

46. Andrea Di Sorbo, Sebastiano Panichella, Corrado Aaron Visaggio, Massimiliano Di Penta,
Gerardo Canfora, and Harald C. Gall. Exploiting natural language structures in software
informal documentation. IEEE Transactions on Software Engineering, 2019.

47. Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko Ohta, Sophia Ananiadou, and
Jun’ichi Tsujii. Brat: a web-based tool for nlp-assisted text annotation. In Proceedings of
the Demonstrations at the 13th Conference of the European Chapter of the Association
for Computational Linguistics, pages 102–107. Association for Computational Linguistics,
2012.

48. Niket Tandon, Bhavana Dalvi, Joel Grus, Wen-tau Yih, Antoine Bosselut, and Peter Clark.
Reasoning about actions and state changes by injecting commonsense knowledge. In
Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, pages 57–66. Association for Computational
Linguistics, 2018.

49. Han van der Aa, Josep Carmona, Henrik Leopold, Jan Mendling, and Llúıs Padró. Chal-
lenges and opportunities of applying natural language processing in business process man-
agement. In Proceedings of the 27th International Conference on Computational Linguis-
tics (COLING), pages 2791–2801, 2018.

50. Han van der Aa, Henrik Leopold, and Hajo A. Reijers. Detecting inconsistencies between
process models and textual descriptions. In Hamid Reza Motahari-Nezhad, Jan Recker,
and Matthias Weidlich, editors, Business Process Management - 13th International Con-
ference, BPM 2015, Innsbruck, Austria, August 31 - September 3, 2015, Proceedings,
volume 9253 of Lecture Notes in Computer Science, pages 90–105. Springer, 2015.

51. Han van der Aa, Henrik Leopold, and Hajo A. Reijers. Dealing with behavioral ambiguity
in textual process descriptions. In Marcello La Rosa, Peter Loos, and Oscar Pastor,
editors, Business Process Management - 14th International Conference, BPM 2016, Rio
de Janeiro, Brazil, September 18-22, 2016. Proceedings, volume 9850 of Lecture Notes in
Computer Science, pages 271–288. Springer, 2016.

52. Han van der Aa, Henrik Leopold, and Hajo A. Reijers. Comparing textual descriptions to
process models - the automatic detection of inconsistencies. Inf. Syst., 64:447–460, 2017.

53. Wil M.P. van der Aalst. Process Mining. Springer, 2016.
54. Eric Verbeek, Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst.

Prom 6: The process mining toolkit. In Proceedings of the Business Process Management
2010 Demonstration Track, Hoboken, NJ, USA, September 14-16, 2010, 2010.

55. H. M. W. Verbeek, Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der
Aalst. XES, XESame, and ProM 6. In Information Systems Evolution, pages 60–75,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

56. Kirstin Walter, Mirjam Minor, and Ralph Bergmann. Workflow extraction from cooking
recipes. In Process-Oriented Case-Based Reasoning Workshop, pages 207–216, 01 2011.

57. Bishan Yang and Tom M. Mitchell. Joint extraction of events and entities within a doc-
ument context. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages
289–299, San Diego, California, June 2016. Association for Computational Linguistics.

	Introduction
	ATDP in a Nutshell
	Related Work
	Preliminaries
	Processes as Annotated Textual Descriptions
	Using ATDP Specifications in Organizations
	Tool Support and Use Case Examples
	Conclusions and Future Work

