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Abstract—The Internet of Things (IoT) enables software-based
access to vast amounts of data streams from sensors measuring
physical and virtual properties of smart devices and their sur-
roundings. While sophisticated means for the control and data
analysis of single IoT devices exist, a more process-oriented
view of IoT systems is often missing. Such a lack of process
awareness hinders the development of process-based systems
on top of IoT environments and the application of process
mining techniques for process analysis and optimization in
IoT. We propose a framework for the stepwise correlation
and composition of raw IoT sensor streams with events and
activities on a process level based on Complex Event Processing
(CEP). From this correlation we derive refined process event
logs–possibly with ambiguities–that can be used for process
analysis at runtime (i. e., online). We discuss the framework
using examples from a smart factory.

Index Terms—Conformance Checking, Complex Event Pro-
cessing, Internet of Things, Process Mining, Smart Factories

1. Introduction

The Internet of Things (IoT) enables the digitization of
the physical world through interconnected devices, thereby
providing access to vast amounts of data that can be used
to develop digital services in several application domains
including Business Process Management (BPM) [1]. The
data generated by sensing devices and smart objects allows
for the continuous monitoring of the IoT devices and their
surroundings, providing new opportunities for analysis and
optimization of the processes performed in IoT environ-
ments, e. g., through process mining approaches [2], [3].

However, IoT infrastructures mostly rely on siloed de-
vices and are integrated with applications which are not
necessarily process-aware [4]. Indeed, such IoT applications
are often built upon proprietary control software relying
on non-standardized interfaces that thus hinder the use of
process-enabled enactment systems [1], [5]. Moreover, IoT

data is usually produced in the form of low-level event
streams having little to no meaning for high-level activities
and processes [6] and, often, requires to be analyzed as soon
as it is generated (i. e., online [7]).

Despite recent research efforts having contributed to
advance the integration of IoT and BPM technologies
(e. g., [8]–[11]), IoT technology is not readily integrated
into industrial-strength BPM systems [1]. Indeed, events
generated from IoT sensors (i) do not directly correspond
to meaningful process activities and (ii) do not carry in-
formation about process instances, and (iii) IoT entities
and processes are rarely represented in an explicit way in
and through process models. However, (i)–(ii) are crucial
pre-requisites for generating event logs suitable for process
mining, and (iii) is necessary to assess the conformance of
such a log with a reference process model [12]. Besides, the
increased process awareness in IoT also facilitates process
planning, optimization and adaptation [9]. This is of high
relevance in dynamic IoT systems (e. g., smart factories)
where physical resources are constrained and multiple pro-
cesses are executed in parallel [1], [13].

With this work-in-progress paper, we address the chal-
lenge of bridging the gap between event-based and process-
based systems (cf. C13 in [1]), mainly focusing on the
generation of event logs from streams of IoT sensor data
with smart factories as an application domain. Indeed, since
IoT sensor data usually refers to the low-level states of IoT
devices and the physical properties of their surroundings,
the online correlation with higher-level process events and
the subsequent detection of activities and activity instances
becomes a non-trivial task. Building upon the assumption
that IoT environments lack process awareness, we present
a novel framework for deriving process events from low-
level IoT data streams into a process event log, which can
be stored and used for offline conformance checking or
used directly for online analysis [7]. We rely on Complex
Event Processing (CEP) as the key technology to achieve
this online correlation in (near) real-time and refine the
detected events in multiple stages [14]. Besides, since the
correlation of IoT sensor data with process events and



activities may not always be clear and achievable through
one-to-one mappings [15], we also consider the presence of
uncertainties and ambiguities during event log generation.

The paper is structured as follows: Sect. 2 discusses
related work; Sect. 3 introduces the smart factory simula-
tion model that we use in our research; Sect. 4 presents
the framework for IoT-driven event log generation; Sect. 5
elaborates on our vision towards IoT-driven conformance
checking; Sect. 6 concludes the paper and shows starting
points for future work.

