
IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 1

Supporting the Process of Learning and
Teaching Process Models

Josep Sànchez-Ferreres, Luis Delicado, Amine Abbad Andaloussi, Andrea Burattin, Guillermo Calderón-Ruiz,
Barbara Weber, Josep Carmona, and Lluı́s Padró

Abstract—The creation of a process model is primarily a
formalization task that faces the challenge of constructing a
syntactically correct entity which accurately reflects the semantics
of reality, and is understandable to the model reader. This
paper proposes a framework called Model Judge, focused towards
the two main actors in the process of learning process model
creation: novice modelers and instructors. For modelers, the
platform enables the automatic validation of the process models
created from a textual description, providing explanations about
quality issues in the model. Model Judge can provide diagnostics
regarding model structure, writing style, and semantics by
aligning annotated textual descriptions to models. For instructors,
the platform facilitates the creation of modeling exercises by
providing an editor to annotate the main parts of a textual
description, that is empowered with natural language processing
(NLP) capabilities so that the annotation effort is minimized.
So far around 300 students, in process modeling courses of five
different universities around the world have used the platform.
The feedback gathered from some of these courses shows good
potential in helping students to improve their learning experi-
ence, which might, in turn, impact process model quality and
understandability. Moreover, our results show that instructors
can benefit from getting insights into the evolution of modeling
processes including arising quality issues of single students, but
also discovering tendencies in groups of students. Although the
framework has been applied to process model creation, it could
be extrapolated to other contexts where the creation of models
based on a textual description plays an important role.

Index Terms—Natural language processing (NLP), process of
process modeling, textual annotation, Business Process Model
and Notation (BPMN).

I. INTRODUCTION AND MOTIVATION

PROCESS models play an important role in the analysis
and improvement of business processes [1]. Moreover,

they are often used as basis for process execution. Due to their

Manuscript received September 19, 2019; revised March 18, 2020; accepted
MM DD, 2020. Date of publication MM DD, 2020; date of current version
MM DD, 2020. This work was supported in part by the Spanish Ministry of
Science, Innovation and Universities, under the grant TIN2017-86727-C2-1-R.
(Corresponding author: Josep Carmona).

J. Sànchez-Ferreres, L. Delicado, J. Carmona, and L. Padró are with the
Department of Computer Science, Universitat Politècnica de Catalunya, Spain
(e-mail: jsanchezf@cs.upc.edu; ldelicado@cs.upc.edu; jcarmona@cs.upc.edu;
padro@cs.upc.edu).

A. Abad Andaloussi and A. Burattin are with the Department of Applied
Mathematics and Computer Science, Technical University of Denmark, Den-
mark (e-mail: amab@dtu.dk; andbur@dtu.dk).

B. Weber is with the Institute for Computer Science, University of St.
Gallen, Switzerland (e-mail: barbara.weber@unisg.ch).

G. Calderón-Ruiz is with the Department of Physics and Formal Sci-
ences and Engineering, Universidad Catolica de Santa Marı́a, Peru (e-mail:
gcalderonr@gmail.com).

Digital Object Identifier: Add doi here when available

wide usage in organizations their quality is paramount: Process
models should be syntactically correct, and follow the rules
provided by the modeling grammar (i.e., syntactic quality),
they should be complete in terms of requirements and only
contain correct and relevant statements of the domain (i.e.,
semantic quality), and be understandable to the human model
reader (i.e., pragmatic quality) [2], [3].

Research has shown that industrial process models often
contain errors [4]. While some of these errors can be automat-
ically identified by the verification support of state-of-the art
modeling environments [5], others—especially those concern-
ing the semantics of a model—are not sufficiently supported
up to now. Moreover, a recently conducted exploratory study
by Haisjackl et al. investigated how humans inspect process
models [6], and came to the conclusion that a systematic
support for model inspection would be fundamental, either
in form of test-driven development, or in form of (automated)
checklists.

This paper picks up this challenge, and proposes a frame-
work called Model Judge for the automatic validation of pro-
cess models and providing explanations about quality issues
in therein. The framework proposed is inspired by similar
practices in other educational contexts, e.g., the success of
judges in supporting learning to program [7]–[11]. Remark-
ably, we use natural language processing (NLP), together with
optimization techniques [12], to validate process models with
respect to textual descriptions of processes.

Model Judge provides diagnostics regarding issues on syn-
tactic, pragmatic and semantic quality. The framework un-
derlying Model Judge is grounded on aligning annotated
textual descriptions with the models as basis for providing
diagnostics [12]. Using Model Judge, novice modelers can
be guided through continuous feedback. Instructors, in turn,
can create new exercises, and obtain insights into modeling
behaviors and better understand the evolution of error types
and their lifetime in the model. Currently, we have applied
our tool it in the context of five modeling courses totaling
around 300 students. To demonstrate the applicability of our
framework we monitored and analysed student data from one
of the courses with 26 students and the results show that Model
Judge has potential to support process modeling learners in
improving the quality of their models.

In this paper we apply our framework to the creation of
process models. However, a similar approach could be taken
for other types of models, like Universal Modeling Language
(UML) class diagrams or UML activity diagrams, in settings
where learners need to create a model starting from a textual

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 2

description.
The remainder of this paper is structured as follows: Sec-

tion II gives an overall description of the Model Judge platform
and its features. Section III explores the related work in the ex-
isting literature. Section IV provides the preliminaries for our
work. Subsequently, Section V presents the specific modeling
guidelines that were used in the design of Model Judge as
well as the details behind the implementation of the platform.
Finally, Section VI evaluates Model Judge’s performance in a
modeling course before Section VII concludes the paper.

II. A TOUR THROUGH THE MODEL JUDGE

This section describes the main features that users can
find in the Model Judge. The Model Judge is a web-based,
platform, that can be accessed through any web browser at
https://modeljudge.cs.upc.edu. It is designed both for helping
students in the process of creating a process model, and
instructors in the task of designing modeling exercises in an
agile way.

To use Model Judge, a user (being student or instructor)
needs to create an account, with its associated storage space.
In this space, a student can save models, which will be always
accessible once she logs in. On the other hand, instructors
have the ability to create courses and exercises. A course is
designed as a set of exercises the students must solve, which
can be taken from the existing list of examples, or created by
the instructors.

Registered students can attempt to solve any exercise for
the courses they are enrolled to. This enrolling process is
performed by introducing a course code provided by the
instructor. Upon selecting an exercise, the main working zone
will be displayed (see Fig. 1): on the left part, a textual
description of the process is provided, so that the student un-
derstands the process to model. Next to the textual description,
a model editor allows the students to create the process model.
The students enrolled in a particular course may enable the
platform to record every few minutes a copy of their work-
in-progress. This can be used for analyzing their behavior,
which can be then reported back to both the student and the
instructor.

During the modeling session, two important checks are
available to help novice modelers:

• Validation: returns an aggregated diagnostic that reflects
if the model has some errors (more details on the
types of errors detected by Model Judge can be seen in
Section V-C), however, the exact source of the error is
omitted from this message. The motivation for this check
is to allow for a mild test to guide the students. This is
shown at the right part of Fig. 1, using a traditional color
code (green meaning positive facts, red meaning negative
facts, and yellow meaning warnings).

• Complete Validation: This check provides a more thor-
ough list of all the problems detected, which individually
addresses each of the issues with the model. The moti-
vation for this check is to allow an assessment similar to
the one obtained if a teacher was correcting the model.

Two important monitoring features are included in Model
Judge for instructors to get further insights from the modeling

sessions. On the one hand, instructors have access to a real-
time dashboard during the modeling session that can be used
to monitor the students’ progress. This dashboard allows
inspecting useful statistics like how much are students using
the validation functionality, their overall progress measured in
the number of error diagnostics, and the actual process models.
This dashboard is shown in Fig. 2.

On the other hand, instructors have the option to access the
data stored from students of the course once their modeling
task is finished. This data contains the final models, which can
be used for assessment, but also the intermediate models and
their diagnostics in order to perform a more detailed analysis
with the progression of the students during the exercise, similar
to what is shown in Section VI.

