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Josep Sànchez-Ferreres1, Andrea Burattin2, Josep Carmona1, Marco Montali3,
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Abstract. The existence of unstructured information that describes
processes represents a challenge in organizations, mainly because this
data cannot be directly referred into process-aware ecosystems due to
ambiguities. Still, this information is important, since it encompasses
aspects of a process that are left out when formalizing it on a particu-
lar modelling notation. This paper picks up this challenge and faces the
problem of ambiguities by acknowledging its existence and mitigating it.
Specifically, we propose a framework to partially automate the elicita-
tion of a formal representation of a textual process description, via text
annotation techniques on top of natural language processing. The result
is the ATDP language, whose syntax and semantics are described in this
paper. ATDP allows to explicitly cope with several interpretations of the
same textual description of a process model. Moreover, we link the ATDP

language to a formal reasoning engine and show several use cases. A pro-
totype tool enabling the complete methodology has been implemented,
and several examples using the tool are provided.

1 Introduction

Organizing business processes in an efficient and effective manner is the overar-
ching objective of Business Process Management (BPM). Classically, BPM has
been mainly concerned with the quantitative analysis of key performance dimen-
sions such as time, cost, quality, and flexibility [10] without considering in depth
the analysis of textual data that talks about processes.

Hence, textual descriptions of processes in organizations are a vast and rather
unexploited resource. Not neglecting the information that is present in natural
language texts in a organization brings opportunities to complement or correct
process information in conceptual models. In spite of this, only very recently
Natural Language Processing (NLP)-based analysis has been proposed in the
BPM context, as reported in [12, 15, 14, 22].

This paper is a first step towards the challenge of unleashing formal reasoning
on top of textual descriptions of processes. By relying on textual annotations, we



propose ATDP, a multi-perspective language that can be connected to a reasoner
so that a formal analysis is possible. From a raw textual description, annota-
tions can be introduced manually, or selected from those inferred by NLP anal-
ysis (e.g., from libraries like [16]), thus alleviating considerably the annotation
effort. Remarkably, our perspective differs from the usual trend in conceptual
modelling, i.e., ATDP specifications can contain several interpretations, so am-
biguity is not forced to be ruled out when modelling, for those cases when the
process is under-specified, or when several interpretations are equally valid.

We formalize ATDP, and describe its semantics using linear temporal logic
(LTL), with relations defined at two different levels, thanks to the notion of
scopes. Then we show how to cast reasoning on such a specification as a model
checking instance, and provide use cases for BPM, such as model consistency,
compliance checking and conformance checking. Notably, such reasoning tasks
can be carried out by adopting the standard infinite-trace semantics of LTL,
or by considering instead finite traces only, in line with the semantics adopted
in declarative process modeling notations like Declare [17]. Finally, a tool to
convert ATDP specifications into a model checking instance is reported.

The paper is organized as follows: in the next section we provide the work
related to the contributions of this paper. Then Section 3 contains the prelim-
inaries needed for the understanding of the paper content. Section 4 describes
a methodology to use ATDP in organizations. In Section 5 we provide intuition,
syntax and semantics behind the ATDP language. Then in Section 6 it is shown
how reasoning on ATDP specification can be done through model checking and
finally Section 7 concludes the paper.

2 Related Work

In order to automatically reason over a natural language process description,
it is necessary to construct a formal representation of the actual process. Such
generation of a formal process model starting from a natural language description
of a process has been investigated from several angles in the literature. We can
project these techniques into a spectrum of support possibilities to automation:
from fully manual to automatic.

The first available option consists in converting a textual description into
a process model by manually modeling the process. This approach, widely dis-
cussed (e.g., [10, 9]), has been thoroughly studied also from a psychological
point of view, in order to understand which are the challenges involved in such
process of process modeling [18, 4]. These techniques, however, do not provide
any automatic support and the possibility for automatic reasoning is completely
depending on the result of the manual modeling. Therefore, ambiguities in the
textual description are subjectively resolved.

On the opposite side of the spectrum, there are approaches that au-
tonomously convert a textual description of a process model into a formal
representation [13]. Such representation can be a final process model (e.g., as
BPMN) [7] and, in this case, it might be possible to automatically extract in-
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formation. The limit of these techniques, however, is that they need to resolve
ambiguities in the textual description, resulting in “hard-coded” interpretations.

