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Abstract

Online conformance checking comes with new challenges, especially in terms of
time and space constraints. One fundamental challenge of explaining the con-
formance of a running case is in balancing between making sense at the process
level as the case reaches completion and putting emphasis on the current infor-
mation at the same time. In this paper, we propose an online conformance check-
ing framework that tackles this problem by incorporating the step of estimating
the “location” of the case within the scope of the modeled process before con-
formance computation. This means that conformance checking is broken down
into two steps: orientation and conformance. The two steps are related: knowing
“where” the case is with respect to the process allows a conformance explanation
that is more accurate and coherent at the process level and such conformance in-
formation in turn allows better orientations. Based on Hidden Markov Models
(HMM), the approach works by alternating between orienting the running case
within the process and conformance computation. An implementation is avail-
able as a Python package and experimental results show that the approach yields
results that correlate with prefix alignment costs under both conforming and non-
conforming scenarios while maintaining constant time and space complexity per
event.
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Management

1. Introduction

Process mining is a research discipline that sits between Business Process
Management (BPM) and Data Science [1]. Traditionally, BPM focuses on pro-
cess models and the various aspects, e.g., design, execution, and optimization,
of business processes rather than dealing with the generated event data [2]. In
contrast, data-oriented analysis tends to look at particular decisions or patterns
and typically does not consider end-to-end processes [1]. Process mining con-
nects the two disciplines by adapting data-oriented analysis to improve processes.
Event data from the event logs of information systems, such as ERP (Enterprise
Resource Planning) systems (SAP, Oracle, etc.) and BPM (Business Process Man-
agement) systems (Pegasystems, Bizagi, Appian, BPM BPM, etc.), is used in pro-
cess mining as a starting point to “discover, monitor, and improve real processes”
[1].

There are three main areas in process mining [1]. First, process discovery
takes an event log and produces a model through different discovery algorithms
[3]. Second, conformance checking relates a process model with event data of the
same process to identify commonalities and discrepancies [4]. Third, enhance-
ment enriches an existing process model with information extracted from event
data [5]. In this paper, we focus on conformance checking. There are many rea-
sons for performing conformance checking. For example, conformance checking
can support the audit process of organizations so that they can strive towards Con-
tinuous Auditing [6]. Moreover, organizations might also want to know whether
their set procedures are meeting the requirements of reality. Through identifying
discrepancies between the recorded event data and the process model, confor-
mance checking can aid process re-design and modification of the BPM lifecycle
[2]. Lastly, conformance checking plays a key role in the other process mining
areas. For example, conformance checking is used to compare existing discovery
algorithms [7], to recommend discovery techniques [8], and to support discovery
algorithms [3, 9].

However, most existing conformance checking techniques require the trace of
events to correspond to a completed case. This means that these techniques target
offline scenarios and do not typically cater for online contexts where it is desirable
to raise alerts as soon as a significant deviation is observed for cases that have not
reached completion. Moreover, due to the continuous increase in recorded data,
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it can be infeasible for organizations to store data for offline processing. For
example, Wal-Mart is estimated to collect more than 2.5 petabytes of data every
hour from its customer transactions [10]. As such, in recent years, a new set
of algorithms [11, 12, 13] has been proposed for online scenarios in which we
assume to have an event stream as input so that each item relates to an observed
event for a case. In this paper, we propose a novel online approach which performs
conformance checking on an event stream with constraints on memory and time.

There are several works on online conformance checking [11, 12, 13], but
there still exists areas for improvement. For example, prefix alignments [11] and a
similar approach based on enriching a transition system using alignment concepts
[12] have difficulties handling warm start scenarios. Another approach [13] that
performs conformance checking on behavioral patterns can lose information due
to its abstraction.

In this paper, we present a framework based on Hidden Markov Models (HMM)
that balances between making sense at the process level as the case reaches com-
pletion and putting emphasis on the current information at the same time. As
new events come in for running cases, the model alternates between localizing
the running case within the reference model using the observed event and com-
puting conformance from such estimated position. Different to the assumption
of the standard HMM, both the previous state and observation can influence the
next state due to non-conformance. This is modeled by conditioning state tran-
sition and observation probabilities by both the previous state and observation.
Furthermore, rather than deciding beforehand the effects of non-conformance, an
Expectation-Maximization (EM) algorithm is applied to compute the parameters
from past data.

The remainder of the paper is structured as follows: Section 2 motivates the
need for the proposed framework. Section 3 presents the preliminaries of the pa-
per. Section 4 presents the proposed technique. Section 5 details the parameter
computation and estimation of the proposed technique. Section 6 presents the
experimental evaluation of the proposed technique. Section 7 illustrates the ap-
plication of the proposed technique on a real-life dataset. Section 8 presents the
related work. Finally, Section 9 concludes the paper.

2. Motivation

Consider the running example log and model in Figure 2 and Figure 1. It
presents the billing process of a hospital based on a real-life dataset [14]. As
shown by the process model, ideally, each instance of the process corresponds
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Figure 1: Running example: Petri net model

σ0 = 〈NEW, FIN, JOIN-PAT,RELEASE,CODE OK,BILLED〉,
σ1 = 〈NEW, FIN, JOIN-PAT,RELEASE,CODE OK,BILLED, STORNO,REJECT,BILLED〉,
σ2 = 〈NEW,CHANGE DIAGN, FIN, JOIN-PAT,RELEASE,CODE NOK,CODE OK,BILLED〉,
σ3 = 〈NEW, FIN, JOIN-PAT,RELEASE,CODE NOK,REOPEN〉,
σ4 = 〈NEW,CHANGE DIAGN, FIN,RELEASE,CODE OK,MANUAL,RELEASE,CODE OK,REOPEN,DELETE〉,
σ5 = 〈RELEASE,CODE OK,BILLED〉,
σ6 = 〈NEW, FIN,RELEASE,CODE OK,BILLED〉,
σ7 = 〈NEW, FIN, JOIN-PAT, SET STATUS, JOIN-PAT,RELEASE,CODE OK,BILLED〉

Figure 2: Running example: Traces

to the billing process of a particular patient. For example, trace σ0 in Figure 2
illustrates that after undergoing different medical services, these services are col-
lected in a billing package and the package is released so that the patient can be
billed. However, different scenarios can potentially occur during the process. For
example, an invoice has to be sent to the insurance company of the patient and the
invoice can potentially be rejected (REJECT) as shown by trace σ1.

Trace σ5 illustrates an example for which the trace is fully compliant with
the model if one considers that it is starting from the middle of the process at
the release of the billing package to the insurance company (RELEASE). This
is known as a warm start scenario in which we are observing an already ongoing
process instance. As mentioned in [13], alignment-based techniques such as prefix
alignments [11] would simply decrease the conformance values.

The behavioral pattern based approach presented in [13] is able to handle
such warm start scenarios. However, the proposed instantiation of using weak
ordering relations leads to a less robust approximation that might not detect some
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conformance issues. Trace σ7 presents conformance issues with activities FIN,
JOIN-PAT, and SET STATUS. However, the online framework using weak order-
ing relations would observe the following weak ordering relations: (≺,NEW, FIN),
(≺, FIN, JOIN-PAT), (≺, JOIN-PAT, SET-STATUS), (≺, SET-STATUS, JOIN-PAT), (≺
, JOIN-PAT,RELEASE), (≺,RELEASE,CODE OK) and (≺,CODE OK,BILLED). Since
all of the observed relations are compliant with the modeled weak ordering rela-
tions, the behavioral pattern based approach would yield perfect conformance,
completeness and confidence.

As such, while (prefix) alignment techniques are robust when evaluating full
traces and represents how conformance is understood in the literature, they cannot
handle the warm start scenario. Furthermore, their time and memory complexity
often exceed the requirement for stream processing.

To address both the need of putting emphasis in the current information and
being robust enough to detect conformance issues at the process level, our pro-
posed approach alternates between orienting the running process instance within
the process and conformance computation. As shown later in the paper, the ap-
proach represents process instances by a probabilistic estimation of their loca-
tions via states within the process model. This allows the framework to meet the
requirement for stream processing, handle warm start scenarios and detect confor-
mance issues that require evaluating the instance at the process level. For trace σ5,
our proposed approach would first orientate the trace to the middle of the process
with the observation of RELEASE so that conformance is computed with respect to
the updated location. Since the estimated location of a process instance is updated
with the incoming events, the previous execution of FIN and JOIN-PAT in trace
σ7 would update the estimated location of the trace so that the execution of SET

STATUS and an additional JOIN-PAT would not be compliant with the model.

