
Data-Aware Remaining Time Prediction of
Business Process Instances

Mirko Polato
Member, IEEE

Alessandro Sperduti
Senior Member, IEEE

Andrea Burattin
Member, IEEE

Massimiliano de Leoni

Abstract— Accurate prediction of the completion time of a
business process instance would constitute a valuable tool when
managing processes under service level agreement constraints.
Such prediction, however, is a very challenging task. A wide
variety of factors could influence the trend of a process instance,
and hence just using time statistics of historical cases cannot be
sufficient to get accurate predictions. Here we propose a new
approach where, in order to improve the prediction quality,
both the control and the data flow perspectives are jointly
used. To achieve this goal, our approach builds a process
model which is augmented by time and data information in
order to enable remaining time prediction. The remaining time
prediction of a running case is calculated combining two factors:
(a) the likelihood of all the following activities, given the data
collected so far; and (b) the remaining time estimation given
by a regression model built upon the data.

Index Terms— Data-aware Prediction, Process mining, Naı̈ve
Bayes, Support Vector Regression

I. INTRODUCTION

The number of companies adopting Process Aware In-
formation Systems to support their business processes is
constantly growing. All these systems leave traces of each
executed activity in the form of event logs, and these logs,
nowadays, have been analyzed under several aspects. The
two most important disciplines, in charge of such analysis,
are data and process mining. Data mining analyzes the so
called data perspective: set of values that are recorded and
analyzed independently from the business process they are
coming from. Process mining, on the other hand, consid-
ers the entire business process as a whole, and therefore
allows holistic analyses on data that always are assumed
coming from the execution of a business process. A business
process can be seen as a sequence of actions executed to
achieve a given goal. The main idea of process mining
is to discover a process models, monitor (i.e., monitoring
deviations by comparing model and log) and improve busi-
ness processes (e.g., social network/organizational mining,
reccomandation/prediction system), by extracting knowledge
from event logs. Event logs are files containing data referring
to executions of a specific process. A typical information that
can be extracted from an event log is the actual control-flow
of work. Besides the information related to the workflow,
often event logs contain additional data (e.g., resources,

All authors are with the Department of Mathematics, University of Padua,
Italy. M. de Leoni is also affiliated with the Department of Mathematics and
Computer Science, Eindhoven University of Technology, The Netherlands.

Corresponding author is M. Polato: mpolato@math.unipd.it.

timestamp) which could be used to perform several types
of analysis targeting “different perspectives”. Data analysis
which involve more than one perspective are referred to as
multi-perspective analysis. Table I shows an example of the
information that an event log typically contains. Each row
represents an event, while each column represents an attribute
of the event. It is possible to group events that belong to the
same process instance using the Case Id field.

Nowadays, several new techniques are populating the fam-
ily of multi-perspective approaches. The basic idea, in these
cases, is to define new algorithms that are able to exploit
and take advantage from the combination of techniques that
belongs to the data and process mining fields. It is possible
to characterize process mining techniques according to their
“application time” (i.e. when the analysis takes place). There
are, basically, two possible categories: (i) a-posteriori; and
(ii) at runtime. The first case considers as input a finite
portion of historical data and tries to extract knowledge out of
it. The latter approach, on the other hand, gives information
as long as the business process is running. From a business
perspective, it is important to get new information and new
knowledge as soon as possible, in order to take the proper
actions. For example, in a financial institute, handling several
business processes instances, it is fundamental to identify
frauds as soon as possible, in order to avoid loss of important
resources.

In this paper we are going to present a new technique that
can be used in operational settings. Specifically, we provide
an approach that is able, for a running (i.e. not yet completed)
case, to predict the completion time of such process instance.
The described prediction relies on multiple perspectives: it
is based on both the flow of the activities of the running
case, and on the data that the current process instance is
generating.

A graphical representation of the typical application sce-
nario of our approach is shown in Fig. 1. Specifically, given a
partial trace containing the logs of already executed activities,
it is possible to collect all the data attributes observed until
that moment. Considering again the example in Fig. 1, after
the execution of A, B, and C, the following attributes are
available: Amount = $1000; Customer category = gold; and
Payments required = 10. With all this information (history
of the trace and set of data attributes), we are able to predict
the completion time of the running instance. The reported
experimental results, both on artificial and real data, show
that prediction accuracy strongly benefits from the usage



TABLE I
EXAMPLE OF AN EVENT LOG FRAGMENT WITH EVENTS SORTED USING THEIR TIMESTAMP AND GROUPED BY CASE ID.