In the middle of the spectrum, we have approaches that automatically process
the natural language text but they generate an intermediate artifact, useful to
support the manual modeling by providing intermediate diagnostics [8, 20]. The
problem of having a single interpretation for ambiguities is a bit mitigated in this
case since a human modeler is still in charge of the actual modeling. However,
it is important to note that the system is biasing the modeler towards a single
interpretation.

The approach presented in this paper drops the assumption of resolving all
ambiguities in natural language texts. Therefore, if the text is clear and no
ambiguities are manifested, then the precise process can be modeled. However,
if this is not the case, instead of selecting one possible ambiguity resolution, our
solution copes with the presence of several interpretations for the same textual
description.

3 A Recap on Linear Temporal Logics

In this paper, we use Linear Temporal Logic (LTL) [19] to define the semantics of
the ATDP language. In particular, we use the standard interpretation of temporal
logic formulae over infinite traces.

LTL formulae are built from a set P of propositional symbols and are closed
under the boolean connectives, the unary temporal operator ◦ (next-time) and
the binary temporal operator U (until):

ϕ ::= a | ¬ϕ | ϕ1 ∧ ϕ2 | ◦ϕ | ϕ1 U ϕ2 with a ∈ P

Intuitively, ◦ϕ says that ϕ holds at the next instant, ϕ1 U ϕ2 says that at
some future instant ϕ2 will hold and until that point ϕ1 always holds. Common
abbreviations used in LTL include the ones listed below:
– Standard boolean abbreviations, such as >, ⊥, ∨, →.
– ♦ϕ = >U ϕ says that ϕ will eventually hold at some future instant.
– �ϕ = ¬♦¬ϕ says that from the current instant ϕ will always hold.
– ϕ1 W ϕ2 = (ϕ1 U ϕ2 ∨ �ϕ1) is interpreted as a weak until, and means that

either ϕ1 holds until ϕ2 or forever.
Recall that the same syntax can also be used to construct formulae of LTL

interpreted over finite traces [6]. Later on in the paper we show how our approach
can also accommodate this interpretation. Recall however that the intended
meaning of an LTL formula may radically change when moving from infinite to
finite traces [5].

4 A Framework for Semantic Reasoning of Natural
Language Descriptions of Processes

We briefly describe our envisioned framework for process modelling and man-
agement based on natural language. Figure 1 overviews the framework. Given a
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Fig. 1. Annotation framework overview

textual description of a process, automatic or manual annotation (or a combi-
nation of both) is used to obtain an Annotated Textual Description of a Process
(ATDP), which contains all the interpretations of the original text. This specifica-
tion can then be automatically transformed into temporal formula that encom-
passes the semantics of the process. The temporal formula can then be queried
with the help of a reasoner (e.g., a model checker). Typical use cases may require
the encoding of additional inputs, e.g., traces of an event log, compliance rules,
among others. The result of the reasoner is the satisfaction or rebuttal (with the
corresponding counterexample) of the query. Notice that query results may not
hold in all possible interpretations of the text.

5 Processes as Annotated Textual Descriptions

We now propose ATDP, a language for annotated textual descriptions of processes
starting with a gentle introduction relying on a real-world example. Specifically,
we use the textual description of the examination process of a Hospital extracted
from [21]. Figure 2 shows the full text, while Figure 3 contains a a fragment of
the visualization for an ATDP specification of the description.

One of the key features of the ATDP approach is the ability to capture am-
biguity. In our example, we can see this at the topmost level: the text is asso-
ciated to three different interpretations I1, I2 and I3, providing three different
process-oriented semantic views on the text. Each interpretation is a completely
unambiguous specification of the process, which fixes a specific way for under-
standing ambiguous/unclear parts. Such parts could be understood differently
in another interpretation. A specification in ATDP then consists of the union of
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all the valid interpretations of the process, which may partially overlap but also
contradict each other.

Each interpretation consists of a hierarchy of scopes, providing a recursive
mechanism to isolate parts of text that correspond to “phases” in the process.
Each scope is thus a conceptual block inside the process, which is in turn decom-
posed as a set of lower-level scopes. Each scope dictates how its inner scopes are
linked via control-flow relations expressing the allowed orderings of execution of
such inner scopes. In our example, I1 contains two scopes. A sequential relation
indicates that the second scope is always executed when the first is completed,
thus reconstructing the classical flow relation of conventional process modeling
notation. All in all, the scope hierarchy resembles that of a process tree, following
the variant used in [1].

