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Abstract. Process models provide a blueprint for process execution and an indispensable 
tool for process management. Bearing in mind their trending use for requirement elicita-
tion, communication and improvement of business processes, the need for understanda-
ble process models becomes a must. In this paper, we propose a research model to inves-
tigate the impact of modularization on the understandability of declarative process mod-
els. We design a controlled experiment supported by eye-tracking, electroencephalog-
raphy (EEG) and galvanic skin response (GSR) to appraise the understandability of hier-
archical process models through measures such as comprehension accuracy, response 
time, attention, cognitive load and cognitive integration.  

Keywords: Modularization, Understandability, Declarative process models, DCR 
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1 Introduction 

Process digitization begins with a set of process specifications, which are repre-
sented as process models and then implemented as part of a process-aware information 
system (PAIS). Process models serve both enactment and management purposes [1]. 
They provide a blue-print for process execution – but can also be used to elicit, com-
municate, and improve the quality of business processes. Designing understandable 
models is crucial for attaining these purposes. 

Processes are represented using languages from the imperative-declarative paradigm 
(for a literature review, see [2]). Imperative languages clearly depict the different exe-
cutions supported by the process, and this makes them relatively easy to comprehend. 
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However, their support is limited to rigid specifications, which is suitable for repetitive 
and structured processes, but not for ones where flexibility is an inherent requirement 
(e.g., knowledge-intensive processes). This need is satisfied by declarative languages, 
which allow flexible process specifications [1,3] but are difficult to understand [1]. 

The use of declarative languages results often in complex models, which are hard to 
interpret and maintain by humans. Comprehending the human cognitive processes im-
pacting the understandability of process models, paves the way toward the adoption of 
modeling practices, enhancing the comprehension of declarative models and thus sup-
porting their use for management purposes [4, 5]. In the field of cognitive psychology, 
existing research has shown the limited capacity of the human working memory [6]. 
Accordingly, this limited resource must be utilized in a way such that a reader can easily 
interpret the constraints of the model and extract the required information efficiently. 
Cognitive load is a common indicator of the use of working memory [7]. Whenever a 
reader is introduced to a process model, 3 types of load emerge: intrinsic load, extrane-
ous load and germane load [8]. Intrinsic load relates to the inherent complexity of the 
process, whereas extraneous load raises from the way the process is represented. Ger-
mane load, in turn, emerges from the effort invested by the reader to comprehend and 
reason about the model. While the intrinsic load is changing from one process to an-
other, the extraneous load can be reduced by refining the model representation, hence 
leaving more capacity for the germane load to emerge and thus an increased ability for 
the reader to comprehend the process model. 

Our research taps into the representation of process models. Considering the intrinsic 
complexity of processes and the different ways in which entangled constraints could 
interact in declarative models [9], readers can exceed their working memory capacity 
and thus limit their understanding of the model. Modularization could reduce the com-
plexity of process models by decomposing them into sub-processes. Modularization 
has been investigated in computer programming [10], conceptual modeling [11–13] 
and process modeling [4, 14-16]. With regards to declarative languages, a qualitative 
study [16] suggests that abstraction and fragmentation are two opposing forces affect-
ing the understandability of modularized process models expressed in the Declare lan-
guage [17]. Grounded in the theory of cognitive fit [18], we use local and global tasks 
to perceive the influence of abstraction and fragmentation. As part of our ongoing re-
search, we design a controlled experiment supported by eye-tracking, electroenceph-
alography (EEG) and galvanic skin response (GSR) to investigate end-users’ under-
standability through measures such as comprehension accuracy, response time, atten-
tion, cognitive load and cognitive integration. We study modularization in the context 
of declarative models expressed using the Dynamic Condition Response (DCR graphs) 
language [19]. We focus on this language in particular because of the availability of 
industrial-level tools [20] and a wide array of documented real-world applica-
tions [21,  23]. Section 2 presents the theoretical background, Section 3 introduces our 
research method, and Section 4 concludes the paper. 
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2 Theoretical Background  

