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Abstract. Understanding how developers interact with different soft-
ware artifacts when performing comprehension tasks has a potential to
improve developers’ productivity. In this paper, we propose a method
to analyze eye-tracking data using process mining to find distinct read-
ing patterns of how developers interacted with the different artifacts.
To validate our approach, we conducted an exploratory study using eye-
tracking involving 11 participants. We applied our method to investigate
how developers interact with different artifacts during domain and code
understanding tasks. To contextualize the reading patterns and to bet-
ter understand the perceived benefits and challenges participants associ-
ated with the different artifacts and their choice of reading patterns, we
complemented the eye-tracking data with the data obtained from think
aloud. The study used behavior driven development (BDD), a develop-
ment practice that is increasingly used in Agile software development
contexts, as a setting. The study shows that our method can be used to
explore developers’ behavior at an aggregated level and identify behav-
ioral patterns at varying levels of granularity.
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1 Introduction

One of the main concerns in the software engineering discipline is to improve
developers’ productivity, increase product quality, and reduce the cost of devel-
oping software [5, 45]. Different software development methods (e.g., Agile and
Lean methods) [2], principles and practices (e.g., refactoring and test-driven de-
velopment) [33], and tools (e.g., Integrated Development Environments or IDEs)
have been put forth as means to address the aforementioned concerns [18]. In
addition, in recent software engineering research, human aspects have obtained
increasing attention as an important factor to improve productivity [14, 27].
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Developers spend a great deal of their time understanding source code and
other software artifacts, so they can add or modify functionality, fix bugs, and
perform maintenance activities [31, 39]. Understanding developers’ behavior dur-
ing comprehension tasks with different software artifacts is important to support
developers’ work and as a further consequence improve their productivity [19].

In our previous work, we demonstrated the potential of using process min-
ing to understand developers’ interactions with an IDE during a programming
task [18]. Using process mining we were able to identify different patterns of
how developers solved programming tasks (i.e., top-down versus bottom-up ap-
proach). Our previous, however, work was limited by the fact that we could only
observe behavior that required interactions with the IDE and we were not able
to capture where the developers look as they interact with different software
artifacts.

To overcome this limitation, we introduced eye-tracking as a tool to cap-
ture developers’ eye movements when interacting with software artifacts and we
propose a method to capture developers’ behavior and visualize it in terms of
reading patterns using process mining technology. Moreover, we complement the
eye-tracking data with data from a retrospective think aloud session to contex-
tualize the identified reading patterns.

To demonstrate the proposed method, we collected developers’ eye move-
ments while they conducted different comprehension tasks using the Eclipse plu-
gin iTrace. As a context of the comprehension task, we chose a setting based on
behavior driven development (BDD). BDD is a relatively new development prac-
tice that is increasingly used in the context of Agile software development [32,
46]. How developers use the different artifacts used in BDD as part of compre-
hension tasks has not been investigated up to now.

The main contribution of this paper is original regarding the following points:
(i) it proposes a novel method to identify and visualize developer’s behavior as
reading patterns, (ii) it is one of very few works that uses eye-tracking in a way
where the eye-tracking data is interlinked with the software artifacts [40], (iii) it
demonstrates the potential of process mining to explore at different levels of
granularity how developers at an aggregated level interact with software artifacts
in the context of an empirical study, and (iv) the described empirical study is
the first one investigating how software developers interact with the different
software artifacts used in BDD to conduct comprehension tasks.

The remainder of this paper is structured as follows: Section 2 describes the
background and related work, Section 3 explains the proposed method for mining
reading patterns from eye-tracking data. Section 4 demonstrates the general
method presenting an actual study with corresponding design and execution.
Results of the study are reported in Section 5, whereas a broader discussion
of the general method is described in Section 6. The paper is summarized and
concluded in Section 7.
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2 Background and Related Work

In this section, we discuss relevant concepts and related work. In Section 2.1
we describe process mining. In Section 2.2, we describe the existing research in
code understanding. Section 2.3 describes relevant studies in software engineering
using eye-tracking. Section 2.4 describes BDD and existing research in BDD.