3. Preliminaries

This section introduces basic concepts related to process models and event
stream. Processes are depicted using process models. There are many differ-
ent process modeling languages, e.g., the Business Process Modeling Notation
(BPMN), Event-Driven Process Chains (EPCs), Unified Modeling Language (UML)
Activity diagrams, Yet Another Workflow Language (YAWL) and others [2]. In
this paper, we assume that the model can be represented as a bounded Petri net
[15], possibly through a translation from other process modeling languages such
as transforming a BPMN model into Petri nets [16].
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Definition 1 (Petri net). A Petri net is a tuple N = (P,T,F) with P the set of
places, T the set of transitions, P∩T = /0 and F = (P×T )∪ (T ×P) the set of
arcs, which is sometimes referred to as the flow relation.

In the field of process mining, often times labeled Petri nets are used where
there is an additional labeling function l ∈ T 9 A that maps transitions to activity
labels a ∈ A. Figure 1 illustrates a labeled Petri net. As shown, transitions can be
either visible or invisible. Visible transitions are ones that can be mapped to an
activity label while invisible transitions cannot be mapped to any activity label and
is often simply mapped a τ label. A fundamental concept of the Petri net notation
is the idea of markings which denotes the state of a Petri net. A marking M is
a multiset of places, i.e., M ∈B(P). For example, the Petri net in Figure 1 has
a marking of [i], and is visualized by a single token in the place i. Furthermore,
firing enabled transitions can bring a Petri net from one marking to another. A
transition t ∈ T is enabled by a marking M if and only if each of its input places
contains at least one token in M. An enabled transition may fire by removing one
token from each of the input places and producing one token at each of the output
places. For example, firing the enabled transition t0 from marking [i] would yield
marking [p0].

This paper works on the problem of performing conformance checking on
streams of event data. Similar to [13], each unit of the stream corresponds to an
observable unit from which related process information can be extracted.

Definition 2 (Observable unit). Let C denote the set of case ids, and let A de-
note the set of activities. An observable unit o = (c,a) ∈ C ×A is a pair describ-
ing an activity a observed in context of case id c. The universe of all possible
observable units is defined as O = C ×A .

The activities of observable units correspond to observations of fired transitions
in the corresponding Petri net model. Projection operators can be used to extract
the case id and the activity, i.e., given o = (c,a), o�c= c and o�a= a.

Definition 3 (Event stream). Given the universe of observable units O = C ×
A , an event stream is defined as an infinite sequence of observable units: S :
N≥0→ O .

As such, an event stream can be seen as an unbounded sequence of observable
units for which the sequence order corresponds to the chronological order of the
corresponding events. For the rest of the paper, where it is clear that we are refer-
ring to an event stream of only one case, we will directly refer to the corresponding
activities rather than apply the projection operators for each observable unit.
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4. Proposed technique

The proposed technique is based on representing the conformance checking
scenario using a modified Hidden Markov Model (HMM). Given a process model
and a stream of events, the approach represents process instances by a probabilistic
estimation of their locations (state) within the process model and performs two
tasks per event: orientation and conformance. This online procedure is supported
by an offline component that is performed over past data as illustrated by the
diagram in Figure 3. In this section, we present the online procedure which is
initiated by an observable unit from the event stream, denoted by the grayed box,
and then passed onto the two tasks of orientation and conformance, denoted by
the subsequent three boxes.

Traverse reachability graph

Model
S

Accumulate
conforming behavior

Past data
L ∈ B(A∗)

Build conformance matrices

Estimate conforming
distribution parameters

Estimate non-conforming
distribution parameters

Compute current
forward probability αc(t)

Retrieve
αc(t − 1) or π

Event
(c, a) ∈ C × A at time t

Compute
conformance indicators

Offline Online

Figure 3: Overview of the proposed approach. The online component is presented in Section 4
and the offline component is presented in Section 5.

Given the natural connection between Petri nets and HMMs, we use markings
as possible states of a process instance. However, note that we can take further
approximations by partitioning the set of possible markings into a smaller set of
classes.

4.1. Overview
Algorithm 1 presents an overview of the online procedure. When a new ob-

servable unit comes in from the event stream (Line 2), it first goes through the
orientation phase. In this phase, either the previous state estimation or an initial
state estimation of the case is retrieved depending on whether the corresponding
case has been previously observed (Line 3). Then, state estimation is performed,
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taking into account the new information given by the new observable unit (Line
4). Afterwards, it moves onto the conformance phase where various conformance
indicators are computed (Line 5). Lines 2 – 5 correspond to the four boxes in the
previous flow diagram in Figure 3.

Algorithm 1: Overview of online conformance computation
Input: S: stream of observable units

1 forever do
2 (c,a)← observe(S) ; // New caseid-activity pair from the stream

// Phase 1: Orientation

3 statec← get either previous or initial state estimation(c);
4 statec← update state estimation(statec,a);

// Phase 2: Compute online conformance values

5 compute con f ormance indicators(statec,a);

4.2. Walk-through of an example
Here we walk through a case corresponding to trace σ6 in Figure 2 to give

some intuition. At the start of the case, one could assume that the case would
be at the initial marking ([i]) so that its initial state estimation is a one-hot vector
111[i] with n components where n corresponds to the number of possible locations.
Then, suppose we observe the first event (NEW). Clearly, this is described by the
model and corresponds to firing transition t0. This yields a perfect conformance
value. Similarly, the next event (FIN) puts the case at the state estimation of 111[p0]

(marking [p0] eventually enables activity FIN by firing invisible transitions) with
perfect conformance value.

Suppose we observe the next event (RELEASE). Clearly, this is not conforming
to the modeled behavior. To yield a plausible explanation for the non-conforming
behavior, we perform two tasks to estimate the current state. First, given the
previous event (FIN) and the assumption that it was perfectly conforming, the case
must be currently at marking [p8, p9]. Second, checking the possible observations
at marking [p8, p9] would tell us that RELEASE does not correspond to an enabled
transition. Incorporating both the state transition and the current event, we would
estimate that the current state to be at 111[p8,p9] and that the event is completely non-
conforming to the model. However, since the current observation is not described
by the modeled behavior, we can no longer rely on the model to estimate the next
state following the event (RELEASE).

Suppose we observe the next event (CODE OK). Similar to the previous event,
we first estimate its current state given its previous event (RELEASE) and confor-
mance. Since the previous conformance shows to be completely non-conforming
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new fin join-pat

release

release code ok billed

Figure 4: State estimation taken throughout trace σ6 in Figure 2. Line style indicates the con-
formance explanation of the corresponding execution where a solid line indicates complete con-
formance, a dotted line indicates complete lack of conformance, a dashed line indicates moderate
conformance, and a dash-dotted line indicates a possible model execution that non-conforming
observation might be referring to.

to the modeled behavior, we cannot use the model as the basis for the state esti-
mation. Instead, we assume to have a categorical distribution that estimates the
next state given the previous event and state. This distribution is learnt from past
data using a procedure that is presented later in the paper. Suppose that in the
past, there are similar cases which later turned out to have skipped the execution
of activity JOIN-PAT. This would encourage us to estimate the current state to be
at marking [p2]. Second, we incorporate the current event (CODE OK) in our esti-
mation. Since the transition corresponding to activity CODE OK is in fact enabled
at marking [p2], observing CODE OK reinforces our estimation of the current state
to be at marking [p2]. In contrary, if the observed event corresponds to activity
RELEASE, then we might reallocate some probability mass from marking [p2] to
marking [p1] rather than reinforcing our estimation on marking [p2]. In this case,
reinforcing our state estimation on marking [p2] yields a high conformance on the
current event (CODE OK). In fact, the following event BILLED will further confirm
our estimation.