Modularization and hierarchy. Modularization denotes the degree to which a system 
can be devised into independent, composable units [24]. Information hiding is a branch 
of modularization [24]. In computer programming, it denotes the distinction between 
the interface and the implementation of a system, which in turn allows refining the 
implementation without invalidating the interface. In that sense, an interface is seen as 
an abstraction of the implementation, allowing to reason about the system on a more 
abstract level [24]. The same principle holds with process models. Hereby, an interface 
is equivalent to a high-level model providing an overview of the process, while imple-
mentations are just like sub-processes describing the low-level details of the process. 
Information hiding is better supported through hierarchy. Dawkins [25] discusses the 
notion of “hierarchical reductionism”. He used hierarchy to organize complex systems 
into units, such that each unit of the hierarchy abstracts the details of its subsequent 
units (placed one level down in the hierarchy) and concretize the details of its former 
units (placed one level up in the hierarchy). In process modeling, hierarchical reduc-
tionism takes information hiding beyond a single abstraction level, making it possible 
to define sub-processes within a sub-process itself. 

Hierarchy was introduced to Declare in [16] and expanded upon in [26]. In DCR, 
different forms of decomposing models have been introduced [27–29]. For our study 
we focus on a special type of hierarchy referred to as single-instance sub-processes, 
where a sub-process is a non-atomic activity which contains embedded activities and 
constraints that need to be completed before the sub-process can execute [30], similar 
to what was done for Declare [16,26]. 
 
Impact of modularization. Modularization has been widely investigated in the litera-
ture [10–15]. However, its impact on understandability remains inconclusive and hard 
to generalize (for a systematic review, see [4]). Hierarchy is claimed to abstract the 
details in the process model and provide better means to cope with complexity [15,16]. 
The notion of complexity has been studied in the computer programming litera-
ture [31]. Structural complexity is among the different types of complexity identified 
in [32]. It denotes the complexity associated with the representation of the artifact (e.g., 
process model, source code). Structural complexity has been empirically investigated 
in model comprehension [33]. Using different representations, existing research has 
shown a significant impact of structural complexity on users’ cognitive load (e.g., [34]), 
comprehension accuracy and response time (e.g., [35]). 

Petrusel and Mendling [36] show that users do not typically focus on the entire 
model but rather limit their attention to only relevant parts of the model. In that vein, 
abstraction could presumably focus readers’ attention on relevant sub-processes. Atten-
tion has been investigated in model comprehension. More specifically, recent research 
has shown how different process representations guide readers’ attention towards the 
relevant parts of the model, and how increased attention accounts for comprehension 
accuracy [37]. 

Besides, increased modularization can cause fragmentation and thus requires the 
reader to continually switch attention between the sub-processes of the model, which 
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leads to the split-attention effect [16,38]. This effect happens when readers are required 
to distribute their attention between different sources of information (e.g., different sub-
processes) [8]. The split-attention effect can distract readers’ ability to focus on relevant 
aspects, which in turn requires investing additional mental effort when solving a 
task [8]. In model comprehension, research suggests that splitting the process control-
flow and the underlying business rules could presumably influence the reader compre-
hension accuracy, response time and cognitive load [39]. 

Additionally, the split attention effect requires the reader to mentally integrate the 
information extracted from the model sub-processes to understand the process. In 
model comprehension, recent research linked cognitive integration to comprehension 
accuracy [37]. In the same research, it has been shown that the visual associations ex-
hibited by readers when making sense of the different components of a model can be 
used as an indicator for cognitive integration. 
 
Impact of task type. The influence of task type on the comprehension of visual repre-
sentations has been shown in several contexts [40–43]. Following the cognitive fit the-
ory [18], a fit between the task type and the information exposed by the visual repre-
sentation (e.g., model) is associated with better performance. The impact of the task 
type has been widely investigated in model comprehension studies [40–43]. Vessey and 
Galletta [40] identified symbolic tasks (i.e., addressing discrete data values) and spatial 
tasks (i.e., addressing relationships in data) and proclaimed that tabular representations 
create better fit for symbolic tasks, while graphical representations make a better fit 
with spatial tasks. Likewise, Ritchi et al. [41] discerned schema-based tasks (i.e., can 
be solely completed from the model) and non-schema-based tasks (i.e., addressing as-
pects beyond the explicit information exposed in the model) and investigated the extent 
to which graphical and textual representations fit for different tasks. Dun and Grab-
ski [43], in turn, integrated the notion of localization introduced by Larkin and Si-
mon [42] and asserted that the more local the information allowing to solve a particular 
task, the better is the performance, making the distinction between local and global 
tasks a pertinent factor defining the understandability of visual representations. Build-
ing upon the tasks’ classification of Dun and Grabski [43], we consider the proposed 
distinction as a relevant dimension for model comprehension. 