2.1 Process Mining

Process mining is a research discipline bridging model-based process analysis
and data oriented analysis techniques such as machine learning and data min-
ing [48]. One of the aim of process mining is to analyze event logs, generated
from executions of activities, in order to identify a process representation (i.e.,
a process map or process model) of the underlying process being followed.

In order to be used for process mining purposes, event logs have to conform
to minimum data model requirements [17]. These require the presence of a case
id, which determines the scope of the process; an activity, which determines the
level of detail for the steps; and timestamp, which determines when each activity
took place. Using process discovery, a process model explaining the behaviour
of the recorded log can be inferred.

Related to the work presented in this paper is the emerging area of software
process mining. With the increasing availability of software execution data, the
application of process mining techniques to analyze software execution data is be-
coming more popular. The potential of software process mining was first demon-
strated by [21, 36]. More specifically, source code repositories were analyzed to
obtain insights on the software development processes that teams employed.
Moreover, [1] suggests the usage of “localized” event logs where events refer to
system parts to improve the quality of the discovered models. In addition, [24]
proposes the discovery of flat behavioural models of software systems using the
Inductive Miner [26]. In turn, [30] proposes an approach to discover a hierarchi-
cal process model for each component. An approach for discovering the software
architectural model from execution data is described in [29]. Finally, [25] allows
to reconstruct the most relevant state-charts and sequence diagram from an in-
strumented working system. The focus of all these works, however, is software
development processes or the understanding of the behaviour of the software,
while the focus of this paper is to define a method to identify how people (at
an aggregated level) interact with different software artifacts when conducting
different comprehension tasks. In the rest of this paper, process maps extracted
from events referring to comprehension tasks on software artifacts will be called
reading patterns. A reading pattern depicts how users switch between different
software artifacts or parts thereof. In the literature, process mining has been
used to extract reading patterns already [15]. However, in that case, the setting
was very “rigid” and did not allow any interaction with the software artifacts,
making the entire approach unsuitable to answer questions related to code un-
derstanding (which requires navigation over several files).
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2.2 Code Understanding

The proposed method is suited for code comprehension tasks and thus relates
to existing research on code understanding. Code understanding is one aspect of
program comprehension that is vital in software development and maintenance
activities [49]. Code understanding is necessary to facilitate code reuse, code
inspection, maintenance, reverse engineering, reengineering, migration, and ex-
tension of existing software systems [39]. Code understanding has been a topic
of interest in computer science as well as software engineering.

Early empirical studies focused on identifying strategies that developers use
for code understanding using the think aloud approach [6, 49, 28]. The results
of these empirical studies were presented as models for analyzing the cognitive
processes involved in code comprehension [49]. Many of these models emphasize
that developers’ understanding is affected by their existing knowledge and other
external documentations, like manuals or flowcharts. These models also discuss
the different tactics or reading patterns used in the process of code understand-
ing: top-down [6, 47], bottom-up [35] or both [28]. Soloway et al. [47] mention
that the top-down approach is used if the code is familiar to developers. Mean-
while, Pennington [35] mentions that the bottom-up approach is used if the code
is unfamiliar to developers.

One aspect of code understanding that is often studied relates to variable
naming, e.g., [4, 23, 38]. Lawrie et al. [23] investigated the impact of naming
variables (abbreviated versus full words) on how well participants understood
the purpose of the code and could memorize it. Participants were presented with
code snippets in C, C++, and Java and their ability to correctly interpreting
the behavior of the snippet was used to measure their understanding. The study
shows that full word variable names improve code understanding compared to
abbreviated variable names.

Salviulo and Scanniello [38] performed an ethnographically-informed study
to investigate the role of comments and variable names for bachelor students
and professional developers in the understanding of Java source code. The data
was gathered through observation of the participants when they read the source
code, answer code comprehension questions, and modify the source code. The
study shows students tend to spend more time on reading the comments to
understand the code. Meanwhile, professional developers tend to only glance on
the comments and rely on source code statements for code comprehension. The
results are similar to a study conducted by Crosby and Stelovsky in 1990 [9].