Figure 4 illustrates the state estimations taken throughout the case. The line
style of the arrows indicates the conformance explanation of the corresponding
execution. For example, since we assume that the initial state is 111[i], the first event
(NEW) and the second event (FIN) is completely conforming with the modeled
behavior. In contrary, the third event (RELEASE) is completely non-conforming
since it skipped over the activity JOIN-PAT. As previously explained, the event
RELEASE brings the state estimation to allocate a high probability on marking [p2]
where the transition corresponding to activity CODE OK is enabled. This leads to
a value in between complete conformance and non-conformance. The last event
has a high conformance value since the corresponding transition is enabled at the
previous state estimation.
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4.3. HMM-based conformance checking
As previously explained, the current event and an estimation of the case’s

current state are required to compute the conformance of the current observation.
We define a conformance function as a mapping from a tuple of the current state
estimation and observation to a value between 0 and 1.

Definition 4 (Conformance function). Let Z denote the set of possible states.
conf : R|Z|×A→ [0,1] is a function that maps a state estimation and an activity
execution to a value between 0 and 1 so that a value near 0 indicates complete
non-conformance and a value near 1 indicates complete conformance.

For the model in Figure 1, conf(111[i],NEW) = 12 yields complete conformance
on the one-hot vector with 1 at the initial marking since transition t0 is enabled.

As recalled, we perform a state estimation each time we observe a new event.
Moreover, under perfect conformance, the current state is dependent solely on the
previous state. We extend this assumption to the scenario of non-perfect confor-
mance to meet the computational constraints of online processing. This means
that the chain of state estimations corresponds to a Markov chain. However, un-
der the scenario of non-perfect conformance, one cannot directly observe a case’s
state (hence the need for state estimations). Instead, the case’s state is hidden or
so-called latent so that we have to infer it from the observed events. The discrete
progression of cases and the dependence between states of different time steps
yields a modified HMM.

Definition 5 (HMM for conformance checking (HMMConf)). Let Z be a set of
latent states and let X be a set of observations. Let Wxk ∈ R|Z|×|Z| be a state-
transition probability matrix given observation xk ∈ X where 1 ≤ k ≤ |X |, V ∈
R|Z|×|X | be an emission probability matrix under conforming conditions and let
W d

xk
and V d be their counterparts under non-conforming conditions. Let conf :

R|Z|×A → [0,1] be a conformance function and let π ∈R|Z| be the initial state
distribution.

2111[i] is a one-hot vector with n components where n = 7 is the number of states in the reach-
ability graph of the Petri net in Figure 1. [i] is a multiset that denotes the state with 1 in 111[i]; all
other states has 0.

10



Latent Z1 Z2 Z3 Zt

X1 X2 X3 XtObserved

. . .

. . .

(a) HMM

Latent Z1 Z2 Z3 Zt

X1 X2 X3 XtObserved

. . .

. . .

(b) HMMConf

Figure 5: Graphical representation of a standard HMM and the proposed HMMConf

(Wx1, . . . ,Wx|X |,W
d
x1
, . . . ,W d

x|X |,V,V
d,conf,π) is a modified hidden Markov model

with states dependent on previous observations [17] so that:

P(xt |zt , . . . ,z1,xt−1, . . . ,x1) = P(xt |zt),1≤ t ≤ T (1)

P(zt |zt−1, . . . ,z1,xt−1, . . . ,x1) = P(zt |zt−1,xt−1),2≤ t ≤ T (2)

where T denotes the largest possible time unit which can be unbounded in the
context of an event stream.

Figure 5b presents a graphical representation of HMMConf. Compared with
the graphical representation of a standard HMM in Figure 5a, one can observe
that the difference between the two is in the extra dependency between the current
state Zt and the previous observation Xt−1. In a standard HMM, the current state
Zt only depends on the previous state Zt−1. In contrast, the current state Zt in
the proposed HMMConf depends on both the previous state Zt−1 and the previ-
ous observation Xt−1. Referring to trace σ6 in the running example in Figure 2,
suppose that X1 = NEW and z1 as the corresponding state, then the state Z2 can
computed directly using z1 for the standard HMM. However, as shown in more
detail later in the paper, calculating the state Z2 requires both the previous state
z1 and the previous observation X1 for the proposed HMMConf. As previously
explained, the latent states are the possible markings in the Petri net model and
the observations are the activities. We now present the state-transition probability
(Eq. 2) and the observation probability (Eq. 1).

Definition 6 (Conformance dependent state-transition probability). Let Wxk be
the state-transition probability matrix given observation xk ∈X where 1≤ k≤ |X |,
W d

xk
be the probability matrix for the deviating behavior, and ẑzzt−1 be an estimation

of the state at time t−1. Let i, j ∈ Z be latent states and let 1 ≤ k ≤ |X | indicate
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an observation.

wi, j(k) = P(Zt = j |Zt−1 = i,Xt−1 = xk)

≈ conf(ẑzzt−1,xk)Wxk,i, j +[1− conf(ẑzzt−1,xk)]W d
xk,i, j

This is an approximation of the latent state conditional probability because Wxk

is a substochastic matrix; the final marking of a Petri net corresponds to an ab-
sorbing state that does not transition to other states once it is reached. To simplify
the notations, we assume that the latent state and observation sets are ordered so
that members can be referenced by their indices. Also, z1:t ≡ z1,z2, . . . ,zt−1,zt .
Component i of the estimation of the previous state ẑzzt−1 is computed as P(Zt−1 =

i|X1:t−1 = x1:t−1) =
αi(t−1)

∑k αk(t−1) where αi(t−1) = P(X1:t−1 = x1:t−1,Zt−1 = i) is the
forward probability.

Definition 7 (Conformance dependent observation probability). Let V be the
observation probability matrix, V d be the probability matrix for the deviating be-
havior, j ∈ Z be a latent state, xk ∈ X be an observation such that 1 ≤ k ≤ |X |,
and ẑzzttt be an estimation of the current state.

v j(k) = P(Xt = xk |Zt = j)

≈ conf(ẑzzt ,xk)Vj,k +[1− conf(ẑzzt ,xk)]V d
j,k

Similar to the state-transition probability, an absorbing state does not emit any
observation so that typically not all the rows of V sum to 1. Component j of
the estimation of the current state ẑzzt is computed as P(Zt = j |X1:t−1 = x1:t−1) =
∑i wi, j(xt−1)αi(t−1)

∑k αk(t−1) .

4.4. Forward probability
To compute the previous and current state estimations, Definition 6 and Def-

inition 7 make use of the forward probability αi(t) = P(X1:t = x1:t ,Zt = i). This
is the joint probability of the latent state being i and having observed x1:t . Similar
to traditional HMMs, this can be computed recursively by taking advantage of
conditional independence using the conformance dependent state-transition prob-
ability, i.e., P(Zt |Zt−1,Xt−1), the conformance dependent observation probabil-
ity, i.e., P(Xt |Zt), and the forward probability from the previous time step, i.e.,
P(X1:t−1,Zt−1) as

P(X1:t ,Zt) = P(Xt |Zt) ∑
z∈Z

P(X1:t−1,Zt−1 = z)P(Zt |Zt−1 = z,Xt−1)
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Specifically, this is achieved by iterating over the all possible values of the
previous state Zt−1 and then using the chain rule to expand P(X1:t ,Zt ,Zt−1 = z) so
that

P(X1:t ,Zt) = ∑
z∈Z

P(X1:t ,Zt ,Zt−1 = z)

= ∑
z∈Z

P(Xt ,Zt |X1:t−1,Zt−1 = z)P(X1:t−1,Zt−1 = z)

= ∑
z∈Z

P(Xt |Zt ,X1:t−1,Zt−1 = z)P(Zt |X1:t−1,Zt−1 = z)P(X1:t−1,Zt−1 = z)

= ∑
z∈Z

P(Xt |Zt)P(Zt |X1:t−1,Zt−1 = z)P(X1:t−1,Zt−1 = z)

= P(Xt |Zt) ∑
z∈Z

P(Zt |X1:t−1,Zt−1 = z)P(X1:t−1,Zt−1 = z)

Note that P(Xt |Zt ,X1:t−1,Zt−1 = z) = P(Xt |Zt) because of the conditional in-
dependence as defined in Definition 5. This allows its extraction outside of the
summation since it is not dependent on the values of the previous state Zt−1. The
initial forward probability P(X1 = x1,Z1 = j) = π jv j(x1) is computed by multi-
plying an initial state estimation π j with the conformance dependent observation
probability of x1 given the initial state.