Furthermore, an exercise editor is available for instructors,
in order to create new exercises. For this, instructors must
provide both the problem statement text and its corresponding
annotations, which are used to describe the exercise solution
to Model Judge (see Section V). An on-line exercise editor is
provided which handles the generation of partial annotations
and allows its further refinement, as seen in Fig. 3. Typically,
the necessary work to create a new exercise consists of
removing the automatically highlighted elements that are not
relevant from the process perspective, as well as manually
annotating any activities that were implicitly described. From
our experience with the tool, we have estimated that a trained
instructor can create a new exercise for a well-known process
in less than an hour.

In summary, the Model Judge platform consists of three
inter-related tools, each focused on a different aspect of an
exercise’s lifecycle. We next detail the ecosystem behind our
platform, with the main functionalities of every tool.

1) MJ-Core: MJ-Core is the main tool in the Model Judge
platform. Its main purpose is to present a space for students to
solve exercises in, and instructors to create and manage their
courses. Additionally, the core platform provides the login
and registration capabilities for all other applications in the
platform. The source code for this tool is available inside the
modeljudge project at our source code repository [13].

2) MJ-Editor: MJ-Editor is a tool aimed at instructors that
allows the creation of new exercises for the core platform. In
order to create a new exercise, a natural language description
of a process must be annotated. This editor, shown in Fig. 3, is
a standalone web application which can also be used offline.
This editor is built using the React framework for Javascript,
and its source code is also available online inside the atd-editor
project at our source code repository [13].

3) MJ-Dashboard: MJ-Dashboard is a tool that helps
instructors to follow their existing courses by summarizing
student and exercise data. The tool is built using a custom
framework on top of the Compojure library. Currently it is
only available to instructors, due to the advanced nature of
the information displayed.

III. RELATED WORK

There exist very few works in the literature that jointly
propose a learning framework for process modeling, and

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 3

Fig. 1. The Model Judge: (Left) The textual description, (Center) the created model, (Right) The result of a validation.

Fig. 2. The Model Judge Dashboard: (Left) ranking of students according to the gathered diagnostics (left), (Right) selected student evolution.

exploit NLP capabilities for automating the validation of
created process models. Still, we can find existing examples
of learning frameworks designed to aid students in conceptual
modeling, such as the one presented in Pimentel et. al, where
a gamification setup is defined to engage students in the task
of creating i* models [14]. Another are the works presented in
Bogandova et. al and Buchmann et. al, which aim to create a
taxonomy of common student errors when learning conceptual
modeling [15], [16].

There have also been prior efforts to design e-learning
systems for modeling notations, such as UML [17]. In this
system, a very shallow textual validation for the main model
components is done, and it is required to decide a priori all
the possible solutions for a given exercise. Our framework is
much more flexible, so that the space of solutions is merely
defined by the problem statement itself. NLP applied to both
text and model enables to implicitly account for all possible
correct solutions without enumerating them explicitly.

There is related work that explores the human behavior
in modeling, an aspect that influences the work of this pa-
per. In Störrle et al., a study is conducted to evaluate how
human modelers visually parse UML diagrams using eye-
tracking technology [18]. A more recent study follows a
similar approach for the case of reading process models during
a modeling session [19]. Incorporating insights arising from
these studies, as well as well-known principles and guidelines,
can be used to automatically improve the readability of a
model [20].

Finally, the interaction between NLP and Business Process
Management has some prior studies outside the scope of
education. There has been work addressing the problem of the
translation from textual to graphical representations of models
(e.g., UML diagrams [21], [22], or Business Process Model
and Notation (BPMN) [23], [24]) as well as schema [25]
or process model [26] matching. The alignment technique
presented in this paper is an adapted version of a prior work

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 4

Fig. 3. The Model Judge Exercise Editor: the text describing the process (right) can be annotated (left) and relations between annotations reported (arcs in
the text).

[12].
To the best of our knowledge, the proposal of this paper is

the first one to tackle the challenges in the development of an
automated system to support novices in the creation of busi-
ness process models. Commercial tools (e.g., Signavio Process
Manager) are already capable of providing feedback concern-
ing some predefined modeling conventions. This feedback,
however, is typically quite elementary and completely domain
agnostic. Instead, the framework proposed is inspired on
code judges for programming, which are extremely successful
on guiding novice programmers towards obtaining solutions
to programming exercises [7]–[11] by providing suggestions
specifically tailored to the context of the exercise. As it is done
in some of the aforementioned learning environments (e.g.,
Petit et al. [11]), in our framework we allow for a detailed
diagnostic list, enabling the modeler to easily locate errors.

IV. PRELIMINARIES

A. Contextual Example: Modeling from Textual Descriptions

To illustrate the kind of modeling task we address in our
work, let us consider the process of patient examination based
on the description provided by the Women’s Hospital of Ulm.
Both the text and the model are extracted from the paper by
Cabanillas et al. [27]. A part of the textual description of this
process is provided in Fig. 4. A novice modeler would be
confronted to this text in order to perform the creation of the
corresponding process model. Fig. 5 shows a possible solution
to this modeling task, i.e., a process model in BPMN [28].

For readers not familiar with the BPMN language’s features,
a short description is provided in Section IV-B.

The process starts when the female patient is examined
by an outpatient physician, who decides whether she is
healthy or needs to undertake an additional examination.
(...) In the latter case, an examination and follow-up
treatment order is placed by the physician. (...) A delegate
of the physician arranges an appointment of the patient
with one of the wards. The latter is then responsible for
taking a sample to be analyzed in the lab later. (...) After
receiving the sample, a physician of the lab validates
its state and decides whether the sample can be used
for analysis or whether it is contaminated and a new
sample is required. (...) Finally, a physician from the
outpatient department makes the diagnosis and prescribes
the therapy for the patient.

Fig. 4. Fragment of a textual description for a patient examination process.

B. Process Modeling Notations

Process models can be created using a variety of modeling
languages, such as Petri nets, Event-Driven Process Chains
(EPCs), and BPMN. Although we focus in BPMN, the contri-
butions of this paper are independent of the specific notation
used to define a process model.

In particular, we focus on BPMN 2.0, a notation created
as standard for business process modeling. BPMN has three
different kinds of elements. First, the main elements are the
nodes in the diagram, which may belong to three different
types: Activities (Fig. 6, a), which represents some task that is
performed; Events (Fig. 6, b), which represen that something
happens; and Gateways (Fig. 6, c), which split or join flow
control according to their type: parallel tasks are defined

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 5

Fig. 5. Process model for the patient examination process.

Examine Patient

Receive invoice

N
ur

se Examine patient

Additional
example
required?

H
os

pi
ta

l

Additional example
required?

yes

no

a) b)

c) d)

Fig. 6. Different constructs in the BPMN notation. Activity (a), Event (b),
Gateway (c), Pool and Lane (d).

through the + gateway, whilst alternative paths are defined
through the x gateway. Second, the notation has different
edges to connect nodes, so that control-flow dependencies
can be defined. A solid line indicates the process workflow,
while dashed lines represent messages sent between process
participants. Finally, there are organization elements such as
lanes that contain activities performed by the same participant,
and pools (Fig. 6, d), that group several related lanes. Fig. 5
shows an example of the BPMN model corresponding to the
patient examination process described in Fig. 4. Note that, for
simplicity, in the process model of Fig. 5 we do not show
pools or lanes.

C. Natural Language Processing and Annotation

In order to compare textual descriptions (like the one shown
in Fig. 4) with a formal model, the text must be analyzed
and converted to a structured representation that conveys the
semantics of the text, and can be compared to the formal
model.

To perform this step, we rely on existing tools produced
by the NLP community, such as FreeLing [29]. The NLP
analyzers are used to obtain a semantic representation of the

text. Particularly, we extract the actions being described in
the text, the agents who perform each action, and the patients
upon which each action is performed. Note that agent and
patient terms are borrowed from linguistics, and the latter has
no relation to the medical patients described in our running
example. For instance, in Fig. 4 the sentence an examination
and follow-up treatment order is placed by the physician, the
agent is physician, the action is place, and the patient is order.

Additionally, we also extract per-word information such as
the part of speech (PoS) tag and its ontological sense. By
collecting this lower-level information, we allow our technique
to fall back to the word level whenever the predicate level
description is ambiguous or incomplete (e.g., detecting that
word place occurs as a verb in a sentence is useful to discover
that such action is being described, even if the information
about the agent or the patient could not be extracted by the
NLP tools).

More specifically, we apply a NLP pipeline consisting
of tokenization, sentence splitting, morphological analysis,
part-of-speech tagging, named entity recognition, word sense
disambiguation, dependency parsing, semantic role labelling,
and coreference resolution.