Case Id Timestamp Resource Activity Category Amount Payments Required

65923 20-02-2002:11.11 Jack A - 1000 -
65923 20-02-2002:13.31 Jack B Gold 1000 -
65923 21-02-2002:08.40 John C Gold 900 10
65923 22-02-2002:15.51 Joe F Gold 900 10

65924 19-02-2002:09.10 Jack A - 200 -
65924 19-02-2002:13.22 John B Standard 200 -
65924 10-02-2002:17.17 John D Standard 200 8
65924 21-02-2002:10.38 Joe F Standard 200 8

65925 25-02-2002:10.50 Jack A - 850 -
65925 25-02-2002:13.01 John B Gold 850 -
65925 25-02-2002:16.42 Joe E Gold 500 3
65925 26-02-2002:09.30 Joe F Gold 500 3

ARunning case:

Amount: 1000$

B C

Payments required: 10

Customer category: "gold"

Current state

...

Comple�on �me

Time

Fig. 1. Graphical representation of the application scenario of the described
approach: given a running case we can predict its completion time. We
assume that each executed activity (represented as filled boxes) records some
additional attributes (represented as labels). Dashed boxes represent future
activities.

of multiple perspectives, and that our approach outperforms
previous ones.

The remainder of this paper is structured as follows:
Section II reviews recent works concerning prediction tasks
in the framework of process mining. Section III gives some
essential definitions that are used throughout the paper,
while Section IV defines the core framework and describes
the proposed approach in detail. Experimental results, on
artificial and real logs, are described in Section V, and
conclusions are presented in Section VI.

II. RELATED WORK

The problem of accurate prediction of the completion time
of a business process instance has already been addressed by
various authors and different approaches have been proposed.
Here we summarize the most relevant ones.

One of the first tools capable of predicting the cycle time
of running process instances is TIBCO Staffware iProcess
Suite [1]. The prediction engine uses simulations to complete
the running case, without taking into account historical data.
This approach is based on a single run through the process
model using parameters provides at build time, such as
process routing and expected activity durations. In [2] and
[3], B.F. van Dongen et al. exploit all the data available

in the event log (not only the time information) and use
non-parametric regression to predict the cycle time of a
running case. Van der Aalst et al. [4] have shown how
historical information can be used to build a recommendation
system, which is able to predict the next activity of the
running instance. In [5] the problem of predicting execution
durations of process instances has been analyzed in a proper
way, with particular emphasis on issues related to cross-
trained resources, however no specific prediction algorithm
is proposed. In [6], Song et al. have shown an approach
which is not only based on event logs, but it also requires a
process model in terms of a transition system (built w.r.t.
a given abstraction level). The approach generates a new
transition system augmented with time information, learned
from historical cases, which can be used for prediction.
In [7], the data perspective is taken into consideration to
predict SLAs (Service Level Agreement) violations. In this
work, besides the explicit data obtained from the event
log (called facts), Leitner et al. estimate the amount of
unknown data in order to improve the prediction quality.
The prediction model is based on a regression technique,
i.e., a multilayer perceptron trained with the Backpropagation
algorithm. Folino et al. ([8], [9]) present an ad-hoc predictive
clustering approach, which exploits the method proposed in
[6]. Specifically, their approach partitions (i.e. clusters) the
log traces according to their associated context features, and
for each of these clusters a predictive model (see [6]) is built.
The actual prediction considers the cluster that is closest to
the partial trace of the running case, and the model associated
to that cluster is used to predict the remaining time. Finally,
an approach which employs the so called instance-specific
probabilistic process model (PPM) to predict the likelihood
of future tasks is described in [10]. The paper also demon-
strates that, on the basis of certain assumptions, the obtained
model is Markovian.

The novelty of the approach proposed in this paper, with
respect to the ones described above, lies in considering the
values of data attributes to predict the remaining time of
a running case. The intuition is that the remaining time



of a case depends on the event just observed, and on the
data attribute values collected until that moment. Different
data attribute values, typically, can lead to different paths
through the process model, and each path can have a different
completion time. Moreover, the same path can have different
durations depending on the observed values of the data at-
tributes. With this in mind, our approach uses a representative
set of training event logs to build up a process model (i.e.
transition system) enriched by regression models trained with
the information extracted from the event log.

Once the enriched process model are built, remaining time
predictions can be performed by replaying the activities of
the running cases over the model, and using the regression
models belonging to each reached state.

III. PRELIMINARIES

This section reports the basic notations and definitions that
are required to understand our approach. Specifically, how to
build a transition system annotated with regression models.

Given a set K, a finite sequence over K of length n is a
mapping s ∈ ([1, n] ⊂ N) → K, and it is represented by a
string, i.e., s = 〈s1, s2, . . . , sn〉. Over a sequence s we define
the following functions:
• selection operator (·): s(i) = si, ∀ 1 ≤ i ≤ n;
• hdk(s) = 〈s1, s2, . . . , smin(k,n)〉;
• tlk(s) = 〈sw, sw+1, . . . , sn〉

where w = max(n− k + 1, 1);
• |s| = n (i.e. the length of the sequence).
Let us now define the notions of event, trace and event

log.
Definition 1 (Event): An event is a tuple

e = (a, c, t, d1, . . . , dm), where:
• a ∈ A is the process activity associated to the event;
• c ∈ C is the case id;
• t ∈ N is the event timestamp (seconds since 1/1/19701);
• d1, . . . , dm is a list of additional attributes, where
∀ 1 ≤ i ≤ m, di ∈ Di, Di being the domain of the i-th
attribute.