As previously mentioned, in online conformance checking, most cases might
not have reached completion. This means that monitoring their conformance does
not give a full picture. Similar to previous work [13], we include the concept
of completeness to indicate whether the entire trace has been observed since the
beginning.

4.5. Conformance metrics
Figure 6 graphically illustrate the two distinct aspects of conformance that

our proposed technique measures. Conformance is between the current observa-
tion and the state estimation of the corresponding case. Completeness indicates
whether we are observing the complete trace by looking at previous observable
units and the total injected distance [13]. Injected distance refers to the number of
states that are skipped so that a running case can be brought from its last observed
state to its updated state throughout its execution. This means that completeness
is inversely correlated with the total amount of injected distance.
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Process instance (c, a) · · ·

Latest observable unit

Based on the current observation and state estimation so far

Conformance

Based on previous observable
units and injected distance

Completeness

Previous observable units Future observable units
(not yet observed)

Figure 6: General idea of the two conformance indicators based on a running process instance:
conformance, completeness (based on a similar diagram in [13])

For example, trace σ0 in Figure 2 would have both perfect conformance and
completeness since it corresponds to a complete model trace in the model in Fig-
ure 1. In contrary, trace σ5 would yield a high conformance value but a low
completeness since it corresponds to a partial model trace that is missing in the
prefix of at least three activities (NEW, FIN and JOIN-PAT).

Ẑ1 Ẑ2 Ẑ3 Ẑ4 Ẑ5

new fin

release

code ok billed

completeness

injected portion

conformance

Figure 7: Metric breakdown projected onto the evaluation of trace σ6 in Figure 4. Same as Fig-
ure 4, line style indicates various conformance explanations.

We refer to trace σ6 of the running example in Figure 2 to provide some more
intuition. Figure 7 enriches Figure 4 with a breakdown of the different confor-
mance metrics. We can see that each state node is denoted by Ẑi and corresponds
to the state estimation at each time step. As before, suppose that we assume that
all cases should start at the initial marking, the state estimation Ẑ1 = 111[i] would
concentrate all the probability mass on marking [i]. Similarly, Ẑ2 = 111[p0] and
Ẑ3 = 111[p8,p9]. Due to the non-conforming event (RELEASE) and the following
event (CODE OK), the state estimation Ẑ4 concentrates all the probability mass on
marking [p2]. Inspecting the reachability graph of the model would tell us that
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the markings [p8, p9] and [p2] are not adjacent and are separated by another node.
This “injected distance” indicates that the observed sequence of events does not
correspond to a complete model trace. Moreover, for this particular state repre-
sentation of markings, an event should not bring the corresponding case’s state to
a non-adjacent state, the total injected distance can be normalized and inverted as
the completeness metric.

4.6. Algorithm for online processing
The procedure for online conformance computation is presented in Algorithm 2.

The algorithm requires a stream of observable units (cf. Definition 2), the HMM-
based model (cf. Definition 5), and a state distance matrix as input.

The algorithm has an infinite loop to process a stream of observations (lines 1
and 2). The whole procedure can be split into three phases: 1) updating the state
estimation of a case upon a new event, 2) computing conformance, and 3) entry
removals if the number of tracked cases is reaching maximum capacity.

For the first phase (Lines 3 – 10), we update the discrete time step of the case,
i.e., the case length, the forward probability, and the state estimation. Forward
probability is computed with respect to each latent state. If the new event is the
first observed event of the case, then the forward probability just corresponds to
updating the initial distribution using the observation probability. Otherwise, we
also need to account for the state-transition probability from each state of the
previous forward probability. The update state estimation then corresponds to
the normalized forward probability. For the second phase (Lines 11 – 18), we
compute three conformance metrics. The conformance of the observed event with
respect to its estimated state is computed in Line 11. Then, we use the modes
of estimated previous and current state (which are categorical distributions) to
update the total injected distance (Line 12 – 17). We assume that in a conforming
scenario, the two states should have a distance of 1 so that the observed event
corresponds to the firing of a transition that progresses the previous marking to an
adjacent marking in the reachability graph. To convert the total injected distance
into a completeness metric, we assume that the sum of the total injected distance
and the case length corresponds to the number of latent states traveled across
in the most likely latent state sequence so that completeness corresponds to the
proportion of latent states that can be mapped to observations (Line 18). The third
phase of the algorithm (Lines 19 – 20) removes the oldest entries due to the finite
amount of memory to cater possibly an infinite number of cases.
Suitability for online settings. The computational complexity of the infinite loop
is linear with respect to the stream size given the reference model as input. In
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Algorithm 2: Online conformance computation
Input: S: stream of observable units

M = (Wx1 , . . . ,Wx|X | ,W
d
x1
, . . . ,W d

x|X | ,V,V
d ,conf,π): HMMConf

D ∈R|Z|×|Z|: state distance matrix
1 forever do

// New caseid-activity pair from the stream

2 (c,a)← observe(S) ;
// Phase 1: update forward probability P(Zt = i,X1:t = x1:t)

3 time(c)← time(c)+1 ; // time(c) = 0 if a is the first event

4 for j ∈ Z do
5 if time(c) = 0 then
6 αc

j (time(c))← π jv j(a) ; // c denotes the caseid. See Definition 7

7 else
// atime(c)−1 is the activity observed at time(c)−1

8 αc
j (time(c))← ∑i∈Z v j(a)wi, j(atime(c)−1)α

c
i (time(c)−1) ; // See Definition 6 and 7

9 for i ∈ Z do
// P(Zt = i |X1:t = x1:t) =

P(Zt=i,X1:t=x1:t )
∑k∈Z P(Zt=k,X1:t=x1:t )

10 state(c, i)← αc
i (time(c))

∑k∈Z αc
k (time(c)) ;

// Phase 2: compute online conformance values

11 conformance(c)← conf(state(c),a) ; // See Definition 4

// Modes are used to compute injected distance

12 if time(c) = 1 then
13 ẑtime(c)−1← argmaxi∈Z πi ;

14 else
15 ẑtime(c)−1← argmaxi∈Z αc

i (time(c)−1) ;

16 ẑtime(c)← argmaxi∈Z αc
i (time(c)) ;

// inj(c) = 0 if a is the case’s first event

17 inj(c)← inj(c)+max{0,Dẑtime(c)−1 ,ẑtime(c) −1} ;

18 completeness(c)← time(c)
inj(c)+time(c) ;

// Phase 3: cleanup

19 if size of α and state is close to max capacity then
20 Remove entries of oldest cases
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phase 1, both the forward probability and state estimation corresponds to ma-
trix operations of vectors and matrices that have a fixed size given the reference
model. This means they can be computed in constant time for each event. Sim-
ilarly, all computations in phase 2 can be done in constant time given the ref-
erence model. Phase 3 can also be done in constant time using data structures
like LinkedHashMaps. The space required by the algorithm is bounded by the
maximum number of tracked cases. For each case, a vector of estimated state
and several metric values are stored. Since processing an event takes a constant
amount of time and space, the algorithm is suitable for online processing. Next,
we turn to the task of computing and estimating the model parameters of the pro-
posed technique.

5. Parameter computation and estimation

In the previous section, we presented the proposed technique and explained
how online conformance checking can be performed. This section presents the
parameter computation and estimation that are done offline on past data.