The steps up to word sense disambiguation provide word-
level information such as the PoS (e.g., placed → verb past
participle), the lemma (e.g. placed → place), or the sense (an
entry in an ontology that will link to synonyms—e.g., arrange
for— or other semantically close words—e.g., request, order,
ask for).

The three last steps are of special relevance, since they allow
the top-level predicate construction, and the identification of
actors throughout the whole text: Dependency parsing identi-
fies syntactic subjects and objects (which may vary depending,
e.g., on whether the sentence is active or passive), while
semantic role labeling identifies semantic relations (the agent
of an action is the same regardless of whether the sentence
is active or passive). Coreference resolution identifies several
mentions of the same actor as referring to the same entity
(e.g., in Fig. 4, a delegate of the physician and the latter refer
to the same person, as well as the same object is mentioned

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 6

as the sample requested and it).
To compare formal models to textual descriptions, we will

need annotated versions of those texts (i.e., enriched with
all the linguistic information described above). Ideally, those
annotations would be automatically performed by NLP tools,
but given the limitations of the current NLP technology, we
will resort to a certain amount of human annotation to improve
the quality of our semantic representations. More details are
provided in Section V-A.

Creating annotated versions of texts is usual in the NLP
field, where many approaches are based on machine learning
and require annotated text corpora both for training and for
evaluating the performance of the developed systems. This
need for annotated text has led the NLP community to develop
several general-purpose annotation tools (e.g., Brat [30]).
However, inspired on those resources, we have developed
our own annotation tool tailored to Model Judge’s use case
in order to offer a better user experience. This tool is also
able to automatically infer partial annotations, as seen later in
Section V-A.

V. FRAMEWORK UNDERLYING THE MODEL JUDGE

By observing the grading process of several process mod-
eling courses, we have established a set of diagnostics that
are suitable for being computed automatically. As done in the
literature [2], we have split these diagnostics in three different
categories: Syntactic diagnostics consider the control flow of
the model. Pragmatic diagnostics consider the interpretability
aspects of the model. Finally, semantic diagnostics check if
there is no missing information from the underlying process
and all the information provided is relevant and valid. Note
that we use the terms syntactic, semantic, and pragmatic as it
is usually done in the Process Modeling field, which differs
from the meaning these terms have in linguistics and NLP.

This section describes our proposed framework for the auto-
matic computation of diagnostics. The Model Judge produces a
list of recommendations that the student can generate upon de-
mand during the modeling process. Fig. 7 shows an overview
diagram. The inputs to the system are the student’s Process
Model and the Textual Description, in natural language, that
is being used as the exercise’s statement.

The textual description is analyzed by the Text Annotation
module, to produce a structured annotated description where
the relevant concepts in the process model are identified.
This annotation is then completed with human intervention
to include domain expertise not available to NLP tools. After
these steps—performed only once when the instructor creates
a new exercise—students can work with the exercise.

In order to produce the diagnostics for a student-built model,
the Alignment between the student process model elements—
such as activities or gateways—and the annotations in the text
is computed. Then, this alignment is used to compare the
process model with the textual description in the Diagnostics
module. In the remainder of this section we describe the
aforementioned modules in detail.

A. Formalizing Annotated Textual Descriptions

Using natural language alone for the formal description of
process models has some drawbacks. On one hand, the lack
of structure in natural language text makes automatic analysis
more difficult. On the other hand, the inherent ambiguity of
written text makes it difficult to establish which parts of the
text are relevant to describe the process.

NLP tools are getting increasingly better at extracting
structure out of plain text. However, some ambiguities re-
main an open issue to this day. Furthermore, we argue that
some of these issues cannot be automatically solved reliably
enough, since they require extensive domain knowledge. For
instance, in the example from Fig. 4, the sentence ”The latter
[physician] is then responsible for taking a sample to be
analysed in the lab later” highlights two important sources
of ambiguity in the analysis of textual descriptions: (i) The
action analyse is described, but it may not happen until later
into the process, as hinted by the word later. Extracting this
kind of temporal relationships from textual descriptions is a
very complex task [31], with no good solutions in the context
of business processes. (ii) Depending on the purpose of the
process, the same analyze verb could actually be irrelevant
from an organizational point of view, if the lab were to be
considered an external entity. This presents an issue that cannot
be solved without deep understanding of the organization. This
is why in Fig. 7 we incorporate a stage on human annotation,
so that these ambiguities can be resolved.

In order to bridge the gap between the textual descriptions
and the formal process models, we introduce the concept
of Annotated Textual Descriptions (ATD). The goal of this
representation is to use text annotations, typically found in
the context of textual corpus labeling, to define a structured
representation of text that still benefits from the flexibility
and interpretability offered by natural language. Annotations
are used as an intermediate language, and are generated in
two steps: First, an automatic NLP tool generates a candidate
annotation. Afterwards, the annotations are refined by a human
(in our case, the instructor) to refine the annotation, e.g.,
discard unnecessary labels, or add missing or relevant details
using domain expertise.

Even though obtaining accurate annotations requires some
human intervention, our e-learning framework for self-
assessment still enables for automation, since the annotations
only need to be made once for an exercise, and from that
moment on, they can be used to correct any number of
proposed models for that exercise.

Formally, we can define an ATD as a 〈T,A,R〉 tuple, where
T is a string of characters representing the textual descrip-

tion.
A is a set of annotations. Each annotation α =
〈type, start, end〉 marks a relevant aspect of the business
process. The start and end integers mark the positions
of a substring of T, and the type is used to add semantics
to the annotation.

R is a set of triples 〈t, αi, αj〉 representing binary relations
of type t between pairs of annotations αi, αj

Next, we describe each of the annotation and relation types

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 7

G
en

er
at

io
n

of
 D

ia
gn

os
tic

s

S
tu

de
nt

In
st

ru
ct

or
M

od
el

 J
ud

ge
Create

Automatic
Annotation

Refine
Annotation

Compute
Alignment

Compute
Diagnostics

Textual
Description

Annotated Textual
Description

(partial)

Annotated Textual
Description

Analyze
Process Model

A partial model is
created

Process Model

Diagnostics

Receive
Diagnostics

Fig. 7. Overview of the Model Judge framework to support the creation of process models.

that we consider for ATDs. Table I shows an example of an
ATD which we will use for the remainder of this section.

1) Annotations: Annotations are used to mark an important
region of the text. In the case of ATDs we consider the
following types of annotations which directly map to some
well-known concepts in the context of business processes.

Action. The action annotation is used to represent the steps
of the business process model, which are often associated
with verbs. An example action would be placing (α1) an
examination order. Each action corresponds to a single
activity in the process model. We additionally allow to
specify an action as optional. The optional action annota-
tion is used to indicate that the associated action could be
elided from the process description without a substantial
change in its semantics. For instance, in the sentence ”the
patient can leave”, the action of leaving (α8) could be
considered as part of the process. However, that action
does not add a substantial amount of semantic value,
and thus can be considered optional. In our framework,
optional actions can be used by the instructor to allow
for a more flexible answer to the exercise, since both the
solution that contains the action and the one that does not
can be considered correct.

Role. The role annotation is used to represent the autonomous
actors involved in the process, like the outpatient physi-
cian (α5). Any mention of an entity that performs some
Action is considered a Role. Roles are associated with
swimlanes in business processes (see Fig. 6 (d)).

Business Object. The business object annotation is used to
mark all the relevant elements of the process that do
not take an active part in it, such as an examination
order (α6). In the business process, correspondences with
business objects are typically found in activity labels and
explicit elements such as data object references.

Condition. A condition annotation indicates a part of the
text that represents a pre-requisite for some part of the
process being executed, such as the patient being healthy
(α7). Conditions are typically associated with exclusive
gateways, their labels and their surroundings.

2) Relations: Relations represent binary relationships be-
tween annotations. In ATDs, we consider the following rela-
tions. Note that the terms agent and patient have been chosen
to highlight that the relations are consistent with the linguistic
definition of the sentence semantic roles, as typically seen in
linguistics (see Section IV).
Agent. A role is the agent of an action whenever the entity

represented by the role performs that action. For instance,
relation r1 tells us it is the physician who places some-
thing.

Patient. A role, or business object is the patient of an action
whenever it acts as the recipient of the action. Relation
r2 tells us that what is placed is an examination order
something.