Inside leaf scopes, text fragments are highlighted. There are different types
of fragments, distinguished by color in our visual front-end. Some fragments
(shown in red) describe the atomic units of behavior in the text, that is, activities
and events, while others (shown in blue) provide additional perspectives beyond
control flow. For example, outpatient physician is labelled as a role at the
beginning of the text, while informs is labelled as an activity. Depending on
their types, fragments can be linked by means of fragment relations. Among
such relations, we find:
• Fragment relations that capture background knowledge induced from the text,

such as for example the fact that the outpatient physician is the role re-
sponsible for performing (i.e., is the Agent of) the informs activity.
• Temporal constraints linking activities so as to declaratively capture the ac-

ceptable courses of execution in the resulting process, such as for example the
fact that informs and signs an informed consent are in succession (i.e.,
informs is executed if and only if signs an informed consent is executed
afterwards).

As for temporal relations, we consider a relevant subset of the well-known pat-
terns supported by the Declare declarative process modeling language [17]. In
this light, ATDP can be seen as a multi-perspective variant of a process tree where
the control-flow of leaf scopes is specified using declarative constraints over the
activities and events contained therein. Depending on the adopted constraints,
this allows the modeler to cope with a variety of texts, ranging from loosely
specified to more procedural ones. At one extreme, the modeler can choose to
nest scopes in a fine-grained way, so that each leaf scope just contains a single
activity fragment; with this approach, a pure process tree is obtained. At the
other extreme, the modeler can choose to introduce a single scope containing all
activity fragments of the text, and then add temporal constraints relating arbi-
trary activity fragments from all the text; with this approach, a pure declarative
process model is obtained.

5.1 ATDP Models

ATDP models are defined starting from an input text, which is separated into
typed text fragments. We now go step by step through the different components
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The process starts when the female patient is examined by an outpatient physician, who

decides whether she is healthy or needs to undertake an additional examination. In the

former case, the physician fills out the examination form and the patient can leave. In

the latter case, an examination and follow-up treatment order is placed by the physician,

who additionally fills out a request form. Furthermore, the outpatient physician informs

the patient about potential risks. If the patient signs an informed consent and agrees to

continue with the procedure, a delegate of the physician arranges an appointment of the

patient with one of the wards. Before the appointment, the required examination and

sampling is prepared by a nurse of the ward based on the information provided by the

outpatient section. Then, a ward physician takes the sample requested. He further sends

it to the lab indicated in the request form and conducts the follow-up treatment of the

patient. After receiving the sample, a physician of the lab validates its state and decides

whether the sample can be used for analysis or whether it is contaminated and a new

sample is required. After the analysis is performed by a medical technical assistant of

the lab, a lab physician validates the results. Finally, a physician from the outpatient

department makes the diagnosis and prescribes the therapy for the patient.

Fig. 2. Textual description of a patient examination process.

of our approach, finally combining them into a coherent model. We then move
into the semantics of the model, focusing on its temporal/dynamic parts and
formalizing them using LTL.

Fragment types. Fragments have no formal semantics associated by them-
selves. They are used as basic building blocks for defining ATDP models. We
distinguish fragments through the following types.

Activity. This fragment type is used to represent the atomic units of work
within the business process described by the text. Usually, these fragments
are associated with verbs. An example activity fragment would be validates
(from validates the sample state). Activity fragments may also be used
to annotate other occurrences in the process that are relevant from the
point of view of the control flow, but are exogenous to the organization
responsible for the execution of the process. For instance, (the sample) is

contaminated is also an activity fragment in our running example.
Role. The role fragment type is used to represent types of autonomous actors

involved in the process, and consequently responsible for the execution of
activities contained therein. An example is outpatient physician.

Business Object. This type is used to mark all the relevant elements of the
process that do not take an active part in it, but that are used/manipulated
by activities contained in the process. An example is the (medical) sample

obtained and analyzed by physicians within the patient examination process.

When the distinction is not relevant, we may refer to fragments as the entities
they represent (e.g. activity instead of activity fragment).

Given a set F of text fragments, we assume that the set is partitioned into
three subsets that reflect the types defined above. We also use the following dot
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notation to refer to such subsets: (i) F.activities for activities; (ii) F.roles for
roles; (iii) F.objects for business objects.