As previously presented, Figure 3 illustrates the dichotomy of the entire pro-
cedure where grayed boxes corresponds to data sources, dash lined boxes cor-
responds to parameter estimations, and solid lined boxes corresponds to other
computations. In the following, we present the various details of the offline com-
ponent, starting with the parameter estimation aspect. We note that this is for the
presented instantiation of the proposed technique where we use Petri net markings
to represent a case’s state in the process. The conformance matrix that is used for
the conformance function (cf. Definition 4) is computed by traversing the Petri
net model.
Computation of conformance matrix. By traversing the reachability graph G =
(V,E), we compute a matrix (ci j) ∈ R|V |×|A| so that cm,a = 1 iff it is possible
to observe activity a because either the corresponding transition is enabled at
marking m or if there is a sequence of enabled invisible transitions whose fir-
ings would lead to a marking m′ that enables the corresponding transition. For-
mally, ∀mi∈V ∀t∈{t ′∈T |l(t ′)∈A}cmi,l(t) = 1 iff ∃ j>i〈mi, . . . ,m j〉 s.t. (m j−1,m j) = t ∧
∀i≤q< j−1 l(mq,mq+1) = τ .
Computation of distance matrix. Similar to the computation of the conformance
matrix, we traverse the reachability graph G= (V,E) to compute a distance matrix
(di j)∈R|V |×|V | so that di j corresponds to the shortest path distance between nodes
vi and v j in G. Moreover, since invisible transitions are not observable in the event
log, edges e ∈ E that correspond to invisible transitions have weight 0. Lastly,
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there can exist node pairs that do not have a directed path from one to the other.
For these node pairs, we compute the shortest undirected path. Removing the edge
direction from G yields a connected graph since all markings are reachable from
the initial marking.
Parameters of conforming probability distributions. In the case where a case
is perfectly fitting with respect to the Petri net model, the corresponding marking
sequence is not hidden, i.e., the parameters can be directly estimated rather than
in an iterative manner using the EM algorithm. Standard replay techniques can be
used to yield compute the marking sequence. The remaining issue is therefore on
the firing of invisible transitions which cannot be mapped to an observed event.
For this, we assume that all firings of invisible transitions from the last recorded
marking is related to the current observation; this gives a consistent interpretation
even in the case of requiring the firing of invisible transitions at the initial marking.

As such, both the state-transition and emission probability distributions are
categorical distributions that describe the probability of transitioning to different
next states given the current state and the probability of observing a particular
activity given the current state respectively. The parameters can then be estimated
by normalizing the respective counts from the replay of the cases in the training
sets.

However, it is possible that not all of the modeled behavior has been observed
in the training set. We take a Bayesian approach to incorporate the knowledge of
all possible modeled behavior captured from the Petri net model into the distribu-
tions. Given that both distributions are categorical distributions, modeled behavior
can be added as pseudo counts by using a Dirichlet prior [18]. To accumulate the
pseudo counts, we traverse the reachability graph in the same manner as for the
conformance matrix. For simplicity and computation speed, rather than using the
full posterior distribution of the parameters, the expected values are used as point
estimates of the parameters. This corresponds to normalizing the parameters of
the Dirichlet posterior.
Parameters of non-conforming probability distributions. Following the pa-
rameter estimation of the conforming probability distributions, we now turn to
the more difficult task of estimating the parameters of the non-conforming state-
transition and emission probability distributions. This corresponds to finding pa-
rameters that maximize the likelihood of the observations given the parameters:

W d
x1
, . . . ,W d

x|X |,V
d = argmaxW d

x1
,...,W d

x|X | ,V
d P(x1:T ;W d

x1
, . . . ,W d

x|X |,V
d)

This is difficult to directly optimize because both the parameters and the corre-
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sponding latent states of the observations are free parameters with dependence.
Therefore, rather than direct optimization, the EM algorithm [19] is used. The
EM algorithm alternates between estimating the latent states (Expectation step)
and the matrix parameters (Maximization step) until the convergence threshold is
met.

At the Expectation step, we fix the current parameter estimates and together
with the observations, we compute the conditional probability of each observa-
tion being at the different latent states as Q(z1:T ) = P(z1:T |x1:T ;Wx1, . . . ,Wx|X |,V,
W d

x1
, . . . ,W d

x|X |,V
d). Then, at the Maximization step, we find new parameter esti-

mates that maximize the conditional expected log likelihood of both the observa-
tions and their latent states. Similar to a conventional HMM, we can set up and
derive closed form updates for the parameter estimates as follows:

logP(x1:T ) = ∑
z1:T

logP(x1:T ,z1:T )

≥∑
z1:T

Q(z1:T ) log

[
P(x1:T ,z1:T )

Q(z1:T )

]

= ∑
z1:T

Q(z1:T )

[
logπz1 +

T

∑
t=2

logwzt−1,zt (xt−1)︸ ︷︷ ︸
1

+
T

∑
t=1

logvzt (xt)︸ ︷︷ ︸
2

]
(3)

We can separately estimate the two variables of interest by focusing on the labeled
parts of Equation 3:

1. State-transition probability matrix of deviating behavior W d
a

2. Observation probability matrix of deviating behavior V d

W d
a,i, j =

∑
T
t=2 αi(t−1)wi, j(zt−1)v j(xt)β j(t) 1{xt−1 = a∧ conf(zzzt−1,xt−1)< 1}

∑
|Z|
j=1 ∑

T
t=2 αi(t−1)wi, j(zt−1)vi(xt)β j(t) 1{xt−1 = a∧ conf(zzzt−1,xt−1)< 1}

V d
j,a =

∑
T
t=1 1{xt = a∧ conf(zzzttt ,xt)< 1}α j(t)β j(t)

∑
T
t=1 1{conf(zzzttt ,xt)< 1}α j(t)β j(t)

β j(t) = P(Xt+1:T = xt+1:T | Zt = j,Xt = xt) is the backward probability for
state j at time t and is computed as β j(t) = ∑k∈Z vk(xt+1)w j,k(xt)βk(xt+1) with
base case β j(T −1) = ∑k∈Z vk(xT )w j,k(xT−1).

Next, we present the experimental evaluation of the proposed technique where
we performed a stress test and correlation test on existing dataset for comparability
with state of the art techniques.
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Figure 8: Performance during a stress test of ∼2 million events (see colored version online)

6. Experimental evaluation

For the sake of space and scope, we focus the evaluation on the conformance
checking results of the proposed model rather than its predictive capability. The
proposed approach is implemented in Python and can be found in the GitHub
repository3, along with further detail for reproduction. The experimental results
are open and publicly available 4.

6.1. Stress test
Similar to [13], we performed a stress test of our approach using the dataset

from the mentioned work so that the results are comparable. However, prepro-
cessing was necessary to filter out noisy events with randomly generated ac-
tivity names. After filtering, the event stream has 1,985,744 events5. The test
was performed on a standard machine, equipped with Python 3.6, an Intel Core
i7-4700MQ 2.40GHz CPU and 12GB of RAM. We allowed the model to track
10,000 cases at most.

Figure 8 presents the results. Space is measured as the object size of the model.
We can see that space is directly correlated with the number of cases after adding
on a fixed space for the parameters. Both the number of cases and total space used
reach a peak and remain stable at around 125k events when all 9,778 cases are
tracked. Since the state transition probability is not involved for the first event of
a case, the average processing time is particularly low for the first 125k events.
Then, time eventually stabilizes at ∼0.49 ms after 1M events. This test demon-
strates that the model can sustain a high load of events. As expected, the results

3https://github.com/jwllee/HMMConf/tree/Computing2019
4DOI will be requested after the acceptance of the manuscript. Meanwhile, they can be ac-

cessed at https://drive.google.com/open?id=1w_Lt6aPmbwHFgP6BPpy3Mel0_AGhGDK7
5Models and streams available in https://doi.org/10.5281/zenodo.1194057
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suggest that both processing time and memory usage are non-increasing with re-
spect to the number of events after reaching stability. However, it is significantly
slower than the average processing time of below 0.009 ms/event reported in [13].

While the computation time performance of the offline training does not im-
pact the online stream processing, we also performed a training time evaluation
of our approach using a training set consisting of 1000 randomly sampled cases
(193,712 events) from the same dataset. The EM algorithm was applied over the
training set for 10 iterations and the experiment was repeated 3 times. The train-
ing took on average 2334±6 (SD) seconds or ≈ 39 mins. The significant amount
of time required for training is expected since each EM iteration requires passing
through all the training data to update the parameter estimations.

6.2. Correlation with alternative conformance metrics
In this section, the cost based prefix alignment technique described in [11]

is used as a baseline for comparison. Since this is a more informative and well-
established technique, it is used as a baseline to evaluate the correlation of our
proposed approach with the conformance as understood in the literature. More-
over, it also provides a way to evaluate our approach against the behavioral pattern
based technique [13] since this technique also takes an approximation of the con-
formance as understood in the literature.