Control Flow. The sequential, exclusive and parallel binary
relationships, which are borrowed from behavioral pro-
files [32], are used to indicate the order between actions
in the textual description. Due to the characteristics of
natural language text, there is an open world assumption
on the set of control flow relationships: Assuming an
absence of contradictions, everything that is stated as
relationship is enforced. However, no assumptions are
made on things that are not specified. In our example,
analyse (α2) is sequential (r3) to—i.e., happens before—
validates (α3)

Coreferences. A role is a coreference of another role when
they refer to the same entity. The coreference relation
forms a graph with one connected component per process
entity. All ocurrences of the ”patient” role in the example
text are coreferences. However, there are two different
”physician” roles in the text, the ”outpatient physician”
(α4, α5) and the ”physician of the lab” (α14), which form
two disconnected coreference graphs.

B. Alignment of Models and Annotated Texts

The goal of aligning a process model and a textual pro-
cess description is to identify correspondences between the
elements of the process model and parts of the textual process
description [12], [33], [34]. In particular, all elements that

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 8

Type Text Fragment
α1 action “an examination and follow-up treatment order is placed by the physician”
α2 action “is then responsible for taking a sample to be analysed in the lab”
α3 action “After receiving the sample, a physician of the lab validates its state”
α4 role “an examination and follow-up treatment order is placed by the physician”
α5 role “the female patient is examined by an outpatient physician”
α6 object “an examination and follow-up treatment order is placed by the physician”
α7 condition “decides whether she is healthy or needs to undertake additional examination”
α8 optional, “the patient can leave”

ending
α9 implicit “The patient is asked to sign an informed consent” (Added text)
α10 action “The required examination and sampling is prepared by a nurse”
α11 action “The required examination and sampling is prepared by a nurse”
α12 object “The required examination and sampling is prepared by a nurse”
α13 object “The required examination and sampling is prepared by a nurse”
α14 role “After receiving the sample, a physician of the lab validates its state”

Type αi αj

r1 agent α1 α4

r2 patient α1 α6

r3 sequential α2 α3

r4 coreference α4 α5

r5 patient α10 α12

r6 patient α11 α13

r7 fusionable α10 α11

TABLE I
EXAMPLE FRAGMENT OF ANNOTATED TEXTUAL DESCRIPTION WITH ANNOTATIONS (LEFT) AND RELATIONS (RIGHT)

describe the flow in a process model, i.e., activities, events, and
gateways, are aligned to (parts of) the sentences of a textual
process description. For instance, the sentence containing the
text ”... a delegate of the physician arranges an appointment
of the patient with one of the wards.” would be aligned with
the task ”Make Appointment” of the BPMN model. Similarly,
the gateway with the decision ”Patient Agrees ?” must be
mapped to the sentence If the patient signs an informed
consent ...”. This previous example clearly shows the challenge
of computing alignments when textual descriptions are not
annotated. Fig. 8 shows an example alignment for an initial
fragment of our running example.

The process starts when the

female patient is examined

by an outpatient physician,

who decides whether she is

healthy or needs to undertake

an additional examination.

In the former case, the

physician fills out the

examination form and the

patient can leave.

yes

P
hy
si
ci
a
n

H
os
pi
ta
l

Fill out
examination

form

Examine
Patient

Patient is
healthy?

Fig. 8. Alignment between annotated textual description and BPMN process
model.

In Model Judge, establishing the correspondence between
the annotations in the annotated textual description and the
elements in the business process model is necessary in order to
compute some diagnostics, such as the semantic-related ones.
The goal of this computation is to be able to assess which
parts of the process model have been correctly modeled by
the student, according to the textual description.

In this paper we extend our alignment framework presented
in earlier works [12], [34] by assuming that textual de-
scriptions are annotated. This assumption allows strengthening
some of the constraints in the algorithm by having the certainty
that information that comes from annotated texts is precise and

complete.
An overview of the details behind of our alignment tech-

nique can be seen in Fig. 9: (i) First, linguistic features from
the textual description and the process model are extracted to
map both representations into a canonical form in a Feature
Extraction step. During this step we extract high-level informa-
tion such as word senses (using WordNet) and semantic roles.
In order to do this, we apply the full NLP pipeline described
in Section IV-C. (ii) We can then use well-known similarity
functions such as the Jaccard Index or Cosine Similarity to
compare the feature vectors in the Similarity Computation
phase. (iii) After that, the similarity information is encoded in
an optimization algorithm, implemented as an Integer Linear
Program, to find a valid alignment which maximizes similarity.
(iv) Finally, in order to detect unnecessary activities, i.e.,
activities that are present in model but not in the text, we
use predictors, adapted from Van der Aa et al. [33].

We refer the interested reader to the aforementioned work
for a detailed description of the techniques.

C. Automatic Generation of Diagnostics

The core of our approach consists on the automatic gen-
eration of diagnostics. This computation uses the information
from the annotated textual description, the process model, and
the alignment between them. In this section we detail which
diagnostics are currently generated by our tool and how they
are computed.

1) Syntactic Diagnostics: A good process model should
have a clear and unambiguous control flow. Syntactic diag-
nostics identify common patterns that typically result in less
understandable and maintainable process models. Illustrative
examples for the presented syntactic errors can be found in
Fig. 10.
Gateway Reuse and Implicit Gateways. (Fig. 10, a and b)

Gateway reuse refers to a gateway that acts both as a
split (more than two ouptuts) and a join (more than
two inputs). Implicit Gateways exist when an activity
has multiple input or output flows. The semantics for
these two constructs are not clear and can lead to hidden
modeling errors. Because of that, avoiding gateway reuse

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 9

Textual process
description

Process model

1. Feature
extraction

2. Similarity
computation

Model-Text 
Alignment

3. Alignment
creation

4. Predictor-
based

Refinement

Fig. 9. Overview of alignment between textual descriptions and process models.

a) b)

c)

Fig. 10. Examples of several syntactic errors: Gateway Reuse (a), Implicit
Gateway (b), Non-natural Loop (c).

and implicit gateways is a well-known best practice in
business process models [6], [20], [35].

Non-Natural Loops. (Fig. 10, c) Due to their similarity, some
desirable properties of program’s control flow graphs are
also relevant in the context of process model diagrams.
Ideally, process models should contain only Natural
Loops. That is, there is only a single way to enter the
loop. We have observed non-natural loops are a common
pattern among novice students.

Soundness. A well-known desirable property of process mod-
els is soundness [36], which guarantees the process model
is free from livelocks, deadlocks, and other anomalies that
can be detected without domain knowledge.

Notice that the last two syntactic diagnostics can also be
applied to other languages, like Petri nets. The computation
of syntactic diagnostics only requires the process model,
and they can be implemented use well-known algorithms.
Particularly, checking the use of implicit gateways or gateway
reuse consists of a very simple structural check. On the other
hand, the presence of non-natural loops can be determined by
checking for cycles in the process graph after removing all its
back edges, computed from the dominator tree [37].

2) Pragmatic Diagnostics: Pragmatics in process modeling
can be described as the interpretability of the model, which
can be impacted by factors such as complexity, modularity,
secondary notation or activity labelling style [38]. It is that last
aspect of pragmatics that Model Judge is focused on. Process
model diagrams define a large portion of their semantics using

natural language. It is desirable to restrict the language to a
strict writing style (e.g, the verb-object rule in Mendling et
al. [20], G6), in order to avoid ambiguous phrasing [39]. A
simple and strict style is also important when considering au-
tomatic analysis of the process model language. For example,
while it is acceptable in the text to include the sentence: “The
latter is then responsible for taking a sample to be analysed
in the lab later”, having that sentence as an activity label
in the process model adds unnecessary complexity, since the
aim is to have label text to be as simple as possible, and not
contain details about the control flow of the process. A simpler
model label using the verb-object rule for the aforementioned
sentence would be “Analyse sample”.

Previous studies [39]–[42] have established the common
structures in label descriptions. However, these structures are
not always followed by novice students. Because of that, an
automatic detection of invalid writing styles is beneficial for
student self-improvement.

The approach we present for checking adherence to a
writing style is based on using a custom NLP parser for labels.
The core of this technique consists of parsing the labels with
a custom-made context-free grammar. This grammar is able
to recognise most label syntactic structures defined by Pittke
et al. and Leopold et al. [41], [42], and is built in such a way
that the root node of the parse tree will be labeled with the
identified writing style. For example, a label written in the
noun-action style will have this information reflected at the
root node of the tree. Parsing is then done as follows:

1) The n most likely part-of-speech (PoS) sequences of the
label are computed.