Fragment relations. Text fragments can be related to each other by means of
different non-temporal relations, used to express multi-perspective properties of
the process emerging from the text. We consider the following relations over a
set F of fragments.
Agent. An agent relation over F is a partial function

agentF : F.activities→ F.roles

indicating the role responsible for the execution of an activity. For instance,
in our running example we have agent(informs) = physician, witnessing
that informing someone is under the responsibility of a physician.

Patient. A patient relation over F is a partial function

patientF : F.activities→ F.roles ∪ F.objects

indicating the role or business object constituting the main recipient of an
activity. For instance, in our running example we have patient(prepare) =
sample, witnessing that the prepare activity operates over a sample.

Furthermore, the outpatient physician informs the patient 
about potential risks. If the patient signs an informed consent 
and agrees to continue with the procedure, a delegate of the 
physician arranges an appointment of the patient with one of 
the wards. 

Before the appointment, the required examination and 
sampling is prepared by a nurse of the ward based on the 
information provided by the outpatient section. Then, a ward 
physician takes the sample requested. He further sends it to 
the lab indicated in the request form and conducts the follow-
up treatment of the patient.

After receiving the sample, a physician of the lab validates its 
state and decides whether the sample can be used for 
analysis or whether it is contaminated and a new sample is 
required. 

After the analysis is performed by a medical technical 
assistant of the lab, a lab physician validates the results. 
Finally, a physician from the outpatient department makes the 
diagnosis and prescribes the therapy for the patient. 

AGENT

AGENT

AGENT

PATIENT AGENT

AGENT AGENT
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PATIENT

AGENT

AGENT

AGENT PATIENT

PATIENT

SUCC.

SUCC.

NO CO-OCCUR

SUCC.

PREC.

SEQUENTIAL

ITERATING

RESPONSE

I1
Furthermore, the outpatient physician informs the patient 
about potential risks. If the patient signs an informed consent 
and agrees to continue with the procedure, a delegate of the 
physician arranges an appointment of the patient with one of 
the wards.

Before the appointment, the required examination and 
sampling is prepared by a nurse of the ward based on the 
information provided by the outpatient section. Then, a ward 
physician takes the sample requested. He further sends it to 
the lab indicated in the request form and conducts the follow-
up treatment of the patient.

After receiving the sample, a physician of the lab validates its 
state and decides whether the sample can be used for 
analysis or whether it is contaminated and a new sample is 
required. 

After the analysis is performed by a medical technical 
assistant of the lab, a lab physician validates the results. 
Finally, a physician from the outpatient department makes the 
diagnosis and prescribes the therapy for the patient. 

AGENT

AGENT

AGENT

PATIENT AGENT

AGENT AGENT
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PATIENT

PATIENT
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Furthermore, the outpatient physician informs the patient 
about potential risks. If the patient signs an informed consent 
and agrees to continue with the procedure, a delegate of the 
physician arranges an appointment of the patient with one of 
the wards.

 

Before the appointment, the required examination and 
sampling is prepared by a nurse of the ward based on the 
information provided by the outpatient section. Then, a ward 
physician takes the sample requested. He further sends it to 
the lab indicated in the request form and conducts the follow-
up treatment of the patient.

After receiving the sample, a physician of the lab validates its 
state and decides whether the sample can be used for 
analysis or whether it is contaminated and a new sample is 
required. 

After the analysis is performed by a medical technical 
assistant of the lab, a lab physician validates the results. 
Finally, a physician from the outpatient department makes the 
diagnosis and prescribes the therapy for the patient. 

AGENT

AGENT

AGENT

PATIENT AGENT

AGENT AGENT

COREFERENCE

PATIENT

PATIENT

AGENT

AGENT

AGENT PATIENT

PATIENT

SUCC.

SUCC.

NO CO-OCCUR

SUCC.

PREC.

SEQUENTIAL

ITERATING

SEQUENTIAL

I3

...
Fig. 3. Example annotation of a textual process description with multiple ambiguous
interpretations. Some relations are omitted for brevity.
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Coreference. A coreference relation over F is a (symmetric) relation

coref F ⊆ F.roles× F.roles ∪ F.objects× F.objects

that connects pairs of roles and pairs of business objects when they represent
different ways to refer to the same entity. It consequently induces a coref-
erence graph where each connected component denotes a distinct process
entity. In our running example, all text fragments pointing to the patient

role corefer to the same entity, whereas there are three different physicians in-
volved in the text: the outpatient physician, the ward physician and the
physician of the lab. These form disconnected coreference subgraphs.