We call E = A×C×T ×D1×· · ·×Dm the event universe.
Over an event e we define the following projection

functions: πa(e) = a, πc(e) = c, πt(e) = t and
πdi(e) = di,∀ 1 ≤ i ≤ m. If e does not contain the attribute
value di for some i ∈ [1,m] ⊂ N, πdi(e) =⊥.

Definition 2 (Trace, Partial Trace): A trace is a finite se-
quence of events σc = 〈e1, e2, . . . , e|σc|〉 ∈ E∗ such
that ∀ 1 ≤ i ≤ |σ|, πc(ei) = c ∧ ∀ 1 ≤ j < |σc|,
πt(σc(j)) ≤ πt(σc(j + 1)). We define a partial trace of
length i as σic = hdi(σc), for some i ∈ [1, |σc|] ⊂ N. We
call T the set of all possible (partial) traces.

An event log L is a set of traces, L = {σc | c ∈ C}.
Let us now define a transition system (TS) [6], [11], and

how one TS can be constructed starting from an event log.
Definition 3 (Generic Transition System): A transition

system is a triple (S,E, T ), where S is the set of states

1We assume this representation according to the Unix epoch time.

(i.e. possible state of the process), E is the set of events
(i.e. transition labels), and T ⊆ S × E × S is the set of
transitions which describe how a system can move from one
state to another one. Sstart ⊆ S is the set of initial states,
and Send ⊆ S is the set of final states.

A walk, in a Generic Transition System, is a
sequence of transitions 〈t1, t2, . . . , tn〉 such that
t1 = (s1 ∈ Sstart, e, s′1), tn = (sn, e, s

′
n ∈ Send) and

∀ 1 < h < n, th = (sh, e, s
′
h) s.t. s

′
h /∈ Send ∧ s′h = sh+1.

We say that a trace is compliant with the transition
system if it corresponds to a walk from si ∈ Sstart

to se ∈ Send. Given a state s ∈ S, it is possible to
define the set of reachable states from a given state s as:
s• = {s′ ∈ S | ∃t ∈ T, ∃e ∈ E s.t. t = (s, e, s′)}. Given a
state s ∈ S we define the set of transitions enabled by s as
Ts = {(s, e, q) ∈ T | q ∈ s • ∧ e ∈ E}.

According to van der Aalst et al. [6], to construct a
transition system which maps each partial trace in the log to
a state, we need the so called state and event representation
functions.

Definition 4 (State representation function): Let Rs be
the set of possible state representations, a state representation
function f state ∈ T → Rs is a function that, given a (partial)
trace σ returns some representation of it (e.g., the set of
included activities, the multiset of included activities, the
sequence of included activities).

Definition 5 (Event representation function): Let Re be
the set of possible event representations, an event represen-
tation function f event ∈ E → Re is a function that, given an
event e produces some representation of it (e.g., πa(e)).

Definition 6 (Transition System): Given a state represen-
tation function f state, an event representation function f event

and an event log L, we define a Transition System as
TS = (S,E, T ), where:
• S = {f state(hdk(σ)) | σ ∈ L ∧ 0 ≤ k ≤ |σ|}

is the state space;
• E = {f event(σ(k)) | σ ∈ L ∧ 1 ≤ k ≤ |σ|}

is the set of event labels;
• T (⊆ S × E × S) = {f state(hdk(σ)), f event(σ(k + 1)),
f state(hdk+1(σ))) | σ ∈ L ∧ 0 ≤ k < |σ|}
is the transition relation.

Sstart = {f state(〈〉)} is the set of initial states, and Send =
{f state(σ) | σ ∈ L} is the set of final states.
Choosing the right functions f state and f event, also referred to
as abstractions, is not a trivial task [12], [6]. A conservative
choice (e.g., no abstraction: f state(σc) = σc, f event(e) = e)
can lead to a transition system which does overfit the log
L, because the state space becomes too large and specific.
An aggressive choice (e.g., f state(σc) = {σc(|σc|)}), instead,
can lead to a transition system that overgeneralizes the log L,
allowing too much behavior. In this latter case the transition
system is underfitting L. Some possible good choices for
f state and f event are described and discussed in [12] and
[6]. A common event abstraction is f event(e) = πa(e),
which maps an event onto the name of the activity, while
commons state abstractions are: the set abstraction (i.e.,



f state(σc) = {πa(e) | e ∈ σc}) and the list abstraction (i.e.,
f state(σc) = 〈πa(σc(1)), . . . , πa(σc(|σc|))〉).