2. Related Work

Enriching process execution environments with IoT
technologies brings several benefits but does not come with-
out challenges [1]. One of the main benefits is undoubtedly
the improved recognition of (manual) activities and pro-
cesses from sensor data, e. g., with the help of multi-modal
approaches such as the one by Rebmann et al. [16] that
combines motion and vision sensors with user feedback for
detecting and disambiguating known activity types in real-
time. Activity recognition is often combined with process
mining for extracting knowledge to analyze and optimize
the underlying processes [17]. Applying process mining, in
turn, requires bridging the gap between low-level sensor data
and the event logs needed for process mining–a well-known
issue, which gives rise to succeeding challenges [1].

First of all, event abstraction is needed to map mul-
tiple fine-grained sensor data to coarse-grained process
events [18], e. g., with the help of CEP [6], which also
supports data pre-processing and context enrichment [2]; or
with machine learning approaches such as clustering [19] or
supervised learning [20]. Wanner et al. combine these two
methods based on expert knowledge and observations in the
context of a smart factory [21]. Then, such coarse-granular
events need to be matched to the process activities in a
process model or correlated to the process instances through
event-to-activity mappings [15], [22]. We discuss work about
event log generation from IoT events that mostly relates to
our contribution and refer the interested reader to [6], [18]
for a broader literature overview.

In [23] Senderovich et al. propose a knowledge-driven
approach based on interactions mining to transform histori-
cal logs of sensor data into standardized event logs including
information about process instances. In [24] Mannhardt et
al. propose a supervised method for event abstraction based
on activity patterns. These patterns are derived from low-
level events using domain knowledge and then used to
build an abstracted event log by exploiting existing align-
ment techniques. In [25] Koschmider et al. investigate the
role of context-awareness in event-to-activity mappings and
propose a framework to support the inclusion of context
information in the event logs and the comparison of dif-
ferent mapping approaches. The authors also propose and
discuss a modular framework for enabling process discovery
from sensor data, explicitly considering the data aggrega-
tions needed for event correlation, activity discovery, event
abstraction, and process discovery [26]. In [22] Baier et

al. present an approach for semi-automatically bridging the
event abstraction levels required for process mining based on
domain knowledge. Van der Aa et al. propose a probabilistic
conformance checking technique that considers all potential
event-to-activity mappings–the behavioral space–and iden-
tifies conforming traces in the presence of mapping uncer-
tainty [15]. Ehrendorfer et al. present in [13] an approach for
conformance checking and classification of manufacturing
log data from a smart factory thereby raising the analysis
of low-level IoT data to a process-oriented perspective.

Our approach contributes to the body of research fo-
cusing on correlating low-level sensor events with process
events and mapping them to process activities. The goal
is to generate an event log directly from streamed sensor
data that can be used for (online) conformance checking [7].
Compared to foundational research focusing on the abstrac-
tion of raw IoT sensor data to process events and activities,
we take a practical view and aim to achieve these multi-
stage correlations in an online manner, starting directly from
the IoT data streams and combining them with domain
and process knowledge. The goal of realizing this online
analysis in (near) real-time goes in line with the nature of
IoT systems that produce high amounts of live streaming
data and often lack the presence of a process management
system [1]. The smart factory model presented in Sect. 3
thereby serves as perfect hands-on experimentation plat-
form [27] that allows for a stepwise increase of sensor to
process event correlations starting from single sensors and
process instances to multi-modal sensor correlations and
multiple process instances executed in parallel. With that
we are also able to control the level of ambiguities and
uncertainties introduced into the derived process event log.

3. Smart Factory Simulation Model

In our research we focus on smart factories as repre-
sentatives of IoT environments [17]. Smart factories fea-
ture IoT-enabled production devices of varying complex-
ity that consist of heterogeneous sensors and actuators.
With the advancements of Industry 4.0 technologies these
components are increasingly controlled by microprocessors,
which enable communication with other components and the
software-based access to sensor data and actuator function-
ality [28]. While processes are inherently prevalent in the
production lines of smart factories, the process-awareness
of these IoT environments remains limited, i. e., a process
is rarely viewed as “a collection of inter-related events,
activities, and decision points that involve a number of actors
and objects” [29]. The individual production machines are
usually programmed–similar to many other IoT devices–in
isolation and on a low level resulting in inflexible hardwired
production processes and access to sensor data and actuator
functionality on a very fine-grained technical level [4].