Text scopes. To map the text into a process structure, we suitably adjust the
notion of process tree used in [1]. In our approach, the blocks of the process tree
are actually text scopes, where each scope is either a leaf scope, or a branching
scope containing a one or an ordered pair4 of (leaf or branching) sub-scopes.

Each activity is associated to one and only one leaf scope, whereas each leaf
scope contains one or more activities, so as to non-ambiguously link activities
to their corresponding process phases.

Branching scopes, instead, are associated to a corresponding control-flow
operator, which dictates how the sub-scopes are composed when executing the
process. At execution time, each scope is enacted possibly multiple times, each
time taking a certain amount of time (marked by a punctual scope start, and a
later completion). We consider in particular the following scope relation types:

Sequential (→) A sequential branching scope s with children 〈s1, s2〉 indicates
that each execution of s amounts to the sequential execution of its sub-
scopes, in the order they appear in the tuple. Specifically: (i) when s is
started then s1 starts; (ii) whenever s1 completes, s2 starts; (iii) the com-
pletion of s2 induces the completion of s.

Conflicting (×) A conflicting branching scope s with children 〈s1, s2〉 indi-
cates that each execution of s amounts to the execution of one and only one
of its children, thus capturing a choice. Specifically: (i) when s is started,
then one among s1 and s2 starts; (ii) the completion of the selected sub-scope
induces the completion of s.

Inclusive (∨) An inclusive branching scope s with children 〈s1, s2〉 indicates
that each execution of s amounts to the execution of at least one of s1 and
s2, but possibly both.

Interleaving (∧) An interleaving branching scope s with children 〈s1, s2〉 indi-
cates that each execution of s amounts to the interleaved, parallel execution
of its sub-scopes, without ordering constraints among them. Specifically:
(i) when s is started, then s1 and s2 start; (ii) the latest, consequent com-
pletion of s1 and s2 induces the completion of s.

Iterating (�) An iterating branching scope s with child s1 indicates that each
execution of s amounts to the iterative execution of s1, with one or more

4 We keep a pair for simplicity of presentation, but all definitions carry over to n-ary
tuples of sub-blocks.
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iterations. Specifically: (i) when s is started, then s1 starts; (ii) upon the
consequent completion of s1, then there is a non-deterministic choice on
whether s completes, or s1 is started again.

All in all, a scope tree TF over the set F of fragments is a binary tree whose
leaf nodes Sl are called leaf scopes and whose intermediate/root nodes Sb are
called branch nodes, and which comes with two functions:

– a total scope assignment function parent : F.activities → Sl mapping each
activity in F to a corresponding leaf scope, such that each leaf scope in Sl

has at least one activity associated to it;
– a total branching type function btype : Sb → {→,×,∨,∧,�} mapping each

branching scope in Sb to its control-flow operator.

Temporal constraints among activities. Activities belonging to the same
leaf scope can be linked to each other by means of temporal relations, inspired by
the Declare notation [17]. These can be used to declaratively specify constraints
on the execution of different activities within the same leaf scope. Due to the
interaction between scopes and such constraints, we follow here the approach in
[11], where, differently from [17], constraints are in fact scoped.5

We consider in particular the following constraints:

Scoped Precedence Given activities a1, . . . , an, b, Precedence({a1, . . . , an}, b)
indicates that b can be executed only if, within the same instance of its
parent scope, at least one among a1, . . . , an have been executed before.

Scoped Response Given activities a, b1, . . . , bn, Response(a, {b1, . . . , bn}) indi-
cates that whenever a is executed within an instance of its parent scope,
then at least one among b1, . . . , bn has to be executed afterwards, within the
same scope instance.

Scoped Non-Co-Occurrence Given activities a, b, NonCoOccurrence(a, b) in-
dicates that whenever a is executed within an instance of its parent scope,
then b cannot be executed within the same scope instance (and vice-versa).

Scoped Alternate Response Given activities a, b1, . . . , bn,
AlternateResponse(a, {b1, . . . , bn}) indicates that whenever a is executed
within an instance of its parent scope, then a cannot be executed again until,
within the same scope, at least one among b1, . . . , bn is eventually executed.

Terminating Given activity a, Terminating(a) indicates that the execution of
a within an instance of its parent scope terminates that instance.

Mandatory Given activity a, Mandatory(a) indicates that the execution of a
must occur at least once for each execution of its scope.