 
Interaction between modularization and task type. In process modeling, the inter-
action between both factors has been raised in Zugal’s literature review [4]. The author 
suggested that hierarchical models are more efficient for solving local tasks than global 
tasks. However, he did not provide a clear theoretical understanding of how a fit be-
tween the task type and the model representation could affect understandability. To fill 
this gap, we turn to the theory of cognitive fit to explain how local and global tasks 
could indeed influence the comprehension of hierarchical process models. 

We postulate that modularization supports local tasks through abstraction: the pro-
cess is divided into sub-processes, and the task addresses specifications within a single 
sub-process, which in turn creates a good fit between the visual representation of the 
process and the task at hand. Conversely, modularization complicates global tasks due 
to fragmentation: the process is divided into sub-processes while the task requires 



5 
 

continuous integration of information from different sub-processes, causing a mismatch 
between the representation of the process and the task at hand. 

To further explore the interaction between modularization and task type, we refer to 
the discussion of structural integration by Gilmore and Green [44], which underlines 
that understandable representations are those where information can be easily located 
and transferred to working memory. Gilmore and Green [44] also showed that mental 
representations preserve some features of the used notation. Hereby, a hierarchical 
model would produce a more or less “structured” mental model compared to a flat 
model. Local tasks, in turn, could benefit from the structure of the mental model, which 
facilitates the retrieval and the transfer of information to working memory. Conversely, 
additional load could emerge when solving global tasks, as the reader is required to 
disregard the acquired structure and rather perceive the interplay between activities ly-
ing within different sub-processes. Herein, the imposed structure adds additional bur-
den to the reader. It is nonetheless worthwhile to mention that the mental model could 
also be affected by other factors such as background and experience, which could, in 
turn, pre-define the way the user acquires and incorporates new information.  

3 Research Method  

 
Fig. 1. Envisioned Research Model. T and O refer to the theoretical constructs (T) and their 
operationalization (O) respectively 

Research model. The theoretical background presented in Section 2 suggests that ab-
straction and fragmentation drive the understandability of modularized process models. 
Our research aims at providing empirical evidence supporting this proposition. Follow-
ing a 2x2 factorial design [45], we define Modularization (levels: modularized models 
versus flat models) and Task type (levels: local tasks versus global tasks) as two distinct 
factors. These factors are expected to impact the user understanding of the model. Un-
derstandability is a cognitive concept, created in the reader cognition and, thus, not 
directly tangible [34]. Eventually, it can be estimated only using indirect constructs. 
Aranda et al. [46] evoke difficulty (i.e., cognitive load), correctness (i.e., comprehen-
sion accuracy), and time (i.e., response time) as indicators of understandability. Moti-
vated by the existing literature on model comprehension [36,37,39], we additionally 
consider cognitive integration and attention. Our research model is summarized in Fig-
ure 1. 

Understandability

T: Comprehension 
accuracy
O: Answer correctness

T: Response time
O: Answering time

Dependent variablesIndependent variables

T: Modularization
O: Use of sub-processes

T: Task type
O: Local and global tasks

T: Cognitive load
O: NASA-TLX, GSR reading 
(mean SCL, event-related 
SCR features), pupil 
dilation,  EEG reading 
(theta, alpha and beta 
bands)

T: Cognitive Integration
O: AOI run count

T: Attention
O: Fixations count, 
fixations duration
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Following the theoretical foundations set in Section 2 and the requirements for a 

factorial design, we formulate our first main effect hypothesis as follows: 𝐻!: There is 
a significant difference in the understandability of modularized and flat process 
models, while we formulate our second main hypothesis as follows: 𝐻": There is a 
significant difference in the understandability of local and global tasks. In addition, 
we formulate our interaction effect hypothesis as follows 𝐻#: Modularized models are 
more understandable for local than for global tasks. 

The theoretical constructs depicted in Figure 1 are operationalized as follows. With 
regards to our independent variables, modularization is operationalized using modular-
ized models with sub-processes and flat models without sub-processes, while the task 
type is operationalized using local and global tasks. Local tasks are meant to make use 
of abstraction without being affected by fragmentation. They address local aspects re-
quiring to perceive the interplay between activities belonging to the same sub-process. 
In contrast, global tasks are designed to neglect abstraction and rather cause fragmen-
tation. They address global aspects requiring to perceive the interplay between activi-
ties belonging to different sub-processes. 