Blinman and Cockburn [4] investigated how variable naming and documen-
tation affects code understanding. The source code was written in J#. The study
shows that non-descriptive variables increase study times; participants who were
provided with documentation spent even more time. Furthermore, descriptive
variable names increase the percentage of correct answers; participants who were
provided with documentation marginally perform better than those without doc-
umentation. For participants who were provided with non-descriptive variable
names, the correctness decreases significantly without documentation.
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The focus of most existing work in code understanding lies on a single arti-
fact, i.e., the source code. Very few studies have been done to investigate how
developers interact with multiple artifacts to perform comprehension tasks. The
method proposed in this paper, in turn, is suitable to investigate how developers
interact with multiple artifacts and the paper applies the method to examine
how developers, at an aggregated level, interact with different textual artifacts
that are used in the context of behavior driven development (cf. Section 2.4).
These artifacts include in addition to the source code, feature files describing
scenarios and step definitions.

2.3 Use of Eye-tracking in Software Engineering

The use of eye-tracking in code understanding research has been growing, which
can be seen from the number of studies included in a systematic review by
Sharafi et al. [42]. One of the earlier studies in code understanding with the
use of eye-tracking was done by Crosby and Stelovsky [9] to study developers’
comprehension techniques using fixation-based measures like the number of fix-
ations. The result of their study indicates that developers with low experience
spend more time looking at comments, while high experienced developers spend
more time on meaningful parts of the source code.

Sharafi et al. [41] investigated the impact of gender on accuracy, visual effort
(measured by fixation count), and speed, given different types of identifiers, i.e.
camel case versus underscore. Moreover they captured code reading strategies.
The study indicates that there is no significant difference between the identifier
types on accuracy of providing correct answers and visual effort. Their study
supports the hypothesis that male and female subjects have different code un-
derstanding strategies. Female subjects tend to spend more effort on eliminating
the wrong answer, while male subjects seem to decide more quickly on an answer.

Most tools to support eye-tracking studies can only capture the coordinates
that a person is looking at without providing the contexts of what they are
looking. Such a setup is not sufficient for running realistic experiments with eye-
tracking in software engineering [40]. To alleviate this issue, iTrace4 is proposed
as a tool that can capture developers’ eye movements as they are interacting with
the IDE. It is built as a plugin to Eclipse5 to capture more dynamic and realistic
interaction between the participants and the IDE, e.g., allow participants to
scroll through the code and switch between tabs or windows on the IDE. iTrace
captures the eye gazes and links them to specific source code elements [40].

Walters et al. [52], used iTrace in a study to capture links between a textual
bug description and source code when developers performed bug fixing tasks. The
study was done as a proof-of-concept that gaze data could be used to retrieve
traceability links between software artifacts.

Kevic et al. [19] used iTrace to monitor developers’ eye gazes during change
tasks. Their study shows that it is possible to capture both gaze and interaction

4 See http://www.i-trace.org/.
5 See http://www.eclipse.org/.
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data. The insights gained from the gaze and interaction data could be used to
determine better what developers are interested in which can be used to provide
recommendations to developers on other relevant artifacts.

Most eye-tracking studies in code understanding focused on comparing two
different treatments and used quantitative measures, which can be seen from
the primary studies included in [42]. Only a few studies used eye-tracking to
investigate how developers interact with multiple artifacts, e.g., in [52] and [19].
However, these studies are not focused on understanding developers’ reading
patterns. Moreover, unlike most existing work that investigated code compre-
hension using eye-tracking our main interest is not so much on visual effort (i.e.,
fixation-based measures), but rather on the reading behavior that developers
employed.

2.4 Behavior Driven Development (BDD)

Behavior driven development (BDD) is a group of techniques that are aimed
to help software development teams to identify and deliver the most valuable
features for the business [44]. BDD is often perceived to be an evolution of test
driven development (TDD). It was proposed by Dan North to alleviate difficulties
with TDD, such as confusion and misunderstanding on how to test and what to
test [32].