Algorithm 1 shows how to construct a transition system
from an event log, while Figure 2 shows an example of a
transition system extracted from the log fragment reported
in Table I.

Algorithm 1: Construction of a Transition System
Input: L: event log; f state: state representation function;

f event: event representation function
Output: TS: transition system

1 S,E, T ← ∅
2 foreach σ ∈ L do
3 for k ← 0 to |σ| do
4 if s = f state(hdk(σ)) /∈ S then
5 S ← S ∪ {s}
6 end
7 end
8 end

9 foreach σ ∈ L do
10 for k ← 0 to |σ| do
11 s← f state(hdk(σ))
12 e← f event(σ(k + 1))

13 s′ ← f state(hdk+1(σ)))

14 if e /∈ E then
15 E ← E ∪ {e}
16 end

17 if t = (s, e, s′) /∈ T then
18 T ← T ∪ {t}
19 end
20 end
21 end
22 TS ← (S,E, T )
23 return TS

s0{}

s1{A} s2{B} s3{D}

s4{C}

s5{E}

s6{F}

A

B

C

D

E

F

F

F

Fig. 2. Example of a transition system extracted from a log containing three
trace types 〈A,B,C, F 〉, 〈A,B,D, F 〉 and 〈A,B,E, F 〉, with f event(e) =
πa(e) and f state(σ) = {f event(σ(|σ|))}. The state s0 is the initial state,
while s6 is the accepting (i.e., final) state. The notation s1{A} means that
the state s1 has a state representation equals to {A}. Each transition is
labeled by the corresponding event representation value.

IV. WORKING FRAMEWORK

The previous section reported a technique to build a tran-
sition system out of an event log. In this section, instead, we
show how to enrich such transition system with classification
and regression models, and how to use these models to
predict the remaining time of running cases of the business
process.

The approach presented in this paper exploits the same
idea described in [6]. The core difference is the introduction
of classification and regression models. Once the standard
transition system is built, we enrich each state with a Naı̈ve
Bayes classifier [13], [14], [15] and each transitions with
a Support Vector Regressor [16], [17], [18] trained with
historical data. The intuition is that the Naı̈ve Bayes classifier
is used to estimate the probability of transition from state s
to state s′, while the SVR regressor is used for predicting
the remaining time from s′. Figure 3 proposes an example

s2{B}

s4{D}s3{C} s5{E}

0.6
0.1

0.3

Fig. 3. A state annotated with a Naı̈ve Bayes classifier. The probability
of going from state s2 to any of its exiting states is reported next to the
corresponding edge. These probabilities are the result of the Naı̈ve Bayes
classifier, which takes as input also the data attributes of the running case.

of state (s2) annotated with a Naı̈ve Bayes classifier. In
this state, the Naı̈ve Bayes classifier, is used to get the
probabilities to reach each exiting state: the probabilities
to reach states s3, s4 and s5 are respectively 0.6, 0.1 and
0.3. Such probabilities are used to weigh the remaining time
values obtained from the support vector regression (Steps
6-8 of Alg. 3). Considering again the Figure 3, state s2 is
the state which corresponds to the current partial trace σ′.
From each outgoing state (i.e., s3, s4, s5) the remaining time
is then estimated using the SVR associated to the incoming
transition. Once obtained the estimations, each of these are
summed with the average duration of the corresponding
transition. Afterwords, these values are multiplied by the
probability values got from the NB classifier, and finally
summed together in order to get a weighted average. Figure 4
presents an example of remaining time estimation for each
outgoing state. In this example the estimated remaining time,
starting from the state s3, is 2 hours, while the average
duration of the transition s2 → s3 is 20 minutes. Formally,
let p̂s′ be the Naı̈ve Bayes estimated probability to reach
state s′ ∈ s• from state s, and τ̂(s, e, s′) the estimated
time returned by the SVR associated to transition (s, e, s′).
Moreover, given a trace σ 6= 〈〉 ∈ T and an event index



s2{B}

s4{D}s3{C} s5{E}

Duration: 20 m
Remaining: 2 h

Duration: 30 m
Remaining: 3 h

Duration: 10 m
Remaining: 1 h

Fig. 4. Example of a Support vector regressor application. The estimated
remaining times are suggest by the label Remaining, while the values with
the label Duration indicate the average time duration of the transition.

i ∈ ([1, |σ| − 1] ⊂ N), we define soj as:

soj (σ, i) = πt(σ(i+ 1))− πt(σ(i)).

If σ = 〈〉 ∨ i /∈ ([1, |σ| − 1] ⊂ N) then soj (σ, i) = 0. This
function calculates the so called sojourn time [6], which is
the time elapsed between to consecutive events in a trace (in
Fig. 4 it is referred as Duration).