Interpretations and models. We are now ready to combine the components
defined before into an integrated notion of text interpretation. An ATDP interpre-
tation IX over text X is a tuple 〈F, agentF , patientF , coref F , TF , CF , 〉, where:
(i) F is a set of text fragments over X; (ii) agentF is an agent function over F ;
(iii) patientF is a patient function over F ; (iv) coref F is a coreference relation
over F ; (v) TF is a scope tree over the activities in F ; (vi) CF is a set of temporal

5 It is interesting to notice that Declare itself was defined by relying on the patterns
originally introduced in [11].
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constraints over the activities in F , such that if two activities are related by a
constraint in, then they have to belong to the same leaf scope according to TF .

An ATDP model MX over text X is then simply a finite set of ATDP interpre-
tations over X.

5.2 ATDP Semantics

We now describe the execution semantics of ATDP interpretations, in particular
formalizing the three key notions of scopes, scope types (depending on their
corresponding control-flow operators), and temporal constraints over activities.
This is done by using LTL, consequently declaratively characterizing those exe-
cution traces that conform to what is prescribed by an ATDP interpretation. We
consider execution traces as finite sequences of atomic activity executions over
interleaving semantics.

Scope Semantics.

To define the notion of scope execution, for each scope s, we introduce a
pair of artificial activities sts and ens which do not belong to F.activities. The
execution of s starts with the execution of sts , and ends with the execution of
ens. The next three axioms define the semantics of scopes:

A1. An activity a inside a scope s can only be executed between sts and ens:

¬aW sts ∧�(ens → ¬aW sts)

A2. A scope s can only be started and ended inside of its parent s′:

¬(sts ∨ ens)W sts′ ∧�(ens′ → ¬(sts ∨ ens)W sts′)

A3. Executions of the same scope cannot overlap in time. That is, for each
execution of a scope s’s start there is a unique corresponding end:

♦ens → (¬ens U sts) ∧ �(sts → ♦ens) ∧
�(sts → ◦(♦sts → (¬sts U ens))) ∧

�(ens → ◦(♦ens → (¬ens U sts)))

Temporal Constraint Semantics. In this section, we define the semantics of
temporal constraints between activities. Note that, in all definitions we will use
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the subindex s to refer to the scope of the constraint.

Precedences({a1, .., aK}, b) :=

N∨
i=1

�(sts → (¬bU(ai ∨ ens)))

Responses(a, {b1, .., bN}) :=

N∨
i=1

�(sts → (a→ (¬ens U bi))U ens)

NonCoOccurrencep(a, b) := �(sts → (a→ (¬bU ens))U ens) ∧
�(sts → (b→ (¬aU ens))U ens)

AlternateResponsep(a, b) := Responsep(a, b) ∧
�(sts → (a→ ◦(¬aU(b ∨ ens)))U ens)

Terminatingp(a) := �(a→ ◦ens)

Mandatoryp(a) := �(sts → (¬ens U a))

Scope Relation Semantics. In all our definitions, let 〈s1, s2〉 denote the chil-
dren of a branching scope s, associated to the control-flow operator being de-
fined. Note that by Sequence(a, b) we refer to the formula Precedence({a}, b) ∧
Response(a, {b}).

Sequential (→) : Sequences(ens1 , sts2) ∧Mandatorys(sts1) ∧Mandatorys(sts2)

Conflicting (×) : Mandatorys(st s1)⊕Mandatorys(st s2)

Inclusive (∨) : Mandatorys(st s1) ∨Mandatorys(st s2)

Interleaving (∧) : Mandatorys(st s1) ∧Mandatorys(st s2)

Iterating (�) : This relation is defined by negation, with any non-iterating
scope s, child of s′, fulfilling the property:

(sts′ → (¬ens′ U sts ∧ (sts → ◦(¬sts U ens′))U ens′))

Additionally, iterating scopes may be affected by the presence of terminating
activities, as defined by the following property: A terminating activity at inside
an iterating scope s, child of s′, stops the iteration. That is, its execution cannot
be repeated anymore inside its parent:

A4. �(sts′ → ((at → (¬sts U ens′))U ens′))
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6 Reasoning on ATDP Specifications

A specification in ATDP is the starting point for reasoning over the described
process. This section shows how to encode the reasoning as a model checking
instance, so that a formal analysis can be applied on the set of interpretations
of the model. Furthermore, we present three use cases in the scope of business
process management: checking model consistency, compliance checking and con-
formance checking.