The dependent variables covered by our research model are operationalized using 
subjective, neurophysiological, behavioral and performance measures. To measure 
cognitive load, we use a subjective rating of cognitive load i.e., NASA-TLX [47]. In 
addition, we use a set of physiological measures. Namely, we rely on the GSR reading 
to extract skin conductance level (SCL, also know as tonic signal) and skin conductance 
response (SCR, also known as phasic signal) [48]. As measures, we compute the mean 
SCL (relative to the baseline) and extract event-related SCR features including number 
of peaks, peak amplitude, and area under curve [49]. Similar features are used to meas-
ure cognitive load of users when solving tasks with different levels of diffi-
culty [49,  50]. Moreover, we monitor pupil dilation through changes in pupil diameter 
across different tasks, which, in turn, is used to estimate cognitive load [51]. Further-
more, we perform a frequency-based analysis of EEG bands i.e., theta, alpha and beta 
powers [52] to track the changes in cognitive load. Our design also deploys behavioral 
measures. Based on the notions of fixation (i.e., the timespan where the eye remains 
still at a specific position of the stimulus [53]) and areas of interest (AOI, i.e., a group-
ing of fixations covering a specific area of the stimulus [53]), we use the AOI run count 
(i.e., number of entry and exists to AOIs [37]) to evaluate the participants’ cognitive 
integration, and we use fixations count and duration to measure attention. Moreover, 
we rely on performance measures such as answer correctness and answering time to 
analyze the participants’ comprehension accuracy and response time. 

 
Material. The material meant for the experiment comprises a set of information-equiv-
alent models represented with and without modularization and a set of local and global 
tasks allowing to test the impact of abstraction and fragmentation respectively. 

Based on the guidelines and recommendations in [54], we define a set of require-
ments addressing the design of models and tasks. By following these requirements, we 
aim at reducing the effects of the confounding factors threatening the validity of our 
study. 
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With regards to the models, the insights of Zimoch et al. [54] provide a good starting 

point to define a uniform visual layout applying to all process models. Herein, we care-
fully set up a layout where activities are oriented from left to right, depending on their 
likely order of execution. We also avoid crossing arrows as much as possible, ensure 
proper spacing between the model’s elements and name activities consistently. Besides, 
we address the complexity of the models to ensure that all of them have the same num-
ber of activities and deploy similar constraint patterns. Moreover, similar to [55], we 
use anonymized models (where activities are labeled with random letters) to avoid the 
influence of the domain. Last but not least, we append a legend describing the DCR 
semantics to all models, assuring that participants are able to interpret the DCR notation 
represented in the models.  

As for the design of tasks, we use local tasks addressing the interplay between activ-
ities within a single sub-process, and global tasks addressing the interplay between ac-
tivities located in different sub-processes. Within each task, we ask one question. We 
design questions to reflect the use of process models in practice. Similar to [5, 16, 44], 
we formulate questions addressing: the presence and absence of constraints in the 
model, order of activities and validity of process executions. We make dichotomous 
questions. Nevertheless, to reduce the chances of guessing answers, we ask participants 
to justify their answers verbally and allow them to skip answering questions which they 
are unsure about. 

To ensure that our models and tasks are representative, there are a couple of 
measures which we take into consideration. We design our models in DCR graphs that 
is a known declarative language with academic and industrial tool-support [20] de-
ployed by several private and public institution in Denmark1. Additionally, we rely on 
the recommendations of experts in DCR graphs to provide models covering a large sub-
set of constraint patterns which are frequently used in practice. As for the tasks, we 
build upon existing literature [5, 16, 44] and use different types of questions reflecting 
different scenarios where process models are used in practice. Similar to [44], the vari-
ety of our questions is not meant to predict differences between different types of ques-
tions, but rather to ensure that our findings could be generalized.  

We propose different manipulations to cover all the conditions where modularized 
and flat process models are used to solve local and global tasks. We group the models 
into sets. Each set 𝑆$ (𝑖 ∈ ℕ) is composed of (1) a Process 𝑃$ modeled in two variants: 
one modularized 𝑀$! and one flat 𝑀$" and (2) two tasks: one local 𝑇$# and one global 
𝑇$$. Combining models and tasks, each set contains the following: {𝑀$!𝑇$#, 𝑀$!𝑇$$, 
𝑀$"𝑇$#, 𝑀$"𝑇$$}. Afterwards, we group the sets into collections. Each Collection is com-
posed of 4 distinct sets, where the respective tasks within each set address presence, 
absence, order or execution questions. Figure 2 shows an example of a collection.  