At this point, given the state s reached after observing
a (partial) trace σ, the prediction returned by the annotated
transition system is:∑

(s,e,s′)∈Ts

p̂s′ · τ̂(s, e, s′) + ÊL [soj (σ, |σ|)] ,

where ÊL refers to the estimated expected value computed
over the training log L.

For training we also need to define the remaining time
function rem . Given a trace σ 6= 〈〉 ∈ T and an event index
i ∈ ([1, |σ|] ⊂ N), we define rem as:

rem(σ, i) = πt(σ(|σ|))− πt(σ(i)).

If σ = 〈〉 ∨ i /∈ ([1, |σ|] ⊂ N) then rem(σ, i) = 0.
In order to exploit the classification and regression models

we need some preprocessing to extract data from the event
log. In particular, given a partial trace σic we have to extract
the last values (in temporal order) of all the additional
data attributes d1, . . . , dm, and then put these values into a
numerical vector. As mentioned in Section I, in an event log,
additional attributes may belong to a continuous data domain,
to a discrete numerical, or to a discrete nominal data domain.
In the first two cases, data values are simply put into a single
component vector without any further processing. In the third
case (i.e., discrete nominal data) we use a one-hot encoding,
in which the nominal data value di is represented as a binary
vector v ∈ {0, 1}|Di|, with all values set to 0 except for
the component referring to di, which is set to 1. Finally,
all these vectors are concatenated together. Let us recall the
example depicted in Fig. 1. We suppose that events have
timestamps respectively 0, 3, 7 and case id equals to 17. We
assume also that the Customer category attribute can assume

this set of values D = {gold, silver, bronze}. Let’s call
σ17 = 〈e1, e2, e3〉, where e1 = (A, 17, 0, 1000,⊥,⊥), e2 =
(B, 17, 3,⊥, gold,⊥) and e3 = (C, 17, 7,⊥,⊥, 10). The
attributes Amount and Payments required are both numerical,
while Customer category is nominal. For this last attribute,
applying the one-hot encoding means to translate the domain
D into a vector v ∈ {0, 1}|D|, with all components set to
0 except one. In this example, |D| = 3, so v belongs to
{0, 1}3 and πCustomer category(e2) is translated into v = [0, 1, 0].
Considering the last values of all additional attributes, we get
the three vectors [1000], [0, 1, 0] and [10]. The concatenation
of these vectors returns the desired vector [1000, 0, 1, 0, 10].

Formally, we define a function last which, given a
(partial) trace σc ∈ T and an additional attribute index
i ∈ [1,m] ⊂ N, returns the last value assigned to the di
attribute:

last(σc, i) = max
1≤j≤|σc|

πdi (σc(j)) 6=⊥

πdi(σc(j)).

If there is no index j such that πdi(σc(j)) 6=⊥,
last(σc, i) =⊥.

Now each attribute must be represented in a vectorial form.
In particular, given a (partial) trace σc, for each attribute we
need to consider the last assigned value. In order to convert
all attributes d1, . . . , dm into a single numerical vector, we
check their domains and:
• if Dj is a numerical domain, we project the value

last(σc, j) into a vector with one corresponding com-
ponent;

• otherwise, we use the one-hot encoding for representing
last(σc, j): we consider a vector with size |Dj | where
each component refers to one element in Dj ; the vec-
torial representation for v ∈ Dj is given by the vector
with all zeros except for the one referring to v.

If last(σc, j) =⊥ then the null vector, of the right size, is
considered. The final vector γ∗(σc) is built considering the
concatenation of the representations just mentioned for all
attributes dj .

Let us now define the three kinds of annotation used in
this work to enrich the transition system model. In general,
an annotation, over a transition system TS = (S,E, T ), is a
function which associates some data to a state s ∈ S or to a
transition t ∈ T .

Definition 7 (Sojourn Time Annotation): Let TS be a tran-
sition system, obtained from an event log L, based on an
event representation function f event and a state representation
function f state. A Sojourn Time Annotation is a function
A : T → R, which returns the average sojourn time for
a given transition t ∈ T , based on the event log L.

Definition 8 (Naı̈ve Bayes Annotation): Let TS be a tran-
sition system, obtained from an event log L, based on an
event representation function f event and a state representation
function f state. Let’s call k the size of the γ∗(σ) vector
calculated for traces σ ∈ L. A Naı̈ve Bayes Annotation is



a function NB : S×Rk×S → [0, 1] ⊂ R, which, given two
states si, sj ∈ S and a data attribute vector v ∈ Rk, returns
the probability to reach the state sj starting from si through
a single transition, applying Naı̈ve Bayes.

Definition 9 (SVR Annotation): Let TS be a transition sys-
tem, obtained from an event log L, based on an event repre-
sentation function f event and a state representation function
f state. An SVR Annotation is a function R : T × Rk → R,
which, given a transition t ∈ T and a data attribute vector
v ∈ Rk, applies Support Vector Regression to return an
estimation of the remaining time.