6.1 Casting Reasoning as Model Checking

Reasoning on ATDP specifications can be encoded as an instance of model check-
ing, which allows performing arbitrary queries on the model. The overall system
can be defined by the following formula

(A ∧ CF ∧ CTF
) =⇒ Q (1)

where A is the conjunction of all LTL formulas defined by the axioms, CF is the
conjunction of the activity temporal constraints, CTF

is the conjunction of all
LTL formulas defined by the semantics of the process tree, and Q is an arbitrary
query expressed in LTL (cf. Section 5.2).

In this paper, we present an encoding of the ATDP’s semantics into NuSMV, a
well-known software for model-checking [3]. First, the notion of process execution
is defined using an activity variable, with a domain of all the activities in the
ATDP. At any given step, the system may choose a single value for this variable,
meaning that this activity has been executed. This ensures that simultaneous
execution of activities will not happen.

The system definition for an ATDP is then split into two parts: a transition
system and an LTL property specification. The transition system is a graph
defining the next possible values for the activity variable given its current value.
In our proposed encoding the transition system is specified as a complete graph,
since all the behavioural constraints are specified in A, CF and CTF

as parts
of the property specification, as seen in Eq. (1). This property specification is
directly encoded as a single LTL formula.

We can adapt NuSMV, which performs model checking on infinite traces, to
check properties on finite traces when necessary. In order to do that, we add
a special activity value STOP. In the transition system, an edge is added from
any possible activity to STOP. Additionally, the constraint ♦STOP is added to
the antecedent of the LTL property specification. This enforces that all traces
accepted by the model end in an infinite loop repeating the (only) execution of
the STOP activity, which is equivalent to terminating execution.

Non-temporal information can be introduced in the queries without increas-
ing the problem complexity, since the information is statically defined. For ex-
ample, when the text mentions that several activities are performed by a certain
role, this information remains invariant during the whole model-checking phase.
Thus, queries concerning roles can be translated directly into queries about the
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set of activities performed by that role. A possible encoding of this into a model
checker consists of adding additional variables during the system definition.

When dealing with multiple interpretations, the above framework is extended
with two types of queries:

Existential: Is the proposition true in any interpretation of the process?
∃I ∈ ATDP : (AI ∧ CFI

∧ CTFI
) =⇒ Q

Complete: Is the proposition true in all interpretations of the process?
∀I ∈ ATDP : (AI ∧ CFI

∧ CTFI
) =⇒ Q

Existential and complete queries can be used to reason in uncertain or incomplete
specifications of processes.

An application of complete queries would be finding invariant properties of
the process. That is, a property that holds in all possible process interpreta-
tions. Existential queries, in turn, fulfill a similar role when the proposition being
checked is an undesired property of the process. By proving invariant proper-
ties, it is possible to extract information from processes even if these are not
completely specified or in case of contradictions. A negative result for this type
of query would also contain the non-compliant interpretations of the process,
which can help the process owner in gaining some insights about which are the
assumptions needed to comply with some business rule.

Tool Support.
The encoding technique described in Section 6.1 has been implemented in a

prototype tool, ATDP2NuSMV. The tool can be used to convert an ATDP specifi-
cation into a NuSMVinstance.

ATDP2NuSMV is distributed as a standalone tool, that can be used in any
system with a modern Java installation, and without further dependencies. A
compiled version as well as the source code can be found in the following repos-
itory: https://github.com/setzer22/atdp2nusmv.

In the next subsection, we present use cases that have been tested with
ATDP2NuSMV and NuSMV. The ATDP specifications as well as the exact query en-
codings can be found in the repository. The use case examples are based on a
full version of the specification presented in Figure 3.

Use Case 1: Model Consistency. An ATDP specification can be checked
for consistency using proof by contradiction. Specifically, if we set Q = ⊥, the
reasoner will try to prove that A ∧ CF ∧ CTF

→ ⊥, that is, whether a false
conclusion can be derived from the axioms and constraints describing our model.
Since this implication only holds in the case ⊥ → ⊥, if the proof succeeds we
will have proven that A∧CF ∧CTF

≡ ⊥, i.e. that our model is not consistent. On
the contrary, if the proof fails we can be sure that our model does not contain
any contradiction.