Similar to before, we make use of the dataset generated for the correlation test
in [13]. Given that the prefix alignment results were not available in the open
source dataset, we implemented prefix alignments using the Alignment package6

in ProM6 [20]. The alignments are then computed using the standard cost function
[21]. For each Petri net model, a 5-fold cross validation is performed on all the
traces so that the mean measurement is taken for each event. Moreover, for the EM
parameter estimation, we set the convergence condition as a tolerance threshold
of 5 in log probability difference or a maximum of 10 iterations. Since we know
that the traces can be non-conforming, an epsilon of ∼1e-5 (0.001%) is added to
all states of the initial distribution.

We compare the two techniques under the context of all results and only non-
conforming results as determined by alignment costs. Overall, we find that to-
tal injected distance is conceptually more similar to alignment costs. Figure 9
presents bubble plots where total injected distances are binned so that the y-axis
values are of the intervals’ mid value. Moreover, Figure 10 presents the Spear-

6https://svn.win.tue.nl/trac/prom/browser/Packages/Alignment
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(a) All results (b) Non-conforming results

Figure 9: Bubble plots of total injection distance (with epsilon mass at initial distribution) versus
incremental alignment costs

man’s rank correlation coefficient (ρ-value) between costs and the proposed met-
rics. Given that conformance computed by our approach is between the estimated
state and one event, we use the mean conformance for comparison. This means
that for a case of length k, the mean conformance is computed from k values.

Spearman correlation coefficienta

All Non-conforming

Behavioral pattern based [13]

Conformance 0.953 0.295

HMMConf

Mean conformance -0.470 0.252
Total injected distance 0.697 0.665
Completeness -0.712 -0.519

a
All results are statistically significant with two-sided p-value <0.001

Figure 10: Statistics comparing prefix alignment costs and three metrics

As shown in Figure 9a, the dataset is predominantly conforming. In fact, as we
will later show in the confusion matrix analysis, according to the prefix alignment
technique, only∼ 20% of the case prefixes are non-conforming. Referring to Fig-
ure 10, there is a ρ-value of 0.697 between total injected distance and cost. The
moderate positive correlation between the two is expected since higher costs im-
ply that a larger number of consecutive latent states are likely to be not adjacent in
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the reachability graph. In addition, the correlations between costs and mean con-
formance (-0.470) and completeness (-0.712) are also within expectations. For the
non-conforming results, visually, Figure 9b suggests that higher costs correlates
with larger total injected distance and this is supported by a ρ-value of 0.665. We
observe a similar result with the moderate negative correlation between costs and
completeness (-0.519). There is a low positive correlation between mean confor-
mance and costs (0.252). This is surprising as one would expect conformance to
be negatively correlated with costs. However, it is likely that the two metrics are
simply measuring different conformance qualities. The proposed approach’s con-
formance metric measures whether the observed event is conforming with respect
to the local position of the case while costs takes a global perspective in measur-
ing the cost of aligning the observed trace in an optimal manner. In comparison to
the previous work on a behavioral pattern based approach [13] which yielded a ρ-
value of -0.954 for the whole dataset and a ρ-value of -0.295 for non-conforming
results, the results suggest that our approach yields conformance results that are
closer to those provided by prefix alignments than the behavioral pattern based
approach under non-conforming scenarios. One of the reasons for the lower cor-
relation when considering the whole dateset is due to the differences at the lower
cost region. This is likely to be due to the fact that our approach handles warm
start scenarios by quickly orienting the case at the corresponding location in the
model rather than classifying events as log moves.

6.3. Conformance classification performance analysis
An important scenario in conformance checking is the classification of whether

a case is conforming or not. For this, prefix alignments can be treated as the
ground truth so that the conformance classification performance of alternative
metrics can be evaluated. Similar to the previous correlation analysis, we empha-
size that optimal prefix alignments are used as a baseline to evaluate the proposed
approach with respect to the conformance as understood in the literature. Fig-
ure 11 shows the confusion matrix of the proposed HMMConf’s performance. A
case is deemed to be conforming if the conformance of the current event >0.99
(to account for float imprecision) and has a total injected distance of 0. We find
that our approach has a precision of 0.992 and recall is at 0.863. This gives a
F1-score of 0.923, which is much better than 0.838, the F1-score of a stratified
dummy classifier.

In conclusion, we find that our approach yields results that correlate with pre-
fix alignments. In particular, the total injected distance metric has a moderate
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Non-conforming Conforming a

cost > 0 450794 17763
cost = 0 333356 2093647

a
conformance >0.99 and total injection distance is 0

Figure 11: Confusion matrices of the behavioral pattern based approach (Pattern) [13] and the
proposed approach (HMMConf)

correlation with alignment costs under both conforming and non-conforming sce-
narios. Moreover, differences between the two techniques can be adequately ex-
plained by the differences in treatment of both conforming and non-conforming
scenarios, as well as the limitations of our approach.

7. Real-life dataset evaluation

We also perform an evaluation on a real-life dataset - hospital billing event
log [14]. One focus is to illustrate its applicability in the current real life context
where often times there is no available normative process model corresponding to
the event data.
Preprocessing and model construction. Given that the event log spans over four
years from 2012 to 2016, during which it can be shown that the process went
through concept drifts, we filtered the event log to only contain cases that started
at 01-01-2013 and after. Moreover, since our focus is on tracking the conformance
of cases over the course of their executions, it is easier to highlight this aspect by
looking at cases that have more than just a few events. We perform our final filter
to only include cases that have 10 or more events. The final event log contains
2992 cases and 630 trace variants. As previously mentioned, it can be difficult
to find a normative process model in the current real life context. One possible
solution is to construct a process model from the observed data as a proxy of the
underlying process. Here we assume that the underlying process is composed of
the most frequent trace variants. Figure 13 shows that most of the cases belong to
only a few trace variants. In fact, there are only 10 trace variants with more than 50
cases and in total there are 1717 cases associated with these 10 trace variants, i.e.,
they make up for more than 50% of the event log. We then created a handmade
model that permits the 10 trace variants as shown in Figure 12. Overall, there
are two main parts to the process: the billing goes through an approval process to
yield a code before getting billed.
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Figure 12: Petri net model extracted from 10 most frequent trace variants

Figure 13: Distribution plot showing concentration of cases on a few trace variants

Experiment setup. We used a k-fold cross validation approach to evaluate the
model where k = 5 and stratified sampling is used over the variant category of the
cases so that the training set has a similar distribution as the overall dataset. For
the training of the proposed model, a maximum of 10 iterations is set for the EM
algorithm.

One interesting challenge is that the process model only has 12 visible tran-
sitions and does not include all 17 possible activities since some of the activities
are not included in any of the 10 trace variants. We assumed that in real life we
are able to know the set of possible observable activities beforehand so that these
unmodeled activities can be incorporated into the observation variable set of the
probability distributions and conformance matrix. Note that an even weaker as-
sumption of not knowing the set of possible activities can be taken by adding a
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wild card activity into the observation variable set so that all unmapped activities
are mapped to this wild card activity.
Result analysis. Overall, we find that the data have high conformance. This is
expected since the model captures > 50% of the observed behavior on a trace
level. Inspecting the results on an activity level identifies specific conformance
problems.

(a) Distribution plot of average conformance
per case

Fold no. Conformance Total injected distance Completeness
mean std mean std mean std

1 0.930 0.233 0.172 0.528 0.985 0.045
2 0.947 0.205 0.119 0.420 0.990 0.035
3 0.951 0.198 0.108 0.389 0.991 0.033
4 0.834 0.330 0.475 1.153 0.966 0.075
5 0.944 0.211 0.145 0.480 0.988 0.040

All 0.901 0.269 0.267 0.817 0.980 0.057

(b) Test set statistics of conformance metrics

Figure 14: Experiment results on case level

Table 14b presents the mean and standard deviations of the test set confor-
mance results. We can see that with the exception of the fourth test fold to some
extent, all of the results are quite similar. This is expected since a stratified sam-
pling approach was taken to create the cross validation data partition. The results
show that generally the data is conforming and the injected distance is quite low.
However, the standard deviation is somewhat high. Figure 14a shows the distri-
bution plot of the average conformance per case. It shows two pronounced peaks:
one at 1.0 and the other at 0.9. In fact, 1534 cases resulted with an avg. confor-
mance of large or equal to 0.99 and 1173 cases resulted with an avg. conformance
within the interval of [0.80,0.99).