Fig. 1 shows the factory simulation model Training
Factory Industry 4.01 developed by Fischertechnik that we

1https://www.fischertechnik.de/en/service/elearning/teaching/lernfabrik-4

https://www.fischertechnik.de/en/service/elearning/teaching/lernfabrik-4
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Figure 1: Physical smart factory simulation model as IoT environment.

use in our research. The factory features a complete pro-
duction line consisting of five workstations: a delivery &
pickup station (DPO) with NFC reader/writer; a high-bay
warehouse (HBW) with 3 x 3 slots for storage of workpieces
in containers; a central vacuum gripper (VGR) for transport;
a multi-processing station (MPO) with an industrial oven
and a milling station; and a sorting line (SLD) with color
detection. Each station consists of a multitude of sensors
(e. g., light barriers) and actuators (e. g., motors, compres-
sors). An RGB camera and environmental sensor collect
additional data. To simulate the production, small cylindrical
workpieces (height = 1,4 cm, diameter = 2,6 cm) of varying
colors (blue, red, white) are moved through the factory. Each
workpiece is equipped with an NFC tag containing informa-
tion regarding the individual piece (e. g., an identifier, the
color and timestamped production history). Six networked
micro-controllers run the programs (written in C/C++) to
control the individual stations. In the factory’s standard con-
figuration the central controller hosts an additional MQTT
broker2 that allows remote publish/subscribe access to sen-
sor, machine and production-related data (e. g., machine
states, production states, warehouse inventory, environment
and NFC readings) from MQTT clients. MQTT (Message
Queuing Telemetry Transport) [30] is a light-weight industry
standard protocol that is specifically tailored to enable mes-
saging in IoT environments with resource-constraint devices,
e. g., the factory’s controllers. For our work we assume that
the data produced by the factory is fixed, i. e., we cannot
change or extend its content or interfaces, as it is often
the case for IoT platforms and production machines due
to limited access to their underlying control programs and
source code [5]. The amount and quality of low-level sensor
data can be improved via retrofitting of production machines
with additional sensors as discussed in [31]. However this
does not directly influence the information available on
the higher abstraction level of processes, which requires
additional steps of data fusion and processing.

In its default configuration the factory supports the

2https://github.com/fischertechnik/txt_training_factory/blob/master/
TxtSmartFactoryLib/doc/MqttInterface.md
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Figure 2: Simplified storage process in BPMN 2.0.
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Figure 3: Simplified production process in BPMN 2.0.

following two processes, which are implemented statically
as C++ programs–a process-based control system is not
available. The process models have been created based on
observations and from the smart factory’s documentation.

• Storage Process: This process (cf. Fig. 2) starts
when the VGR station detects a new workpiece.
The gripper moves the new workpiece to the high-
bay warehouse. In parallel the warehouse retrieves
an empty container from a specific slot (position).
The vacuum gripper then puts the workpiece into
the container. Afterwards the workpiece is stored in
the HBW at the container’s original slot. In parallel
the gripper returns to its initial position.

• Production Process: This process (cf. Fig. 3) starts
when a new order for a specific type (i. e., color) of
product is received. The HBW retrieves a container
with a suitable workpiece. In parallel the vacuum
gripper moves to the HBW to collect the workpiece.
Then, the gripper moves it to the multi-processing
station. The MPO then simulates the production of
the workpiece while, in parallel, the vacuum gripper
moves to its initial position.

4. IoT-driven Event Log Generation using CEP

In this work we propose a framework for generating
process event logs based on data from IoT sensors with-
out having to rely on a BPM system to manage process
executions [6]. An overview of the proposed framework
is depicted in Fig. 4. Our framework is grounded in CEP,
which enables the live (online) analysis of high volume data
streams from various sources and features rich mechanisms
to correlate, aggregate, filter, map and process events from

https://github.com/fischertechnik/txt_training_factory/blob/master/TxtSmartFactoryLib/doc/MqttInterface.md
https://github.com/fischertechnik/txt_training_factory/blob/master/TxtSmartFactoryLib/doc/MqttInterface.md
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Figure 4: Framework for event log generation & conformance checking.

Listing 1: CEP app for detecting the start of “Simulate Production”.