BDD is usually used in Agile and Lean software development [44], and it
involves steps described in Figure 1. The starting point for BDD is the formula-
tion of business goals (Step 1). In BDD, different roles like developers, testers,
and business analysts work together with the customers to identify and for-
mulate features that fulfill the business goals (Step 2). A feature is “a piece
of software functionality that helps users or other stakeholders achieve some
business goal” [44]. A feature is expressed in the form of scenarios. A scenario
describes how the system would behave given certain preconditions and other
events, like user inputs, or interaction from another system (Step 3). To describe
a system behavior, each scenario uses a Given-When-Then structure. The Given
statement describes the initial context or pre-condition, the When statement
describes an event or an operation undertaken in the system, and the Then
statement describes the expected outcome. This feature specification is formu-
lated in domain specific language (i.e., Gherkin) that can be easily understood
by both the developers and business analysts [3, 46]. To obtain an executable
specification, in the next step, step definitions are created (Step 4) providing the
translation between the scenarios and the application code. Lastly, the software
under test with detailed implementation of application code is developed (Step
5). Usually, this process is supported by tools like like Cucumber, JBehave, or
RSpec. Figure 1 depicts the BDD process.

In Figure 2, we provide a concrete example of a feature with one scenario (de-
scribed in Gherkin), the corresponding step definition, as well as the application
code in Java. Figure 2 presents a feature to reload or add a balance to a travel
card at an automated kiosk. One of the scenarios is for successful travel card



7

Fig. 1: BDD process adapted from [44]

reload. A concrete example is used to describe the statements or steps in the sce-
nario, such as an initial balance of 50 in the travel card is provided (Given), an
amount of 100 is added to the travel card (When), resulting in a final balance of
150 after a successful reload (Then). For each statement or step in the scenario,
there is a corresponding method in the step definition. In the step definition,
there are different methods; each method calls to the method in the application
under test that implements this statement.

Feature: Reload the balance in a travel card
A travel card user can reload the balance of a travel card in a kiosk

Scenario (Reload.feature) Step definition (CheckInSteps.java) Application code

Scenario: Successfully 
reload travel card 
balance

Given his travel card 
has a balance of 50

ResponseObject r;
TravelCarld tc;
Kiosk k;

@Given("^his travel card has a 
balance of (\\d+)$")
public void a(int balance) {

tc = new TravelCard(balance);
}

// TravelCard.java
public TravelCard(int balance) {

this.balance = balance;
}

When the travel card 
user reloads the 
travel card with 100

@When("^the travel card user reloads 
the travel card with (\\d+)$")
public void b(int amount) {

r = k.addBalance(tc, amount);
}

// Kiosk.java
public ResponseObject addBalance(

TravelCard tc, int amount) {
...
response = new ResponseObject(

300, Constants.RELOAD_SUCCESS);
tc.addBalance(amount);
...

}

// TravelCard.java
public void addBalance(int amount) {

this.balance += amount;
}

Then the travel card 
after reload has a new 
balance of 150

@Then("^the travel card after reload 
has a new balance of (\\d+)$")
public void c(int newBalance) {

assertEquals(
tc.getBalance(),
newBalance);

}

// TravelCard.java
public int getBalance() {

return balance;
}

Fig. 2: Example of scenario, step definition, and application source code

Existing literature has identified several benefits of BDD as well as challenges.
Benefits associated with BDD, particularly due to the use of plain text descrip-
tion in a scenario include improved traceability between requirement specifica-
tion and code [22], improved understandability of the requirement specification,
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Collect data Prepare and
filter data Partition data Mine the

reading patternValidate data Interpret
results

Fig. 3: Method to mine reading patterns from eye-tracking data.

improved understandability of the code intention [3], and reduced misinterpre-
tation of the requirements specification [10]. Limitations associated with BDD
include a steep learning curve, decreased team productivity, and challenges per-
taining to a new way of working [3].