2) For each of the part-of-speech sequences, the label is
parsed using a chart parser with the aforementioned
context-free grammar.

3) If all the parse tree roots are found to have an undesired
style or none of the parse trees could be parsed by the
grammar, the label writing style is not correct.

For instance, let us consider the activity label sample
patient. The possible PoS sequences are 〈noun, noun〉 (i.e.,
a sample patient) and 〈verb, noun〉 (i.e., to sample a patient).
After trying to parse the text considering each sequence, we
see that the most likely sequence, 〈noun, noun〉, does not
match any valid label pattern. Thus, the second sequence is
chosen, which matches one of the valid action patterns. We
can then say that the label’s writing style is correct, while if
no valid pattern is found in any of the possible sequences, the
label is considered to have an incorrect style.

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 10

In our implementation, patterns of labels describing double
actions are also detected (e.g. Close Ticket and Inform the
Manager) and, in this case, the system suggests the student to
create two separate activities. It is worth noticing that this
technique can be adapted so any instructor can enforce a
label writing style in a flexible way, just defining a simple
grammar to detect label patterns, and accept or reject the labels
depending on the matched pattern.

Furthermore, this analysis helps avoiding common issues
with general-purpose NLP tools when faced with the kind of
text in business process models. For example, a general parser
lacks the necessary context to infer that activity labels should
always describe an action. As we can see with sample patient,
adding knowledge about the context of a sentence into the
parser solves the issue.

3) Semantic Diagnostics: A process model diagram has to
communicate the semantics of the underlying process in a clear
and unambiguous way. All the information provided has to be
correct, and in the right order. On the other hand, unnecessary
information introduces noise that can generate confusion.
Semantic diagnostics help enforcing these properties on the
process model.
Missing/Unnecessary activities. This problem arises when a

relevant activity of the process is omitted from the process
model or, symmetrically, when additional activities are
added which are either wrong or add no relevant infor-
mation. This can be caused by an oversight or a poor
understanding of the process being modeled.

Missing/Unnecessary Roles. When process models use role
information, such as swimlanes in BPMN, the same
diagnostics of missing and unnecessary roles can be
applied as well, to ensure all the relevant actors are
properly modeled.

Control-Flow Consistency. All the information in the pro-
cess model should be consistent with the control flow of
the process being described. For example, if the text states
that an activity A must happen before an activity B can be
executed, it is incorrect to model them as two separate
branches of a choice. If a temporal relation described
in the text is not accurately incorporated in the process
model, then a control-flow consistency violation would
be communicated to the novice modeler.

Semantic checks are concerned with the underlying process
semantics. Computing these diagnostics requires all the in-
formation from the annotated textual description, the process
model and the alignment.

To detect that an activity is missing from the process model,
the alignment information is used. Particularly, if there is
an action in the ATD with no correspondences from the
process model, the activity is missing from the process model.
The system can then inform the modeler by generating a
detailed error message using the annotated data from the
textual description.

Detecting unnecessary activities also relies on the align-
ment. In this case, there will be a process model activity
aligned to some text action. If the similarity between them
is low enough the activity is considered unnecessary, as there
is no good match for the activity in the text.

Coverage of roles is performed similarly to activities. In this
case, the similarity function is used to assess the similarity
between role annotations and the process model’s swimlanes.

Control flow validations have a preliminary implementation
using the predictor technique described in the aforementioned
prior work [12], [33]. However, there is still room for substan-
tial improvements in this regard.

VI. EVALUATION

The goal of this section is to provide an evaluation of the
Model Judge. More specifically, we aim at investigating the
following questions:
RQ1. Is the Model Judge perceived useful and accurate by

the students? This question is answered in Section VI-A;
RQ2. How are the Model Judge diagnostics and validations

associated with actual modeling errors? This question is
answered in Section VI-B1;

RQ3. How does the process of process modeling evolve over
time, when the Model Judge is available? This question
is answered in Section VI-B2.

To answer the above research questions, data from a mod-
eling session at the Technical University of Denmark (DTU)
was analyzed. During the modeling session 26 students were
asked to individually create a process model given a textual
description using the Model Judge (cf. Section II). There was
no time limit imposed. Students had a validation functionality
available during model creation. The diagnostics generated by
the validation functionality provided some indication about the
type of error (e.g., missing activity), but did not reveal the
exact source of the error. Moreover, Model Judge provides a
complete validation functionality offering more detailed diag-
nostic feedback. Students were instructed to use the complete
validation only at the end of the modeling process, once
they have completed the modeling. This way, during the
modeling students were incentivated to find out the reasons
why certain types of errors arised, without actually knowing
the exact errors. We believe this facilitates the learning process.
It is important to note that in our experimental setting the
conditions for having a control group were not met.

A. Subjective Perception (RQ1)

To answer RQ1 a survey was conducted at the end of the
modeling session. Students were asked to assess the valida-
tion and complete validation functionalities of Model Judge
in terms of perceived accuracy and usefulness. Moreover,
students were asked to write down any complaints and/or
improvement suggestions concerning Model Judge. Overall,
18 out of 26 students participated in the survey.

Fig. 11 shows the results of the survey: Our results demon-
strate that 67% (12 out of 18) found the validation function-
ality useful (i.e., strongly agree or agree). Similarly, 67% (12
out of 18) perceived the complete validation useful.

In terms of accuracy, 44% (8 out of 18) perceived the
validation functionality of the Model Judge as accurate (i.e.,
strongly agree or agree). For the complete validation the
agreement was with 56% (10 out of 18) slightly higher.

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 11

2

10

4

2

0
0

2

4

6

8

10

12

Strongly agree Agree Neutral Disagree Strongly
disagree

A
m

o
u

n
t

o
f

st
u

d
en

ts
The feedback provided by the validation helped me to improve

my model

1

7

6

4

0
0

1

2

3

4

5

6

7

8

Strongly agree Agree Neutral Disagree Strongly
disagree

A
m

o
u

n
t

o
f

st
u

d
en

ts

The feedback provided by the validation was accurate

3

9

3
2

1

0
1

2
3

4
5

6
7
8

9
10

Strongly agree Agree Neutral Disagree Strongly
disagree

A
m

o
u

n
t

o
f

st
u

d
en

ts

The feedback provided by the final validation was useful

2

8

5

2

1

0

1

2

3

4

5

6

7

8

9

Strongly agree Agree Neutral Disagree Strongly
disagree

A
m

o
u

n
t

o
f

st
u

d
en

ts

The feedback provided by the final validation was accurate

Fig. 11. Results of the student survey for the modeling courses. Each chart reports the results referring to a different question asked.

Additionally, it can be noted that the perceptions concerning
usefulness were better than for accuracy. This is supported
by the written feedback provided by the students. While in
general, students appreciated the support provided by Model
Judge, some students pointed out that the tool in did not
recognize all their process model labels. In addition, some
students stated that a more precise feedback would have
been useful (e.g., “I disliked the feedback [provided by the
validation functionality]. I could not know what was wrong,
just that something was.”.

Moreover, it can be noted that the complete validation
functionality is perceived as slightly more useful and accurate
when compared to the validation functionality. This is not
surprising, since the complete validation functionality provided
a more detailed feedback to the students.

In general, we can answer research question RQ1 partially
positively, i.e., Model Judge is perceived by the majority of
the students as useful but, concerning accuracy, the majority
agrees that just the complete validation is accurate.

B. Analysis of the Modeling Session Data (RQ2, RQ3)

To answer research question RQ2 and RQ3 we analyzed
the recordings of the modeling session.

Data Collection. For every student, we stored periodically
(every minute) information for the whole modeling session.
Additionally, information was also saved each time the user
performed a simple or complete validation. In particular, we
recorded a total of 1584 intermediate models for 26 students.
For the snapshots, we stored: (i) A unique user identifier;
(ii) The process model in BPMN (XML) format; (iii) The
timestamp of the snapshot; (iv) The type of information: auto-
matic, validation or complete validation; and (v) The validation
results of our tool for the particular process model. Note that

the validation results were computed for all snapshots, despite
the fact that the students only saw the ones they explicitly
requested.

The dataset used to answer RQ2 and RQ3 is available online
at the PADS-UPC research group website [43].