To illustrate this use case, we use interpretations hosp-1 and hosp-1-bad,
available in our repository. The first interpretation consists of a complete
version of the specification in Figure 3, where F.activities includes a1 =
takes (the sample) and a2 = validates (sample state), and constraints
in CF include: Mandatory(a1), Precedence({a1}, a2) and Response(a1, {a2}).
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NuSMVfalsifies the query in interpretation hosp-1 with a counter-example. When
the model is consistent, the property is false, and the resulting counter example
can be any valid trace in the model.

The second specification, hosp-1-bad adds Precedence({a2}, a1) to the
set of relations R. This relation contradicts the previously existing
Precedence({a1}, a2), thus resulting in an inconsistent model. Consequently,
NuSMVcannot find a counter-example for the query in interpretation hosp-1-bad.
This result can be interpreted as the model being impossible to fulfill by any
possible trace, and thus inconsistent.

Use Case 2: Compliance Checking.
Business rules, as those arising from regulations or SLAs, impose further re-

strictions that any process model may need to satisfy. On this regard, compliance
checking methods assess the adherence of a process specification to a particular
set of predefined rules.

The presented reasoning framework can be used to perform compliance check-
ing on ATDP specifications. An example rule for our running example might be:
“An invalid sample can never be used for diagnosis”. The relevant activities
for this property are annotated in the text: a3 = (the sample) can be used,
a4 = (the sample) is contaminated, a5 = makes the diagnosis, and the
property can be written in LTL as: Q = �(a4 → (¬a5 U a3)).

In the examples from our repository, interpretations hosp-2-i, with
i={1,2,3}, correspond to the three interpretations of the process shown in Fig-
ure 3. Particularly, the ambiguity between the three interpretations is the scope
of the repetition when the taken sample is contaminated. The three return-
ing points correspond to: sign an informed consent, sampling is prepared

and take the sample. NuSMVfinds the property true for all three interpretations,
meaning that we can prove the property �(a4 → (¬a5 U a3)) without resolving
the main ambiguity in the text.

Use Case 3: Conformance Checking. Conformance checking techniques put
process specifications next to event data, to detect and visualize deviations be-
tween modeled and observed behavior [2]. On its core, conformance checking
relies on the ability to find out whereas an observed trace can be reproduced by
a process model.

A decisional version of conformance checking can be performed, by encoding
traces inside Q as an LTL formulation. Given a trace t = 〈a1, a2, · · · , aN 〉, we
can test conformance against an ATDP interpretation with the following query6:

Q = ¬(a1 ∧◦(a2 ∧◦(... ∧◦(aN ∧◦STOP))))

This query encodes the proposition “Trace t is not possible in this model”.
This proposition will be false whenever the trace is accepted by the model.

6 The proposed query does not account for the start and end activities of scopes, which
are not present in the original trace. A slightly more complex version can be crafted
that accounts for any invisible activity to be present between the visible activities
of the trace. We do not show it here for the sake of simplicity.
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Other variants of this formulation allow for testing trace patterns: partial traces
or projections of a trace to a set of activities. In this case, the counter-example
produced will be a complete trace which fits the model and the queried pattern.

As an example of this use-case, we provide the example ATDP interpre-
tation hosp-3 in our repository. We project the set of relevant activities to
the set a6 = informs (the patient), a7 = signs (informed consent)

a8 = arranges (an appointment). Two trace patterns are tested, the first:
t1 = 〈· · · a6, a7, a8, · · · 〉 and t2 = 〈· · · a7, a6, a8, · · · 〉. NuSMVfinds the trace pat-
tern t1 fitting the model, and produces a full execution trace containing it. On
the other hand, t2 does not fit the model, which is successfully proven by NuSMV.

7 Conclusions and Future Work

This paper proposes ATDP, a novel multi-perspective language for the repre-
sentation of processes based on textual annotation. On the control-flow dimen-
sion, ATDP is a mixture of imperative constructs at general level via scopes, and
declarative constructs inside each scope. In a way, the language generalizes pro-
cess trees, allowing declarative relations instead of atomic activities in the leaf
nodes. The paper also shows how to translate ATDP specifications into temporal
formulas that are amenable for reasoning. Three use cases in the context of BPM
are shown, illustrating the potential of the ideas in this paper.

Several avenues for future work are under consideration. First, to explore
alternatives or refinements of the encoding in Eq. (1) to make it more suitable
in a model-checking context. Second, to validate the proposed language against
more examples and use cases, specifically by testing how the ATDP primitives
accommodate to different document styles. Finally, studying the connection be-
tween ATDP and other process model notations may serve as a bridge between
textual descriptions and their operationalization within an organization.
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