Our review of BDD literature shows that very few studies systematically
evaluate the use of BDD artifacts in a controlled environment like an experiment.
One recent study that evaluated the use of BDD artifacts was done by Wang and
Wagner [53]. They performed an experiment to compare the use of BDD versus
traditional User Acceptance Testing (UAT) for safety verification with respect to
productivity, thoroughness, effectiveness in fault detection, and communication
effectiveness. Their study shows that BDD is more effective than UAT regarding
communication effectiveness. Meanwhile, BDD shows no significant difference in
productivity, thoroughness, and effectiveness in fault detection.

Our study is the first empirical study that uses eye-tracking in a BDD con-
text. We selected BDD as context because as a software development approach
BDD is gaining interest and increasing in its adoption [50]. Furthermore, from
the perspective of adding realism in studying reading and navigation patterns,
BDD involves different types of software artifacts, which reflects what software
developers in the industry are more likely to face on a daily basis, as exempli-
fied in [52]. Currently, little is known on how BDD impacts developers’ behavior
when performing comprehension tasks. In this study, we define developers’ be-
havior as their interactions with different textual artifacts like the feature file,
step definition, and source code. Moreover, we aim to explore if the benefits and
limitations of BDD are reflected in the developers’ behavior when performing
comprehension tasks.

3 Mining Reading Patterns from Eye-tracking Data

This section introduces a novel method based on eye-tracking in order to extract
reading patterns on how developers interact with different artifacts while con-
ducting comprehension tasks. The method was developed following the design
science framework described in [54]. The general method is graphically reported
in Fig. 3 and in the remainder of this section details about each step are pre-
sented and discussed.

Collect Data. The first activity of the approach concerns the collection of eye-
tracking data, to be processed for process mining purposes. Eye gazes and fixa-
tions of subjects are captured and linked to the software artifacts being shown to
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Table 1: Structure of the data collected by iTrace, after some preparation

Subject ID Artifact Timestamp (Start)

SBJ1 Task 1.1.0.md 2018-09-04T13:30:03.013
...

...
...

SBJ1 Kiosk.java 2018-09-04T13:36:05.015
SBJ1 Kiosk.java 2018-09-04T13:36:05.161
SBJ1 TravelCard.java 2018-09-04T13:36:17.192

...
...

...
SBJ1 Task 1.1.1.md 2018-09-04T13:38:02.015
SBJ1 Task 1.2.0.md 2018-09-04T13:38:58.043

the subjects. These data enable the identification of the areas of the screen being
read by the subjects while answering the understanding questions. These areas,
in turn, are referring to different resources being displayed. Table 1 reports an
example of such data: the first column refers to the subject under examination,
the second column reports the artifact being shown, and the third column re-
ports the time stamp of when the subject started their reading. In addition, this
step is also responsible for obtaining supplementary data to help the contextual-
ization and interpretation of the results later on. Such data can be automatically
collected (e.g., which task the subject is currently performing) or might require
additional effort (e.g., think aloud or surveys).

Prepare and Filter Data. Once the data is collected for all participant, it is
necessary to pre-process it in order to integrate all information needed for process
mining analysis. To enable such type of analysis it is important to define 3
concepts. Specifically, an activity represents a unit of work that can be tracked.
Each activity has to belong to a single process instance and process instances
must refer to a certain process. Then, by using process mining, it is possible to
synthesize a process model describing the behavior shared by the majority of
the instances that are executing the same process. In the context of this paper,
activities represent comprehension tasks on software artifacts, and the extracted
processes are therefore reading patterns. Specifically, the activities we considered
comprise reading different available artifacts (i.e., either a specific artifact or an
artifact type) to solve the comprehension task.