Next, we analyze the results from the activity perspective. Figure 15 shows a
violin plot of events which have a conformance value lower than 0.99, i.e., non-
conforming events. It shows that the conformance values are distributed with
multiple modes. This is actually due to the nature of the conformance issues in
the data. For most of the non-conforming cases, the problem is in having “ex-
tra” activity executions that are not modeled. This means that either an activity
is observed while the case is at the “wrong” location within the process or that
a series of previous non-conforming observations had caused uncertainty in the

26



Figure 15: Violin plots of the conformance per activity for non-conforming events

state estimation but most of the probability mass is at the “correct” location for
the current observation. Analyzing the specific shapes of the plots can even point
out the particular conformance problem. For example, looking at the plot shapes
of the activities CODE OK and CODE NOK shows that for the non-conforming
observations, observations of CODE OK generally have high conformance and ob-
servations of CODE NOK generally have low conformance. Inspecting the cases in
the event log shows that there are 77 cases where there is a string of one or more
events with CODE NOK that ends with CODE OK before moving onto a different
part of the process. In contrary, there is only 1 case where an event of CODE OK

is followed by CODE NOK and even in this case, the event corresponding to CODE

NOK ultimately ends with CODE OK.

8. Related work

There are many offline conformance checking techniques, e.g., alignment-
based techniques [21, 22, 23, 24, 25, 26, 27, 28, 29], behavioral profile techniques
[30], token replay based techniques [31, 32], and HMM techniques [33]. This
work differs from [33] in that the state-space of the model is used as the latent
variable set and both the previous state and observation are used to estimate the
next state. In addition, the EM algorithm is used to estimate the state-transition
and observation probabilities under non-conforming scenarios. For online confor-
mance checking, we discuss three recent works. Prefix alignments are presented
in [11] to provide alignment explanations for possibly ongoing cases. However,
alignment computations can take a long time and also the technique cannot handle
warm start scenarios. Another approach is to pre-compute possible deviations on
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top of the model behavior [12]. There is some similarity between the proposed
approach and [12] in that we try to keep track of the state of a running case. But
rather than deciding how non-conformance should be handled beforehand, the EM
algorithm is used to estimate the necessary parameters. Lastly, [13] transforms an
event stream into a stream of behavioral patterns and checks whether the observed
patterns are conforming. This approach takes a strong abstraction to trade for run
time efficiency. It also proposed a breakdown of conformance in an online con-
text into three aspects: conformance, completeness, and confidence. This idea
was brought into our approach as: conformance and total injected distance.

9. Conclusion and future work

In this paper we presented an approach to perform conformance checking on
a stream of events against a reference model. The approach alternates between
updating the state estimation of a running case and computing its conformance
with respect to the updated state. To model the behavior of a process under both
conforming and non-conforming scenarios, the approach modifies a conventional
HMM so that both the state estimation and observations are used to estimate the
next state. Similar to a recent work [13], to measure different aspects of confor-
mance, the approach includes three different metrics: conformance, total injected
distance, and completeness. The proposed approach is implemented as a Python
package and has been verified through a stress test, a comparison with prefix align-
ments, and a real-life dataset. As future work we plan to address the limitations
identified in the paper as well as to further develop the approach. This includes
investigating ways to abstract from using markings as latent states for efficiency
and other constructs to model behavior in the presence of non-conformance, e.g.,
decomposition techniques [34]. Moreover, we plan to conduct further experimen-
tal evaluation of the proposed approach against other state of the art techniques.
For example, while the proposed approach is compared with the behavioral pat-
tern based approach through correlation analysis, it would be interesting to extend
the conformance classification performance analysis to include the behavioral pat-
tern based approach. Furthermore, we plan to investigate and evaluate the effects
brought by the parameter approximation of the conforming probability distribu-
tion using expected values rather than the full posterior distribution.
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Appendix A. Hospital billing example

Table A.1: Activity description of the hospital billing event log taken from [35]

Activity Description

NEW A new billing package is created.
FIN The billing package is closed, i.e., it may not be changed anymore.
RELEASE The billing package is released to be sent to the insurance company.
CODE OK A declaration code was successfully obtained.
BILLED The billing package has been billed, i.e., the invoice is sent out.
CHANGE DIAGN The diagnosis that the billing package is based on was changed.
DELETE The billing package was deleted.
REOPEN The billing package was reopened, i.e., additional medical services may be added or existing services removed.
CODE NOK The declaration code was obtained with an error message.
STORNO The billing package was canceled.
REJECT The invoice sent to the insurance company was rejected.
SET STATUS The status (i.e., new, closed, etc.) was manually changed.
EMPTY The billing package is declared empty.
MANUAL The billing package was manually changed from a non-standard system.
JOIN-PAT The billing package was joined together since they refer to the same patient.
CODE ERROR The declaration code could not be obtained.
CHANGE END The projected end date of the billing package was changed.

Appendix B. Parameter estimation

Here we detail various parts of the proposed approach.

Appendix B.1. Forward probability (prior to observation update)
Let P(X1:t−1,Zt) be the desired forward probability prior to update from the

current observation Xt at time t. We show that it can be computed using the con-
formance dependent state-transition probability, i.e., P(Zt |Zt−1,Xt−1), and the for-
ward probability from the previous time step, i.e., P(X1:t−1,Zt−1), as

P(X1:t−1,Zt) = ∑
z∈Z

P(X1:t−1,Zt−1 = z)P(Zt |Zt−1 = z,Xt−1) (B.1)

P(X1:t−1,Zt) = ∑
z∈Z

P(X1:t−1,Zt ,Zt−1 = z)

= ∑
z∈Z

P(X1:t−2,Xt−1,Zt ,Zt−1 = z)

= ∑
z∈Z

P(Zt |X1:t−2,Xt−1,Zt−1 = z)P(X1:t−2,Xt−1,Zt−1 = z)

= ∑
z∈Z

P(Zt |Xt−1,Zt−1 = z)P(X1:t−1,Zt−1 = z)
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Appendix B.2. State-transition probability matrix
Here we detail the closed form update of the non-conforming state-transition

probability matrices. As recalled from Section 5, the goal is to find parameters that
maximizes the expected log likelihood with respect to all latent state sequences
with a constraint on their sum.

maximize
W d

a,i, j

∑
z1:T

Q(z1:T )

[
T

∑
t=2

logwzt−1,zt (xt−1)

]

subject to
|Z|
∑
j=1

W d
a,i, j = 1

While the matrix is substochastic where a case does not transition to another state
once the final state is reached, deviating behavior might actually transition a case
from the final state. We construct the Lagrangian:

L (W d
a,i, j) = ∑

z1:T

Q(z1:T )

[
T

∑
t=2

|Z|
∑
i=1

|Z|
∑
j=1

|A|
∑
a=1

1{zt−1 = i∧ zt = j∧ xt−1 = a∧ conf(zzzt−1,xt−1)< 1}

logwzt−1,zt (xt−1)

]
+
|A|
∑
a=1

|Z|
∑
i=1

λa,i(1−
|Z|
∑
j=1

W d
a,i, j)

Similar to before, taking the partial derivatives and setting them to zero with re-
spect to W d

a,i, j and λa,i yield the parameter estimation:

∇W d
a,i, j

L (W d
a,i, j)

= ∇W d
a,i, j

∑
z1:T

Q(z1:T )

{
T

∑
t=2

|Z|
∑
i=1

|Z|
∑
j=1

|A|
∑
a=1

1{zt−1 = i∧ zt = j∧ xt−1 = a∧ conf(zzzt−1,xt−1)< 1}

log
[
conf(111i,a)Wa,i, j +(1− conf(111i,a))W d

a,i, j

]}
+
|A|
∑
a=1

|Z|
∑
i=1

λa,i(1−
|Z|
∑
j=1

W d
a,i, j)

= ∑
z1:T

Q(z1:T )