1@source(type = 'mqtt', topic = 'f/i/state/mpo',

2client.id = 'siddhi-mpo', @map(type = 'json'))

3define stream Mpo (active int, ts string);

4
5define stream ProductionDetection(type string, ts string);

6
7@info(name='SimulateProductionStartDetectionQuery')

8from every e1=Mpo, e2=Mpo[(e1.active==0) AND (e2.active==1)]

9select 'start' as type, e2.ts

10insert into ProductionDetection;

multiple streams to detect patterns of event occurrences
and derive complex events from these analyses via data
fusion [14]. CEP has also been applied in the context of
IoT [21], [32] and BPM [8], [10], [11], [33] for deriving
higher level events from IoT data. As the detection of pro-
cess events from IoT sensors is not always straightforward
and unambiguous [1], we propose to go through multiple
stages within our framework: Activity & Event Detection;
Activity & Event Refinement; Event Log Generation.

4.1. Activity & Event Detection from IoT Data

For the detection of process activities and events, we
assume that domain knowledge about the IoT data sources
and processes, and their correlations, exists [22], [23]. Do-
main experts and process engineers provide models for the
IoT processes, e. g., as presented in Figures 2 and 3 for
two exemplary smart factory processes. These experts also
develop CEP applications that link the raw IoT data to the
individual activities and events of the modeled processes–
raising the abstraction of IoT events to the process level,
e. g., by specifying queries for identifying the start and end
of activities (Monitoring Points [34]). This can be partially
automated using machine learning as proposed in [21].

In our research we use the CEP platform Siddhi for
event processing as it provides a comprehensive language for
stream processing including filtering, aggregation, enriching
and merging of event streams [35]. In contrast to similar
tools, it can be used as a standalone application proving
a graphical editor or as light-weight library embedded into
third party applications. The main ingredients of a Siddhi
App are Streams containing Events, and SQL-like Queries
executed on these streams. External data Sources can be
defined as producers of events for a stream (e. g., from IoT

Listing 2: CEP app for detecting the start of “Move to Warehouse”.

1@source(type = 'mqtt', topic = 'f/i/state/vgr',

2client.id = 'siddhi-vgr', @map(type = 'json'))

3define stream Vgr (active int, target string, ts string);

4
5define stream ToWareHouseDetection(type string, ts string);

6
7@info(name='MoveToWarehouseStartDetectionQuery')

8from every e1=Vgr, e2=Vgr[(e1.active==0) AND (e2.active==1)]

9select 'start' as type, e2.ts

10having e2.target=='Hbw'

11insert into ToWareHouseDetection;

sensors) and external Sinks can be defined as consumers
of events from a stream (e. g., for IoT actuators). Siddhi
already supports many standardized messaging and web
service protocols to connect to various streams as sources
and sinks, which makes it also easy to establish a bi-
directional communication with BPM systems.

Listing 1 presents an exemplary Siddhi app for detecting
the start of the “Simulate Production” activity from the
production process (cf. Fig. 3). First the connector to the
external event source is defined. Here we refer to the MPO’s
state data published via MQTT on the given topic (Line 1) to
the event stream Mpo having the active flag and timestamp
(ts) as event attributes (Line 3). We define a new stream con-
taining activity-related events (ProductionDetection) with
events having a type (e. g., start or end of the activity) and
corresponding timestamp as attributes (Line 5). Starting on
Line 7 the query to process the low-level machine state and
derive the start of the activity is defined. We look at the
changes of the active attribute in two subsequent events e1

and e2 (Line 8). According to the MPO’s state machine3 the
production starts when the active attribute changes from 0

to 1. Upon detection of this pattern we insert a new event
with type start and the timestamp of event e2 as attributes
(Line 9) into the ProductionDetection stream (Line 10).

Listing 2 presents a Siddhi app to detect the vacuum
gripper’s movement to the warehouse, which is part of
both exemplary factory processes. Similar to the previous
example we use the changes of the station’s (here: Vgr)
activation state to derive the high-level activity start event.
As the VGR is the central transportation unit and, thus,
is activated very often, we consider the additional target

attribute (here: Hbw) contained within the low-level sensor
events (Line 3) to distinguish between different possible
types of gripper movements (Line 10).