1) Association of the Tool on Diagnostics with Modeling
Errors (RQ2): In this section, we provide an answer to RQ2:
we analyze the association between diagnostics of the Model
Judge and actual modeling errors.

The actual modeling errors were derived based on the
evaluation criteria agreed by two researchers, a Ph.D student
and an associate professor affiliated to different institutions.
Both assessors have teaching experience in business process
management: The PhD student has contributed in the teaching
of the course for 2 consecutive years, while the associate
professor has been teaching the course for the past 7 years.
Additionally, both researchers are familiar with evaluating pro-
cess models derived by students. The criteria were set based on
the guidelines provided by the SEQUAL [44] and 7PMG [20]
frameworks. All the covered criteria have been discussed by
both assessors before proceeding with the evaluation of the
models.

We analyzed to what extent the provided diagnostics (iden-
tified by the Model Judge) are associated with modeling
errors (identified by manual inspections). In terms of model
diagnostics we considered: Davg = “Average number of bad
diagnostics during the modeling session,” Dend = “Number
of bad diagnostics at the end of the exercise” and in term
of modeling errors we considered: Em = “Errors as missing
activities,” Ec = “Errors in the organization of the control-
flow,” and Et = “Errors in the model semantics.”

Results, expressed as Spearman’s correlation tests, between
diagnostics and actual errors are reported in Table II. The

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 12

Davg Dend

Em Spearman’s ρ .502 .576
p-value .009 .002

Ec Spearman’s ρ .476 .569
p-value .014 .002

Et Spearman’s ρ .445 .520
p-value .023 .007

TABLE II
SPEARMAN’S CORRELATION TEST RESULTS BETWEEN DIAGNOSTICS

AND ACTUAL ERRORS

Davg Dend

Vs Spearman’s ρ -.724 -.763
p-value < .001 < .001

Vc Spearman’s ρ -.607 -.687
p-value < .001 < .001

TABLE III
SPEARMAN’S CORRELATION TEST RESULTS BETWEEN DIAGNOSTICS

AND NUMBER OF VALIDATIONS

correlation between the number of bad diagnostics and the
different errors are moderate and all significant. This suggests
that the Model Judge’s diagnostics is capable of approximating
to a certain extent the actual modeling errors.

Starting from the previous results, we additionally studied
the presence of correlations between the number of validations
performed by the students and the number of bad diagnostics
obtained. To that end, we computed a Spearman’s correlations
between Vs = “Number of validations,” Vc = “Number of
complete validations,” Davg (average bad diagnostics), Dend

(bad diagnostics by the end). Besides the obvious correlations
Vc ∼ Vs and Davg ∼ Dend, we also found significant and
strong negative correlations between the two pairs of variables,
as seen in Table III. This means that, as the number of
validations grows, the number of bad diagnostics decreases.

In another analysis, we correlated Vs (i.e., number of
validations) and Vc (i.e., number of complete validations) with
the number of modeling errors observed by the end: Em

(errors as missing activities), Ec (errors in the organization of
the control-flow), Et (total semantics mistakes). The results
are reported in Table IV and, as for the previous cases, all
correlations are significant as well as negative. This means that
as the number of validations grows the number of actual errors
decreases. Based on previous results, this should not surprise:
we already observed that diagnostics inversely correlate with

Vs Vc

Em Spearman’s ρ -.487 -.430
p-value .012 .028

Ec Spearman’s ρ -.576 -.547
p-value .002 .004

Et Spearman’s ρ -.457 -.441
p-value .019 .024

TABLE IV
SPEARMAN’S CORRELATION TEST RESULTS BETWEEN ERRORS AND

NUMBER OF VALIDATIONS

Fig. 12. Evolution of the diagnostic types for the modeling session.

the number of validations in (see Table III) and that diagnostics
and errors positively correlate (see Table II).

Finally, to answer research question RQ2, we can conclude
that both the diagnostics and the validation capabilities of
the Model Judge are associated with actual modeling errors.
In particular, there are correlations between Model Judge’s
diagnostics and actual errors. We also observed negative corre-
lations between the number of validations and diagnostics and
between number of validation and actual errors (which mean
that an increase in the number of validations is associated with
less errors).

2) Evolution of the Modeling Sessions (RQ3): The final
investigation we performed aimed at understanding how the
process modeling evolves when the Model Judge is available
(RQ3). For this, we analyzed after the modeling course ended
the collected snapshots with the goal to observe the evolu-
tion of the number of validation errors during the modeling
sessions. Note that, for this analysis, we considered individual
modeling sessions, with some students having performed more
than one session.

In a first investigation, we analyzed how the frequency of
different diagnostics varies during the sessions. Fig. 12 shows
the evolution of the average amount of diagnostics for all
students, per diagnostic type. To better observe the relative
behavior of each type, regardless of the amount of diagnostics
in the category, we plot the values relative to the maximum
of each category. We have encountered substantial differences
between diagnostic types. “Missing Activity” diagnostics de-
crease as the session advances, since less activities will be
missing as the modeling session progresses. “Unnecessary
Activity” and “Implicit Gateway” increase for the first half
of the session, then decrease. This behavior is consistent with
the fact that most students do not start using the complete
validation feature until the second half of the session. The
more detailed feedback of the complete validation then helps
them finding the more subtle errors in their process model.
The remaining diagnostic types have an oscillatory behavior,
but still increase for the duration of the session. This can be
explained by the fact that, as the modeling session progresses,
there is a greater chance of a student introducing an error
leading to one of these diagnostics. However, the drops after
75% progress could indicate that some students delay the
correction of these errors until the end of the modeling session.
This is in line with existing research that modelers differ in

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 13

Fig. 13. Density plot of the diagnostic lifetimes variable.

Fig. 14. Three characteristic behaviors observed in the modeling sessions. The
blue circles represent simple validations, while green squares denote complete
validations.

term of their validation behavior [45].
To get a deeper insight into the modeling session data,

we computed the lifetime of the diagnostics given to the
students. We define the diagnostic lifetime as the elapsed time
between the moment a student introduces a mistake in the
model, and the moment that mistake is corrected. Note that this
metric is independent of the validations made by the student,
since diagnostics are computed for all snapshots regardless of
the student used the validation function or not. The average
lifetimes follow a long-tailed distribution (Fig. 13). That is,
in the average case mistakes are quickly corrected by the
students. However, for a few cases, it can take a very long
time to solve those mistakes.

Finally, by manual inspecting the session data, we identified
some “modeling profiles,” i.e., typical approaches followed by
students while solving their modeling task. Fig. 14 shows a
representative for each of the identified profiles, when plotting
number of validation errors vs. time (in seconds) together with

simple and complete validations. Note that there are a few
outlier sessions that do not match any of the three profiles
shown. An instructor can obtain a good overview of the
students evolution by looking at these student’s plots. These
are the three profiles we identified: (i) The first group (on
top of Fig. 14) is composed of modeling sessions where stu-
dents frequently use the intermediate and complete validation
functions, and ended up with almost no bad diagnostics. This
group corresponds to 26.0% of the sessions; (ii) The modeling
sessions from the second group (in the middle of Fig. 14)
correspond to students who frequently use the validation,
however, they only check the complete validation at the end of
the session. The final amount of bad diagnostics for this group
is comparable to the previous one. This group corresponds to
59.3% of the students; (iii) The modeling sessions from the
third group (at the bottom of Fig. 14) correspond to students
who started working on the exercise but finished before fixing
the majority of bad diagnostics. We have observed that the
students in this group performed substantially less validations.
This group corresponds to 14.8% of the students.

In this section we answered RQ3 by examining how the
modeling sessions evolve when the Model Judge is used:
we observed the distribution of the diagnostics as well as
the density plot of the diagnostic lifetimes. Additionally, we
identified three typical modeling profiles that can be used
by instructors to gather some initial understanding on the
modeling approach followed by students.

VII. CONCLUSION

In this paper we provide both the framework and an
evaluation of the Model Judge. The framework is grounded in
the use of NLP techniques together with an algorithm to align
textual descriptions and graphical process models notations
such as BPMN.

Our experience of applying Model Judge in different uni-
versities shows that it can be easily incorporated in a modeling
course, where novice modelers can benefit from an environ-
ment that produces continuous support in the task of creating
a process model. As for instructors, they are able to better
support students by monitoring modeling sessions and easily
create new exercises to fit their needs.