[
T

∑
t=2

1{zt−1 = i∧ zt = j∧ xt−1 = a∧ conf(zzzt−1,xt−1)< 1}

1− conf(111i,a)
conf(111i,a)Wa,i, j +(1− conf(111i,a))W d

a,i, j

]
−λa,i = 0
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We only need to update W d
a,i, j when conf(111i,a) = 0 (note that an activity is either

conforming or non-conforming to a given state), in which case:

= ∑
z1:T

Q(z1:T )

[
T

∑
t=2

1{zt−1 = i∧ zt = j∧ xt−1 = a∧ conf(zzzt−1,xt−1)< 1} 1
W d

a,i, j

]
−λa,i = 0

W d
a,i, j =

1
λa,i

∑
z1:T

Q(z1:T )
T

∑
t=2

1{zt−1 = i∧ zt = j∧ xt−1 = a∧ conf(zzzt−1,xt−1)< 1}

(B.2)

The partial derivative of the Lagrangian can then be computed as:

∇λa,iL (W d
a,i, j) = 1−

|Z|
∑
j=1

W d
a,i, j = 0

= 1−
|Z|
∑
j=1

1
λa,i

∑
z1:T

Q(z1:T )
T

∑
t=2

1{zt−1 = i∧ zt = j∧ xt−1 = a∧ conf(zzzt−1,xt−1)< 1}= 0

Then, the Lagrange multiplier can be derived so that it can be substituted into
the update of the parameter.

λa,i =
|Z|
∑
j=1

∑
z1:T

Q(z1:T )
T

∑
t=2

1{zt−1 = i∧ zt = j∧ xt−1 = a∧ conf(zzzt−1,xt−1)< 1}

= ∑
z1:T

Q(z1:T )
T

∑
t=2

1{zt−1 = i∧ xt−1 = a∧ conf(zzzt−1,xt−1)< 1} (B.3)

W d
a,i, j =

∑z1:T Q(z1:T )∑
T
t=2 1{zt−1 = i∧ zt = j∧ xt−1 = a∧ conf(zzzt−1,xt−1)< 1}

∑z1:T Q(z1:T )∑
T
t=2 1{zt−1 = i∧ xt−1 = a∧ conf(zzzt−1,xt−1)< 1}

(B.4)

Similar to before, we can use the forward and backward probabilities to effi-
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ciently compute ∑z1:T Q(z1:T )∑
T
t=2 1{zt−1 = i∧ zt = j∧ xt−1 = a}:

∑
z1:T

Q(z1:T )
T

∑
t=2

1{zt−1 = i∧ zt = j∧ xt−1 = a}

= ∑
z1:T

P(Z1:T = z1:T |X1:T = x1:T )
T

∑
t=2

1{zt−1 = i∧ zt = j∧ xt−1 = a}

=
T

∑
t=2

∑
z1:T

1{zt−1 = i∧ zt = j∧ xt−1 = a}P(Z1:T = z1:T |X1:T = x1:T )

=
T

∑
t=2

∑
z1:T

1{zt−1 = i∧ zt = j∧ xt−1 = a}P(Z1:T = z1:T ,X1:T = x1:T )

P(X1:T = x1:T )

=
1

P(X1:T = x1:T )

T

∑
t=2

∑
z1:T

1{zt−1 = i∧ zt = j∧ xt−1 = a}P(Z1:T = z1:T ,X1:T = x1:T )

=
1

P(X1:T = x1:T )

T

∑
t=2

αi(t−1)wi, j(a)v j(xt)β j(t)

This means that to update the weights for the non-conforming transition ma-
trices:

W d
a,i, j =

∑
T
t=2 αi(t−1)wi, j(a)v j(xt)β j(t) 1{xt−1 = a∧ conf(zzzt−1,xt−1)< 1}

∑
|Z|
j=1 ∑

T
t=2 αi(t−1)wi, j(a)v j(xt)β j(t) 1{xt−1 = a∧ conf(zzzt−1,xt−1)< 1}

(B.5)

Appendix B.3. Emission probability matrix
Same as for the state-transition probability matrix, the goal is to find param-

eters that maximizes the expected log likelihood with respect to all latent state
sequences with a constraint on their sum.

maximize
V d

k, j

∑
z1:T

Q(z1:T )

[
T

∑
t=1

logvzt (xt)

]

subject to
|A|
∑
a=1

V d
a, j = 1

Similar to the state-transition matrix, for conforming behavior, the matrix is sub-
stochastic where a case at the final state would not emit any activity observation.
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However, deviating behavior might mean that a case can emit an activity observa-
tion despite being in the final state. We construct the Lagrangian:

L (V d
a, j) = ∑

z1:T

Q(z1:T )

[
T

∑
t=1

|Z|
∑
j=1

|A|
∑
a=1

1{zt = j∧ xt = a∧ conf(zzzttt ,xt)< 1)} logvzt (xt)

]
+λ j(1−

|A|
∑
a=1

V d
a, j)

Taking the partial derivatives and setting them to zero with respect to V d
j,a and

λ j,a yield the parameter estimation:

∇V d
a, j

L (V d
a, j) = ∑

z1:T

Q(z1:T )

[
T

∑
t=1

1{zt = j∧ xt = a∧ conf(zzzttt ,xt)< 1}

1− conf(111 jjj,a)
conf(111 jjj,a)Va, j +(1− conf(111 jjj,a))V d

a, j

]
−λ j = 0

The non-conforming observation matrices V d
a, j would be updated when conf(111 jjj,a)=

0,

= ∑
z1:T

Q(z1:T )

[
T

∑
t=1

1{zt = j∧ xt = a∧ conf(zzzttt ,xt)< 1} 1
V d

a, j

]
−λ j = 0

V d
a, j =

1
λ j

∑
z1:T

Q(z1:T )
T

∑
t=1

1{zt = j∧ xt = a∧ conf(zzzttt ,xt)< 1} (B.6)

∇λ jL (V d
a, j) = 1−

|A|
∑
a=1

V d
a, j = 0

= 1−
|A|
∑
a=1

1
λ j

∑
z1:T

Q(z1:T )
T

∑
t=1

1{zt = j∧ xt = a∧ conf(zzzttt ,xt)< 1}= 0

λ j =
|A|
∑
a=1

∑
z1:T

Q(z1:T )
T

∑
t=1

1{zt = j∧ xt = a∧ conf(zzzttt ,xt)< 1}

= ∑
z1:T

Q(z1:T )
T

∑
t=1

1{zt = j∧ conf(zzzttt ,xt)< 1} (B.7)

V d
a, j =

∑z1:T Q(z1:T )∑
T
t=1 1{zt = j∧ xt = a∧ conf(zzzttt ,xt)< 1}

∑z1:T Q(z1:T )∑
T
t=1 1{zt = j∧ conf(zzzttt ,xt)< 1} (B.8)
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Similar to before, we can use the forward and backward probabilities to effi-
ciently compute ∑z1:T Q(z1:T )∑

T
t=1 1{zt = j∧ xt = a∧ conf(zzzt ,xt)< 1}:

∑
z1:T

Q(z1:T )
T

∑
t=1

1{zt = j∧ xt = a∧ conf(zzzt ,xt)< 1}

=
T

∑
t=1

∑
z1:T

1{zt = j∧ xt = a∧ conf(zzzttt ,xt)< 1}Q(z1:T )

=
T

∑
t=1

∑
z1:T

1{zt = j∧ xt = a∧ conf(zzzttt ,xt)< 1}P(Z1:T = z1:T |X1:T = x1:T )

=
1

P(X1:T = x1:T )

T

∑
t=1

∑
z1:T

1{zt = j∧ xt = a∧ conf(zzzttt ,xt)< 1}P(Z1:T = z1:T ,X1:T = x1:T )

=
1

P(X1:T = x1:T )

T

∑
t=1

1{xt = a∧ conf(zzzttt ,xt)< 1}α j(t)β j(t)

This means that

V d
a, j =

∑
T
t=1 1{xt = a∧ conf(zzzttt ,xt)< 1}α j(t)β j(t)

∑
T
t=1 1{conf(zzzttt ,xt)< 1}α j(t)β j(t)

(B.9)
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