4.2. Activity & Event Refinement based on Context

While the correlation, fusion and abstraction of low-
level sensor events to higher level process-related events
described in the previous section is rather easy to achieve for
IoT systems with only a small process landscape and a single
instance running at a time, the activity detection in more

3https://github.com/fischertechnik/txt_training_factory/blob/master/
README.md

https://github.com/fischertechnik/txt_training_factory/blob/master/README.md
https://github.com/fischertechnik/txt_training_factory/blob/master/README.md


Figure 5: Joining event streams for refinement of the VGR movement.

complex IoT settings becomes increasingly difficult. The
low-level sensor readings are usually not sufficient to always
clearly identify process-related events and correlate them
with a specific process (model) and execution (instance),
e. g., when the same activity appears in one or more process
models at multiple points, or multiple instances containing
the same activity are executed in parallel [1], [26].

Solving these uncertainties requires the consideration of
additional process-related factors and context data. Within
our framework we propose to extend the CEP apps with ad-
ditional rules and queries (e. g., regarding temporal, logical
and spatial dependencies of the process/activity executions)
and intermediate event streams with higher level process
(domain) events that can be detected and joined for activity
and event refinement [22], [36]. On the model level, logical
dependencies (e. g., the detected following process step) as
described within the respective process models could for ex-
ample be used to refine the activity detection; on the instance
level, temporal aspects (e. g., execution duration) or spatial
aspects (e. g, interactions in the same location [23], [37])
could be used for refinement. These rule-based correlations
between activities can also be used to detect unintended
behavior, errors and deviations of the process execution [21].

In the smart factory we are able to detect the vacuum
gripper moving as an activity, which can be part of several
processes or even appear multiple times in the same process
(e. g, the movement to its initial position). By considering
the additional target attribute in the low-level sensor data
we can already limit the candidates of VGR activities to the
“Move to Warehouse” activity in the storage process (for de-
livery of a new workpiece) or in the production process (for
pickup of the workpiece to be processed). By considering
the activities detected subsequently, we can further refine the
type of movement on the model level. Joining the two output
streams defined in Listings 1 (Line 5) and 2 (Line 5) and
introducing the condition that the start event of “Simulate
Production” is preceded by the “Move to Warehouse” start
event in a new CEP query–looking at their subsequent
occurrence similar to the examples in line 8 of both listings–
allows us to further refine the movement activity to “Move
to Warehouse for Pickup”, which is associated with the
production process (cf. Fig. 5). Fig. 6 shows an excerpt
from the ontological representation of the refinement pos-
sibilities for the gripper movement activity. With this form
of hierarchical process knowledge, the corresponding CEP
queries and event streams can be incrementally combined
to increase the granularity of activity detection [38], [39].

The instance level event and activity correlation (i. e., de-
riving of case-IDs) requires more fine-grained and detailed

owl:Thing Activityis-a MoveGripperis-a
is-a

is-a

MoveToInitialPosition

MoveToWarehouse

xis-a MoveToWarehouseForPickup

is-a
MoveToWarehouseForDelivery

Figure 6: Excerpt of the domain ontology for gripper movement.

Listing 3: Excerpt of sample output event log showing the detected start
of the gripper movement activity in XES format.

1<?xml version="1.0" encoding="UTF-8" ?>

2<log xes.version="1.0" xes.features="nested-attributes"

openxes.version="1.0RC7">

3...

4<trace>

5<string key="concept:name" value="ProductionProc_001"/>

6<event>

7<string key="concept:name"

value="MoveToWarehouseForPickup"/>

8<boolean key="active" value="true"/>

9<date key="time:timestamp"

value="2020-09-09T08:20:02.223+01:00"/>

10<string key="org:resource" value="R108"/>

11<string key="org:role" value="VacuumGripper"/>

12<string key="lifecycle:transition" value="complete"/>

13</event>

14...

15</trace>

16...

17</log>

knowledge about the executions, which has to be reflected
in additional intermediate event streams and more precise
queries producing complex events with a case-ID as addi-
tional attribute [40], e. g., considering the events’ timestamps
and linking two subsequent activities to the same instance
based on their close temporal proximity. Listing 3 shows the
sample output of applying these refinements to concretize
the VGR movement event and associate it with a case-ID in
a trace of the event log. However, despite these refinements
the available IoT data and process knowledge may still not
be sufficient to clearly resolve all uncertainties about the
activity detection and event correlations, which results in
ambiguities that need to be reflected in the event log [26].