Using these three annotations, we define an annotated
transition system as follows:

Definition 10 (Annotated TS): Let TS = (S,E, T ) be a
transition system, obtained from an event log L, based on an
event representation function f event and a state representation
function f state. A Annotated Transition System is a tuple
PTS = (S,E, T,A,NB , R) where, A, NB , R are respec-
tively a sojourn time, a Naı̈ve Bayes and a SVR annotation,
based on the event log L and the transition system TS.

Training

In this section, we describe how to construct an Annotated
Transition System. Algorithm 2 summarizes the construction
procedure.

Steps 1 to 3 intializes the training set for each transition to
the empty set. The external loop (Steps 4-18) goes through
the log, extracting one trace σc at a time, while the inner
loop (Steps 5-17) replays the trace σc over the transition
system. For each partial trace the newest attributes data (i.e.,
currentData) are collected, and the corresponding state is
identified in the transition system (Steps 6 and 9). Steps
11 and 12, respectively, calculates the remaining time (i.e.,
currentRem), and adds the pair (currentData, currentRem)
as training instance to the SVR associated to the current
transition. Then the average sojourn time of the current state
is updated, and the training instance (currentData, state) is
added to the Naı̈ve Bayes associated to the current state.
Within the last loop (Steps 19-21) all the SVR are trained
using the training sets built in the previuos steps. Finally,
the annotated transition system is constructed, using the
predictors and the collected statistics.

Prediction

In this section, we describe how to predict the remaining
time for a running case using an Annotated Transition
System. Algorithm 3 summarizes the prediction procedure.

First of all (in Steps 2-3), the algorithm identifies the state
reached by the current partial trace (i.e., σp) and extracts
the additional data attributes. Within the if branch of the
condition (Steps 6-9), the algorithm treats the case in which
the current state originates more than one transition. In this
case, the Naı̈ve Bayes classifier calculates the probability
to reach any following state (i.e., NB(state, data, s)). Such
probabilities are used to weigh the remaining time estimation
returned by the regression model (Steps 6-8). Finally, the

Algorithm 2: Construction of an Annotated Transition
System
Input: L: event log; TS = (S,E, T ): transition system
Output: T ′: annotated transition system

/* Initialization */
1 foreach t ∈ T do
2 svrTrain[t] = ∅ /* Training set for t */
3 end

4 foreach σc ∈ L do
5 for i← 1 to |σc| − 1 do
6 currentState← f state(σic)
7 nextState← f state(σi+1

c )
8 nextEvent← f event(σc(i+ 1))
9 currentData← γ∗(σic)

10 trans← (currentState, nextEvent, nextState)
11 currentRem← rem(σc, i)
12 svrTrain[trans]←
13 svrTrain[trans]∪ (currentData, currentRem)

/* Update statistics A */
14 currentSoj← soj(σc, i)
15 Update average sojourn time for trans

/* Update NB, function NB */
16 Update NB for state currentState with the

training instance (currentData, nextState)
17 end
18 end

19 foreach t ∈ T do
/* Train SVR, function R */

20 Train SVR for transition t with training set
svrTrain[t]

21 end

22 T ′ ← (S,E, T,A,NB , R)
23 return T ′

average state sojourn time is added to the time prediction. In
the else branch, instead, the time prediction comes directly
from the regression model associated with the previous
transition (Steps 11-14), since there is just a single transition
from state s to state s′.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The technique has been implemented for the ProM
framework [19]. To mine the transition systems, we rely
on the miner’s implementation available in ProM. Naı̈ve
Bayes Classifications and the Support Vector Regressions
are performed using the implementation in the Weka frame-
work [20].

We also aimed to minimize the configuration requirement
and, thus, the number of parameters to be set up. The Naı̈ve
Bayes Classifier requires no parameters, whereas Support
Vector Regression requires to choose the kernel type: ei-
ther polynomial or RBF [21]. The first kernel requires, as
parameter, the polynomial degree; the latter requires the γ



TABLE II
RESULTS ON TWO REAL-LIFE CASE STUDY. FOR COMPARISON, THE MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) AND THE ROOT MEAN SQUARE

PREDICTION ERROR (RMSPE) HAVE BEEN USED. RESULTS ARE ASSESSED USING A 5-FOLD CROSS VALIDATION. BETTER RESULTS ARE

HIGHLIGHTED IN BOLD.

Our Approach van der Aalst et al.