A graphical representation of the way we identified activities and process
instances is reported in Fig. 4. In our method, each subject needs to read a
“question file” first, then navigate to and explore different artifacts available
and finally, once they know the answer, they are asked to open an “answer file”
before proceeding to the following question. Since fixations on all artifacts were
recorded, we used the first fixation on a question file and the first fixation on
the corresponding answer file as time stamps indicating the beginning and the
end of a process instances (referring to the process of answering corresponding
question type). An example of such process instance is depicted by the red line
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Time

... ...
Ar�fact type t2Ar�fact type t1Q A

... ...
Q Aa3 a4a1 a2

Process instance referring to solving a specific comprehension task

Ques�on file for
the comprehension task

Answer file for
the comprehension task

Ar�fact a1

Ar�fact a2 Ar�fact a3 Ar�fact a4

Process instances

Ac�vi�es

Ar�fact type

Specific ar�fact

Fxa�ons

Fig. 4: Graphical representation of the sequence of fixations over time (including
the artifact they refer to) and their aggregation to a process instance and to
activities (whereby activities can be artifacts or artifact types).

on top of Fig. 4: it starts when the first fixation (black line, at the bottom) on
a question file is detected and ends when the first fixation on the corresponding
answer file is detected.

Once process instances are isolated, corresponding activities can be identified.
All activities are referring to the focusing on (i.e., reading of) certain artifacts.
Therefore, it is possible to group together all contiguous fixations referring to the
same artifact. In principle, it is possible to group artifacts at different abstraction
levels that, in turn, entails different definitions of activities: considering the
example of Fig. 4, it would be specific artifacts (e.g., a1, a2) or artifact types
(e.g., t1, t2).

Validate Data. In order to have reliable results, it is important to remove from
the dataset used for the analysis all recordings referring to subjects (or tasks) for
which some irregularities were observed during the experiment (e.g., the subject
was interrupted or the instrument did not function properly).

Partition Data. Once the data has been prepared, it is possible to conduct the
actual analysis according to two strategies. On the one hand, one might extract a
reading map that encompasses all behavior in an aggregated fashion. The other
possibility is to split the data according to some criteria (i.e., subject properties,
task properties or answer properties) and then compare the extracted maps.
This latter approach is especially useful in case of comparative analyses aiming
at validating research hypotheses.

Mine the Reading Patterns. Once the data is properly partitioned (either re-
sulting in one or several partitions), it is possible to mine the process models
focusing on one abstraction level at the time (either specific artifacts or artifact
types). For the actual mining, our method proposes to use the tool Disco.6. We

6 See http://fluxicon.com/disco/.
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recommend keeping the configuration of the tool to preserve all behavior (i.e.,
100% for both “activities” and “paths”), in order to not loose any information.

Interpret Results. As with any knowledge discovery process [8], the results of the
mining, i.e., the reading patterns, need to be interpreted in order to synthesize
knowledge and therefore be useful. To help this phase, it is necessary to exploit
the additional data collected during the experiment (e.g., the task that each
pattern is associated with, or think aloud transcripts, or surveys), as described
in the very first step.

4 Method Demonstration

The previous section introduced a method to identify reading patterns while
conducting comprehension tasks based on eye-tracking data. In this section we
demonstrate this method by applying it in an exploratory study with BDD as
setting. This section describes the study that we conducted to understand devel-
opers’ behavior. Section 4.1 describes the study design and execution. Section 4.2
describes how we implemented and adapted the method proposed in Section 3
to our needs.

4.1 Study Design and Execution

The main aim of this study is to investigate how developers engage with different
software artifacts (feature, step code, source code), in terms of reading patterns,
to perform different comprehension tasks (i.e., domain understanding and code
understanding tasks which will be explained in paragraph Task Description)
respectively. The study, additionally, aims to identify what benefits and chal-
lenges are associated with each artifact during different comprehension tasks to
be able to better contextualize the identified reading patterns. To achieve the
aim, the following research questions are formulated:

– RQ1.1. How do developers engage with the different artifacts (feature file,
step code, source code) in terms of reading patterns to complete domain
understanding tasks?

– RQ1.2. What were the benefits and challenges associated with the different
artifacts during domain understanding tasks (i.e., how should we interpret
the reading patters extracted in RQ1.1)?

– RQ2.1. How do developers engage with the different artifacts (feature file,
step code, source code) in terms of reading patterns to complete code un-
derstanding tasks?