As future work we plan to extend the capabilities of the
framework (multilingual support, expand the type and quality
of diagnostics, among others), and apply it in more courses so
that more conclusions can be drawn on the data gathered.

ACKNOWLEDGMENT

This work has been partially supported by MINECO and
FEDER funds under grant TIN2017-86727-C2-1-R.

REFERENCES

[1] M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers, Fundamentals
of Business Process Management, Second Edition. Springer, 2018, doi:
10.1007/978-3-662-56509-4.

[2] J. Krogstie, G. Sindre, and H. D. Jørgensen, “Process models represent-
ing knowledge for action: a revised quality framework,” EJIS, vol. 15,
no. 1, pp. 91–102, Dec. 2006, doi: 10.1057/palgrave.ejis.3000598.

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 14

[3] O. I. Lindland, G. Sindre, and A. Solvberg, “Understanding quality in
conceptual modeling,” IEEE Softw., vol. 11, no. 2, pp. 42–49, March
1994.

[4] J. Mendling, Metrics for Process Models: Empirical Foundations of
Verification, Error Prediction, and Guidelines for Correctness, ser.
Lecture Notes Business Inf. Process. Springer, 2008, vol. 6, doi:
10.1007/978-3-540-89224-3.

[5] M. Wynn, H. Verbeek, W. van der Aalst, A. ter Hofstede, and
D. Edmond, “Business process verification – finally a reality!” Bus.
Process Manage. J., vol. 15, no. 1, pp. 74–92, Feb. 2009, doi:
10.1108/14637150910931479.

[6] C. Haisjackl, P. Soffer, S. Y. Lim, and B. Weber, “How do humans
inspect BPMN models: an exploratory study,” Softw. & Syst. Model.,
vol. 17, no. 2, pp. 655–673, May 2018, doi: 10.1007/s10270-016-0563-
8.

[7] A. Kurnia, A. Lim, and B. Cheang, “Online judge,” Comput. &
Educ., vol. 36, no. 4, pp. 299–315, May 2001, doi: 10.1016/S0360-
1315(01)00018-5.

[8] M. Joy, N. Griffiths, and R. Boyatt, “The boss online submission and
assessment system,” ACM J. Educational Resour. Comput., vol. 5, no. 3,
p. 2, Sep. 2005, doi: 10.1145/1163405.1163407.

[9] A. Kosowski, M. Malafiejski, and T. Noinski, “Application of an online
judge & contester system in academic tuition,” in Advances Web Based
Learning - ICWL 2007, 6th Int. Conf., Edinburgh, UK, August 15-17,
2007, pp. 343–354.

[10] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback
generation for introductory programming assignments,” in ACM SIG-
PLAN Conf. Programming Language Design Implementation, PLDI ’13,
Seattle, WA, USA, June 16-19, 2013, pp. 15–26.

[11] J. Petit, S. Roura, J. Carmona, J. Cortadella, A. Duch, O. Giménez,
A. Mani, J. Mas, E. Rodrı́guez-Carbonell, A. Rubio, J. de San Pedro, and
D. Venkataramani, “Jutge.org: Characteristics and experiences,” IEEE
Trans. on Learn. Technol., 2017.

[12] J. Sànchez-Ferreres, H. van der Aa, J. Carmona, and L. Padró, “Aligning
textual and model-based process descriptions,” Data Knowl. Eng., vol.
118, pp. 25–40, Nov. 2018, doi: 10.1016/j.datak.2018.09.001.

[13] PADS-UPC Research group. PADS-UPC source code repository on
github. [Online]. Available: http://github.com/PADS-UPC

[14] J. Pimentel, E. Santos, T. Pereira, D. Ferreira, and J. Castro, “A gamified
requirements inspection process for goal models,” in Proc. 33rd Annu.
ACM Symp. Applied Computing, Pau, France, April 09-13, 2018. ACM,
pp. 1300–1307.

[15] D. Bogdanova and M. Snoeck, “Camelot: An educational framework for
conceptual data modelling,” Inf. Softw. Technol., Feb. 2019.

[16] D. Bogdanova, e. R. A. Snoeck, Monique”, D. Karagiannis, and
M. Kirikova, “Learning from errors: Error-based exercises in domain
modelling pedagogy,” in Practice Enterprise Modeling, Vienna, Austria,
October 31 - November 2, 2018. Cham: Springer Int. Publishing, pp.
321–334.

[17] B. Demuth and D. Weigel, “Web based software modeling exercises
in large-scale software eng. courses,” in 2009 22nd Conf. Software
Engineering Education Training, Hyderabad, India, 17-20 Feb. 2009,
pp. 138–141.

[18] H. Störrle, N. Baltsen, H. Christoffersen, and A. M. Maier, “On the
impact of diagram layout: How are models actually read?” in PSRC@
MoDELs, Valencia, Spain, September 28 - October 3, 2014, pp. 31–35.

[19] A. Burattin, M. Kaiser, M. Neurauter, and B. Weber, “Eye tracking
meets the process of process modeling: a visual analytic approach,” in
Int. Conf. Business Process Management. Springer, pp. 461–473.

[20] J. Mendling, H. A. Reijers, and W. M. P. van der Aalst, “Seven process
modeling guidelines (7PMG),” Inf. & Softw. Technol., vol. 52, no. 2, pp.
127–136, Feb. 2010, doi: 10.1016/j.infsof.2009.08.004.

[21] F. Meziane, N. Athanasakis, and S. Ananiadou, “Generating natural
language specifications from UML class diagrams,” Requirements Eng.,
vol. 13, no. 1, pp. 1–18, Sep. 2008.

[22] I. S. Bajwa and M. A. Choudhary, “From natural language software
specifications to UML class models,” in Enterprise Informagion Systems
- 13th Int. Conf., ICEIS, Beijing, China, June 2011, pp. 224–237.

[23] H. Leopold, J. Mendling, and A. Polyvyanyy, “Supporting process model
validation through natural language generation,” IEEE Trans. Softw.
Eng., vol. 40, no. 8, pp. 818–840, May 2014.

[24] F. Friedrich, J. Mendling, and F. Puhlmann, “Process model generation
from natural language text,” in Adv. Information Systems Engineering -
23rd Int. Conf., CAiSE 2011, Beijing, China, June 8-11, 2011, London,
UK, pp. 482–496.

[25] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic
schema matching,” VLDB J., vol. 10, no. 4, pp. 334–350, Dec. 2001.
[Online]. Available: http://dx.doi.org/10.1007/s007780100057

[26] U. Cayoglu, R. Dijkman, M. Dumas, P. Fettke, L. Garcı́a-
Bañuelos, P. Hake, C. Klinkmüller, H. Leopold, A. Ludwig5,
P. Loos, J. Mendling, A. Oberweis, A. Schoknecht, E. Sheetrit,
T. Thaler, M. Ullrich1, I. Weber, and M. Weidlich, “Report:
The process model matching contest 2013,” in Business Process
Management Workshops - BPM Int. Workshops, Beijing, China,
August 26, 2013, Beijing, China, pp. 442–463. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-06257-0 35

[27] C. Cabanillas, D. Knuplesch, M. Resinas, M. Reichert, J. Mendling, and
A. R. Cortés, “Ralph: A graphical notation for resource assignments in
business processes,” in Adv. Information Systems Engineering - 27th Int.
Conf., CAiSE 2015, Stockholm, Sweden, June 8-12, 2015, pp. 53–68.

[28] T. Allweyer, BPMN 2.0: introduction to the standard for business
process modeling. BoD–Books on Demand, 2010.

[29] L. Padró and E. Stanilovsky, “Freeling 3.0: Towards wider multilingual-
ity,” in Proc. 8th Int. Conf. Language Resources Evaluation, LREC 2012,
Istanbul, Turkey, May 23-25, 2012, pp. 2473–2479. [Online]. Available:
http://www.lrec-conf.org/proceedings/lrec2012/summaries/430.html

[30] P. Stenetorp, S. Pyysalo, G. Topić, T. Ohta, S. Ananiadou, and J. Tsujii,
“Brat: a web-based tool for nlp-assisted text annotation,” in Proc.
Demonstrations 13th Conf. European Chapter Association Computing
Linguistics, Avignon, France, April 23-27, 2012. Association for
Comput. Linguistics, pp. 102–107.