Polynomial Kernel RBF Kernel
Transition System Abstraction MAPE RMSPE MAPE RMSPE MAPE RMSPE

Event Log with 1500 Traces

Set with Limit 1 8.93% 2.69% 9.13% 2.73% 23.04% 3.53%
Set with No Limit 7.61% 1.96% 7.60% 1.80% 22.95% 3.48%
List with No Limit 7.68% 1.97% 7.61% 1.80% 22.90% 3.41%

Event Log with 5000 Traces

Set with Limit 1 5.78% 1.87% 7.42% 2.14% 9.98% 2.33%
Set with No Limit 5.07% 1.13% 6.68% 1.37% 9.82% 2.37%
List with No Limit 5.08% 1.13% 6.69% 1.38% 9.13% 2.27%

Algorithm 3: Remaining time prediction for a running
case
Input: σp: (partial) trace; TS: annotated transition

system
Output: P : remaining time prediction

1 P ← 0
2 state← f state(σp)
3 data← γ∗(σp)
4 exiting← Tstate

5 if |exiting| > 1 then
6 foreach (state, trans, nextSt) ∈ exiting do
7 P ← P +NB(state, data, nextSt) ·

(R(trans, data) +A(trans))
8 end
9 else

10 prevSt← f state(σ
|σp|−1
p )

11 prevTrans← (prevSt, e, state) ∈ TprevSt

12 P ← R(prevTrans, data)
13 end
14 return P

value.
The improvement in the prediction with respect to existing

approaches is assessed by comparing our technique versus
the technique reported in van der Aalst et al. [6]. We
also aimed to compare our approach versus the techniques
proposed in [8], [9]. Unfortunately, up to this date, neither
an implementation of these approaches nor the event logs
used in the papers are publicly available. Of course, it is not
possible to compare results obtained through different event
logs, as the quality of a prediction heavily depends on the
information available in the event log.

The comparison with the technique in [6] was made using
a real-life case study. It concerns the execution of process
instances in an information system for the management of
road-traffic fines by a local police of an Italian municipality.

The management of road-traffic fines has to comply with
Italian laws, which detail the precise work flow. Usually,
when a driver commits a violation, a policeman opens a new
fine’s management and leaves a ticket on the car’s glass. The
fine’s amount depends on the violation performed. Within
180 days, the fine notification must be sent to the offender.
The payment can occur in any moment, i.e. before or after
that the fine notification is sent by post. If the offender
does not pay within 60 days since the reception of the fine
notification, the fine doubles. If the offender never pays,
eventually the fine is sent to a special agency for credit
collection.

In particular, from the Information Systems we extracted
two event logs that refer to executions that end with sending
for credit collection, i.e. the offenders have not paid the fine
in full. These event logs refer to non-overlapping periods
in time and contains 1500 log traces and 5000 log traces,
respectively. The experiments were performed using the
Weka default value for the C SVR hyper-parameter, and
two kernel types: polynomial with degree 3 and RBF with γ
equal to 10. The transition system was mined using different
abstractions, namely set with limit 1 or no limit and list with
no limit. Since, in the event logs, for 99% of traces, every
activity was performed at most once, the multi-set abstraction
was not considered to perform experiments.

Table II reports the results of the experiments for the
polynomial and RBF case. For both of cases, the values
in the table refers to a 5-fold cross validation. The results
are also compared with those obtained by the technique
in [6]. To measure and compare the accuracy, we used two
indicators: the Mean Absolute Percentage Error (MAPE) and
the Root Mean Square Prediction Error (RMSPE). Let n be
the number of samples and let Ai and Fi be respectively
the actual value and the predicted value for the i-th sample.
MAPE usually expresses the accuracy as a percentage:

MAPE =
100%

n

n∑
i=1

∣∣∣∣Ai − FiAi

∣∣∣∣



RMSPE is also defined as a percentage:

RMSPE = 100%

√∑n
i=1(Ai − Fi)2

n

The experimental results show that, especially for the poly-
nomial case, the predictions have been improved quite signif-
icantly, thus reducing them to half or, even, to one third for
the smaller log. The RBF case returns slightly less accurate
predictions. On the other hand, the training is accomplished
in one fourth of time with respect to the polynomial case.
Therefore, our data-aware approach can provide significantly
better predictions with respect to the technique in [6].

Readers can observe that the results are similar for the
different transition-system abstractions that were taken into
account. This suggests that, for the specific case study,
only the last performed activity is relevant when performing
predictions.

Last but not least, we aimed to verify whether the data
awareness can really help the prediction. For this purpose,
we removed every data attribute from the event log and we
applied our technique again. In this case, we obtain similar
mean percentage errors for both the technique in [6] and
ours. This confirms once more that the consideration of data
attributes can greatly improve the predictions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a new approach for the predic-
tion of the completion time of running process instances.
The prediction is based on multiple perspectives: on one
hand a transition system encodes information coming from
the control-flow perspective; on the other hand all the data
recorded by each activity are collected and used to refine the
forecast. Approaches already available in the literature use
the transition system to store some information associated
to a specific trace. Starting from this transition system,
we annotate it with three more entities. The first extension
encodes the average time spent on every state. The second
extension consists of a Naı̈ve Bayes classifier, associated
to every state, which, given the set of data attributes, is
useful to determine the probability distribution over the set
of states reachable from the current one. The last extension is
a Support Vector Regressor which, for each transition, given
the set of data attributes, predicts the completion time.