4.3. Event Log Generation with Ambiguities

The refined and case-related process events and activities
can be either stored in a classical event log containing execu-
tion traces for offline analysis (e. g., control flow discovery
or conformance checking [12]) or streamed as part of an
online event log for online analysis. However, due to the
limited availability and capabilities of IoT sensors (e. g., be-
ing to coarse grained or imprecise) as well as limited means
for an online analysis of the complete process instance
context (e. g., regarding future process steps or long passed
executions), the refinement of events and activities may not
be possible to clearly associate the complex events with a
specific process model and instance [1]. We therefore have
to consider ambiguities/uncertainties regarding the detected
process elements in the event logs and propose to introduce
a candidate list and confidence metric [3].



Assuming that the complete process landscape and all
event and activity refinements are known (e. g., described by
a domain ontology [39]), we can provide a list of possible
refined candidates (children) of a detected ambiguous activ-
ity at the specific point of a trace in the log accompanied
by a confidence metric indicating the probability of the
candidate’s occurrence (e. g., by assuming an equally likely
appearance of each candidate) [41]. Referring to the gripper
movement from the example processes and assuming that
the detected “Move to Warehouse” activity cannot be further
refined through CEP, we are able to determine from the
ontology presented in Fig. 6 that two refined activity candi-
dates exist. The derived event log would contain a list with
both activities and a confidence of 50 % for each activity
at this point in the trace. In case of multiple instances
running in parallel in the IoT environment the handling
of ambiguities again becomes more complex. Similar to
the consideration of ambiguities on the model level, we
propose to also include a list of possible instances (cases) a
detected uncertain event or activity may belong to–including
the confidence value–at the specific point in the log.

5. Towards IoT-driven Conformance Checking

Conformance checking addresses the analysis and com-
parison between the intended behavior of a process de-
scribed in a normative process model and its observed
execution captured in an event log [12], where also a map-
ping between the events included in the event log and the
elements of the process model is required [15]. Following
the framework for IoT driven event log generation proposing
the event-to-activity mappings based on domain knowledge
described in Section 4, existing conformance checking ap-
proaches can be used in subsequent steps if no ambiguities
are present in the generated log.

Traditionally, conformance checking approaches have
focused on the offline analysis of completed process traces,
thus detecting violations after they occurred. This is also
supported within our framework by means of streaming and
persisting the derived process events into an event log. In
the presence of ambiguities for specific activities and events
in the log, conformance checking has to be extended to
also consider the possible candidates and their probabilities
at the specific points in the traces. This may result in
multiple possible alignments of varying fitness regarding the
detected variants of executions and their conformance with
the corresponding process models.

Online conformance checking approaches seem more
attractive as IoT data is often generated and transmitted
in streams and at a high volume, velocity and variety [1].
Recently, online or streaming conformance checking ap-
proaches [7] (e. g., based on prefix alignments [42] or be-
havioral patterns [43]) have been proposed to enable the
immediate analysis of event streams and allow for violation
detection and compensation before the process is completed.
Applying these approaches in IoT environments on event
streams created with the proposed framework and subse-
quently streamed for conformance checking (e. g., via the

MQTT-XES protocol [44]) again requires adaptations to also
consider the possible ambiguities contained within the de-
tected process events, which increases complexity and with
that reduces the capabilities of near real-time analysis. New
approaches are needed here–possibly also relying on CEP–
to enable the online alignment of the detected, incomplete
and ambiguous executions (traces) with the process models.

6. Conclusion and Future Work

In this work we presented a framework for the detection
of process events from IoT data, their refinement and asso-
ciated event log generation. CEP proves to be a suitable
technological basis for realizing this correlation with an
arbitrary level of abstraction from sensor data to process
events and activities based on domain knowledge. Multiple
streams can be combined and chained hierarchically to
derive higher level (complex) events from patterns related
to the process execution in online settings. However, due
to the nature of IoT environments and available sensors,
ambiguities and uncertainties may remain as part of the
event log that have to be considered in subsequent analysis
stages (e. g., in conformance checking).

In future work, we will move to more complex process
landscapes–including human activities–and higher numbers
of parallel instances executed in the smart factory to derive
more sophisticated means of handling ambiguities. While
this paper mostly discussed the control flow perspective, we
will also consider other perspectives measurable via IoT for
event correlations. Moreover, we will investigate new means
for an end-user oriented development of CEP applications
and for their automatic generation from observations.
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