 
1 see https://dcrsolutions.net 



8 
 

 
Fig. 2. Example of a collection 
 

Participants. Confounding factors related to the subjects of the study (i.e., participants) 
represent significant threats to validity if not handled correctly. Following the recom-
mendations in [54], we limit our study to novice participants with no or very limited 
experience with DCR graphs. Doing so, we ensure that the observed effects are due to 
our manipulations rather than personal factors associated with participants’ expertise. 
Moreover, we perform a screening of all participants checking their physical ability to 
participate in neuropsychological experiments. Furthermore, to guarantee that all par-
ticipants are equally trained, we provide a uniform and comprehensive familiarization 
to all participants, so they have the necessary background about the investigated theory 
and experiment procedure. By the end of the familiarization, we provide a short quiz to 
evaluate the technical aptitude of participants. 
 
Experiment design. We use a within-subject experiment design where each participant 
is exposed to all conditions. We motivate our design by the idiosyncratic nature of many 
eye-tracking, EEG and GSR measures [53, 56, 57] (i.e., each participant has her own 
baseline), which in turn requires a within-subject comparison of the different experi-
ment’s conditions. A possible threat to this design might be associated with a learning 
effect and fatigue during the experiment, which could influence the results of the 
within-subject comparison. To mitigate these effects, we randomize the experiment’s 
tasks, ensuring that participants receive tasks in different orders.  

To ensure a good data quality, we follow existing guidelines on collecting clean eye 
tracking [53], GSR [56] and EEG [57, 58] data. Before the experiment, a screening 
form (asking about age range, gender, proficiency in English, vision issues,  neurolog-
ical diseases e.g., epilepsy, attention disorder, handedness and allergies) is sent to check 
the participant’s physical ability to participate in neuropsychological experiments and 
obtain relative information allowing to determine the most suitable EEG cap size for 
her. Upon approval, an invitation is sent and information regarding what to avoid (e.g., 
mascara, eyelash extensions, reflective glasses, artificial hair products, hair pins and 
clips) are shared. In addition, we ask the participant to wash her hair and dry it com-
pletely prior to the experiment day. We prepare and set up electrodes in the EEG re-
cording cap, verify the light conditions and the temperature in the lab before receiving 
the participant. 

We start each experiment session with a familiarization and a quiz. Afterwards, we 
collect demographic and expertise information from the participant. Next, we seat the 
participant in front of the eye-tracking station comfortably by (i) adjusting the chair and 
the table to the participant’s preferences, while guaranteeing that the eye tracker can 
still capture her eyes, (ii) ensuring that feet are flat on the ground, and (iii) adjusting the 
lumbar support of the chair. Then, we place the EEG cap, and adjust the GSR electrodes 
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on the non-dominant hand. We instruct the participant to breathe normally, avoid chew-
ing and tensing her jaw, keep the hand with the GSR electrodes stable, not to move her 
head, and limit all other body movements. We calibrate the eye-tracking, GSR and EEG 
devices and check the quality of the different signals. To keep track of the participant’s 
verbal utterances (i.e., the justifications of her answers), we record the audio for the 
whole data collection part. 

 
Fig. 3. Data collection procedure 
 
The data collection is composed of a set of trials. During each trial, we show a grey 

rest screen for 1-2 minutes and collect new baseline measurements. Afterwards, we 
select a random task. Here, we display the model and respective question, and then 
collect the answer from the participant. Next, we display the same model and respective 
question again, but this time, we ask the participant to justify her answer. By doing so, 
we can differentiate the initial response time from the time used to justify the answer 
verbally. Finally, we provide the NASA-TLX questionnaire to obtain a subjective rat-
ing of cognitive load. Figure 3 depicts a BPMN [59] model summarizing the experi-
ment procedure. 
 

4 Conclusion  

This paper describes a research model aimed at investigating the impact of modular-
ization on the understandability of declarative process models. As future work, we are 
planning to concretize this model and report empirical evidence about the impact of 
local and global tasks on the understandability of hierarchical process models in DCR 
graphs. 
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