Given a partial trace, leading to a particular state of the
annotated transition system, its completion time consists of
the average time spent on the current state, summed up to
the weighted average (with weights coming from the Naı̈ve
Bayes) of the predictions (performed by the Support Vector
Regressor) of all the reachable states.

Experimental validation is perform on real datasets and,
in all cases, our approach outperforms the baseline [6].
Moreover, the improvement of our approach, over the same
baseline, seems to reach higher values with respect to the
work reported in [8], [9].

Possible future work includes the automatic fine tuning of
the parameters of the SVR, in order to simplify the usage

of this approach for not-expert users and the improvement
of the prediction quality for traces that are not completely
fitting the transition system.

ACKNOWLEDGMENT

The work reported in this paper is supported by the Eurostars-
Eureka project PROMPT (E!6696).

REFERENCES

[1] B. Schellekens, “Cycle time prediction in Staffware,” Master Thesis,
Technische Universiteit Eindhoven, 2009.

[2] B. F. van Dongen, R. Crooy, and W. M. P. van der Aalst, “Cycle
Time Prediction: When Will This Case Finally Be Finished?” in
Proceedings of the 16th International Conference of Cooperative
Information Systems, OTM 2008, vol. 5331, no. Chapter 22. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 319–336.

[3] R. Crooy, “Predictions in Information Systems - A process mining
perspective,” Master Thesis, Technische Universiteit Eindhoven, 2008.

[4] H. Schonenberg, B. Weber, B. F. van Dongen, and W. M. P. van der
Aalst, “Supporting flexible processes through recommendations based
on history,” in Proceedings of 6th International Conference BPM.
Springer, 2008, pp. 51–66.

[5] H. Reijers, “Case prediction in BPM systems: a research challenge,”
Journal of the Korean Institute of Industrial Engineers, vol. 33, no. 1,
pp. 1–10, 2006.

[6] W. van der Aalst, M. Schonenberg, and M. Song, “Time prediction
based on process mining,” Information Systems, vol. 36, no. 2, pp.
450–475, Apr. 2011.

[7] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar,
and F. Leymann, “Runtime prediction of service level agreement
violations for composite services,” in International Workshops, IC-
SOC/ServiceWave. Springer, 2009, pp. 176–186.

[8] F. Folino, M. Guarascio, and L. Pontieri, “Discovering context-aware
models for predicting business process performances,” in Proceedings
of On the Move to Meaningful Internet Systems Conference: OTM,
vol. 7565. Springer Berlin Heidelberg, 2012, pp. 287–304.

[9] ——, “Discovering High-Level Performance Models for Ticket Res-
olution Processes,” in Proceedings of On the Move to Meaningful
Internet Systems Conference: OTM, vol. 8185. Springer Berlin
Heidelberg, 2013, pp. 275–282.

[10] G. T. Lakshmanan, D. Shamsi, Y. N. Doganata, M. Unuvar, and
R. Khalaf, “A markov prediction model for data-driven semi-structured
business processes,” Knowledge and Information Systems, Oct. 2013.

[11] W. M. P. van der Aalst, Process Mining - Discovery, Conformance
and Enhancement of Business Processes, 1st ed. Springer, 2011.

[12] W. M. P. van der Aalst, V. Rubin, E. Verbeek, B. F. van Dongen,
E. Kindler, and C. W. Günther, “Process mining: a two-step approach
to balance between underfitting and overfitting,” Software & Systems
Modeling, vol. 9, no. 1, pp. 87–111, Nov. 2008.

[13] J. Han, M. Pei, and K. Jian, Data Mining Concepts and Techniques,
3rd ed. Elsevier Science Publishers B. V., 2012.

[14] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Infor-
mation Retrieval, 1st ed. Cambrige University Press, 2008.

[15] T. M. Mitchell, Machine Learning, 1st ed. McGraw-Hill, 1997.
[16] D. Basak, S. Pal, and D. C. Patranabis, “Support Vector Regression,”

Neural Information Processing - Letters and Reviews, vol. 10, no. 10,
pp. 203–224, 2007.

[17] H. Drucker, C. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Sup-
port Vector Regression Machines,” Neural Information Processing
Systems, vol. 1, pp. 155–161, 1996.

[18] A. J. Smola and B. Schölkopf, “A Tutorial on Support Vector Regres-
sion,” Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004.

[19] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. V. Dongen, and W. M. P.
van der Aalst, “ProM 6 : The Process Mining Toolkit,” in BPM 2010
Demos. Springer, 2010, pp. 34–39.

[20] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, Nov. 2009.

[21] J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern ana-
lysis. Cambridge University Press, 2004.