[31] P. Mirza, “Extracting temporal and causal relations between events,”
Ph.D. dissertation, Int. Doctorate School Inf. Communication Technol.,
Univ. of Trento, Via Calepina, 14, 38122 Trento TN, Italy, 2016.

[32] S. Smirnov, M. Weidlich, and J. Mendling, “Business process model ab-
straction based on behavioral profiles,” in Service-Oriented Computing.
Springer, 2010, pp. 1–16.

[33] H. Van der Aa, H. Leopold, and H. A. Reijers, “Comparing textual
descriptions to process models: The automatic detection of inconsisten-
cies,” Inf. Syst., vol. 64, pp. 447–460, Mar. 2017.

[34] J. Sànchez-Ferreres, J. Carmona, and L. Padró, “Aligning textual and
graphical descriptions of processes through ILP techniques,” in Adv.
Information Systems Engineering - 29th Int. Conf., CAiSE 2017, Essen,
Germany, June 12-16, 2017, pp. 413–427.

[35] V. Bernstein and P. Soffer, “Identifying and quantifying visual layout
features of business process models,” in Enterprise, Business-Process
Information Systems Modeling - 16th Int. Conf., BPMDS 2015, 20th
Int. Conf., EMMSAD 2015, Held at CAiSE 2015, Stockholm, Sweden,
June 8-9, 2015, pp. 200–213.

[36] W. M. P. van der Aalst, K. M. van Hee, A. H. M. ter Hofstede,
N. Sidorova, H. M. W. Verbeek, M. Voorhoeve, and M. T. Wynn,
“Soundness of workflow nets: classification, decidability, and analysis,”
Formal Asp. Comput., vol. 23, no. 3, pp. 333–363, Aug. 2011, doi:
10.1007/s00165-010-0161-4.

[37] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators
in a flowgraph,” ACM Trans. Program. Lang. Syst., vol. 1, no. 1, pp.
121–141, Jan. 1979, doi: 10.1145/357062.357071.

[38] C. Haisjackl, P. Soffer, S. Lim, and B. Weber, “How do humans inspect
BPMN models: an exploratory study,” Softw. & Syst. Model., vol. 17,
Oct. 2016.

[39] H. Leopold, S. Smirnov, and J. Mendling, “On the refactoring of activity
labels in business process models,” Inf. Syst., vol. 37, no. 5, pp. 443–459,
Jul. 2012, doi: 10.1016/j.is.2012.01.004.

[40] J. Mendling, H. A. Reijers, and J. Recker, “Activity labeling in process
modeling: Empirical insights and recommendations,” Inf. Syst., vol. 35,
no. 4, Jun. 2010.

[41] H. Leopold, R.-H. Eid-Sabbagh, J. Mendling, L. Azevedo, and F. Baião,
“Detection of naming convention violations in process models for
different languages,” Decis. Support Syst., no. 56, pp. 310–325, Jun.
2013.

[42] F. Pittke, H. Leopold, and J. Mendling, “Automatic detection and reso-
lution of lexical ambiguity in process models,” in Software Engineering
2016, Fachtagung des GI-Fachbereichs Softwaretechnik, 23.-26. Feb.
2016, Wien, Österreich, pp. 75–76.

[43] PADS-UPC Research group. Modeljudge modeling session dataset.
[Online]. Available: http://www.cs.upc.edu/∼pads-upc/ModelJudgeData.
zip

[44] J. Krogstie, Model-based development and evolution of Inf. systems: A
Quality Approach. Springer Sci. & Business Media, 2012.

[45] J. Pinggera, “The Process of Process Modeling,” Ph.D. dissertation,
Univ. of Innsbruck, Dept. of Comput. Sci., Innrain 52, 6020 Innsbruck,
Austria, 2014.

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES 15

Josep Sànchez-Ferreres is a Ph.D. student at Uni-
versitat Politècnica de Catalunya, studying the rela-
tion between natural language and formal business
process representations. His research interests in-
clude natural language processing, business process
management and process mining but also Machine
Learning and artificial intelligence. He has pub-
lished papers in international conferences in the field
(BPM, CAiSE).

Luis Delicado Luis Delicado recieved the M.S
degree in Computer Science mention in Computer
Graphics at Universitat Politècnica de Catalunya. His
research backgroud combines two different fields:
Business Process and Crowd animations, with his
role of Software developer inside and outside of
his research. He has different papers published at
international conferences in both fields (BPM, MIG).

Amine Abbad Andaloussi is a Ph.D. candidate at
the Technical University of Denmark. He received
his M.Sc. degree from the same university in 2018.
His main research is about the understandability of
business process models. With an academic back-
ground in computer science and strong research
interest in cognitive psychology, Amine investigates
the way end-users engage with business process
models in order to improve the understandability of
process modeling notations and enhance the existing
modeling tool-support.

Andrea Burattin is Associate Professor at the Tech-
nical University of Denmark, Denmark. Previously,
he worked as Assistant Professor at the same univer-
sity, and as postdoctoral researcher at the University
Innsbruck (Austria) and at the University of Padua
(Italy). In 2013 he obtained his Ph.D. degree from
University of Bologna and Padua (Italy). The IEEE
Task Force on process mining awarded to his Ph.D.
thesis the Best process mining Dissertation Award
2012–2013. His Ph.D. thesis has then been published
as Springer Monograph in the LNBIP series. He

served as organizer of BPI workshop since 2015, and special sessions on
process mining at IEEE CIDM since 2013. He is also in the program
committee of several conferences. His research interests include process
mining techniques and, in particular, online approaches on event streams.

Guillermo Calderón Ruı́z receives his Ph.D. in
Engineering Sciences in the field of Computer Sci-
ence from the Pontificia Universidad Catolica de
Chile in 2011. He is a principal professor in Uni-
versidad Catolica de Santa Maria in Arequipa-Peru,
he is also the Director of the School of Systems
Engineering since 2017 in the same university. He
also runs a software development center in the same
university developing projects for the organizations
in the southern of Peru. His research interest include
process mining, data science, business process man-

agement, business intelligence and information technology. He is member
of the IEEE Task Force on Process Mining, and he is also in the program
committee of several conferences.

Barbara Weber Barbara Weber is Professor for
Software Systems Programming and Development
at the University of St. Gallen, Switzerland. She
is Chair for Software Systems Programming and
Development and Director of the Institute of Com-
puter Science. Barbara’s research interests include
process model understandability, process of process
modeling, process flexibility, and user support in
flexible process-aware systems as well as neuro-
adaptive information systems. Barbara has published
more than 150 refereed papers, for example, in

Nature Scientific Reports, Information and Software Technology, Information
Systems, Data and Knowledge Engineering, Software and System Modeling,
and Journal of Management Information systems and is co-author of the
book “Enabling Flexibility in Process-aware Information Systems: Challenges,
Methods, Technologies” by Springer.

Josep Carmona received the M.S. and Ph.D. de-
grees in Computer Science from the Technical Uni-
versity of Catalonia, in 1999 and 2004, respectively.
He is an associate professor in the Computer Science
Department of the same university. His research
interests include formal methods and concurrent
systems, data and process science, business intelli-
gence and business process management, and natural
language processing. He has co-authored around
100 research papers in conferences and journals.
He received best paper awards at the Int. Conf. on

Application of Concurrency to System Design (ACSD 2009), at the Int.
Conf. on business process management (BPM 2013), and at the International
Symposium on Data-driven Process Discovery and Analysis (SIMPDA 2016).
He is the author of the book ”Conformance Checking: Relating Processes and
Models”, by Springer.

Lluı́s Padró is Associate Professor at Universi-
tat Poliècnica de Catalunya. His research area is
framed in artificial intelligence, specifically in nat-
ural language processing, and more particularly in
the development of language analysers (morpholog-
ical, syntactic, dependency, sense disambiguators,
semantic role labelers, named entity recognisers,
etc). He has published more than 100 papers in the
main conferences (ACL, ANLP, NAACL, EACL,
COLING, EMNLP, etc) and journals (Computational
Linguistics, Machine Learning, Journal on Language

Resources and Evaluation, etc) in the area. He has served as program commit-
tee for lead conferences and journals (ACL, EACL, EMNLP, ICML, JLRE,
Neurocomputing,. . .) He is the founder, administrator and main developer of
project FreeLing (http://nlp.lsi.upc.edu/freeling), an open-source suite offering
language analysis services in a variety of languages widely used both in
academy and industry.