– RQ2.2. What were the benefits and challenges associated with the different
artifacts during code understanding tasks (i.e., how should we interpret the
reading patters extracted in RQ2.1)?
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Participants. We used convenience sampling to recruit the participants. In re-
cruiting the participants, we did not screen them based on their knowledge in
Java programming or BDD. We only screened participants based on their vision
condition. We had 11 participants who joined the study. The participants were
recruited from the Technical University of Denmark (DTU) and the University
of Cyprus (UCY), six and five participants respectively. All subjects had an aca-
demic background in Computer Science or related engineering field and therefore
they can be seen as proxies for junior developers.

Task Description. In this study, we asked the participants to complete differ-
ent comprehension tasks concerning the Rejsekort system. Rejsekort is a travel
card system that is used in Denmark. Using a travel card, a passenger can pay
for travel fares using a travel card instead of cash by checking in upon embarking
and checking out upon disembarking a bus or a train.

Overall, the study consisted of four tasks. For each task, participants had to
answer two questions of different type (cf. Figure 5):

1. Domain understanding, where we asked for high-level requirements of specific
functionality. Such type of question can be answered by just reading the
feature file. Alternatively, when not using the feature file the answer has
to be inferred from the source code. Appendix A provides an example of a
domain understanding question.

2. Code understanding, where the question asks how a specific functionality is
implemented in the source code. The answer to such question can be found in
the source code. BDD artifacts can be used to navigate to the relevant part
in the source code, potentially facilitating the search of the source code that
is relevant. Appendix A shows an example of a code understanding question.
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Fig. 5: Tasks structure

In addition to the questions, we also developed the artifacts and source code
for the warm-up task, i.e., a simple calculator program, and the main tasks, i.e.,
the Rejsekort system.
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In developing and formulating the artifacts for the Rejsekort tasks, we used
our knowledge of using the travel card system and picked the most representative
functionalities that we are familiar with. In developing the artifacts, we followed
BDD principles: we started by writing the feature files in Gherkin, followed by
the step definitions (to provide the glue between the feature file and the source
code) and the source code in Java. The software artifacts used in the study are
available at https://github.com/CIoann/cucitrace.

To ensure correctness of the artifacts, we also performed code inspection
which was done by individuals who were not involved in developing the code. In
addition, we also piloted the study with one individual who was not included as
the study participants.

Study Procedure. We conducted the study in two locations at two universities;
DTU in Denmark and UCY in Cyprus. In each location, we used a designated
room to minimize interruptions.

Training. When a participant arrived at the designated room, we provided
him/her with an introduction of the study procedure, brief introduction to the
Rejsekort system, and how to interact with iTrace (e.g., calibrate the eye tracker,
start and stop eye tracker). We also provided the participants with a brief in-
troduction to BDD, its artifacts, and how they are related. At this point, we
encouraged the participants to ask questions to make sure they know the tasks
at hand.

Pre-Experiment Questionnaire. After the introduction and signing the consent
form, we asked the participants to fill in the pre-experiment questionnaire to
inquire about their knowledge and experience in programming and BDD. The
detailed questions can be found in the external appendix at https://zenodo.

org/record/2602995.

Tasks. After completing the pre-experiment questionnaire, we directed the par-
ticipants to start with the main tasks. We asked the participants to sit in front
of the laptop screen in a comfortable and upright posture. First, we asked the
participants to perform the calibration to ensure that the gaze data will be col-
lected properly [11]. Once calibration was completed, we asked the participants
to start the eye-tracking. Then the participants proceeded with the warm-up
task, followed by the main task, i.e., four tasks related to the Rejsekort system.
In the end of each task, we asked the participants to perform a retrospective
think aloud and walk us through the steps that they took to complete the task.
This was done at the end of all four tasks. We chose retrospective think aloud be-
cause it allowed the participants to focus on the task at hand. Concurrent think
aloud might influence the participants’ behavior and reduce mental capacity be-
cause they divide their attention between the task and explaining what they are
doing [7]. Participant had no time limit for solving their task. We also allowed
the participants to ask for clarifications throughout the experiment. Once the
participants completed all tasks, we asked them to stop the eye-tracking.
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Post-experiment questionnaire. After a participant completed the tasks, we
asked them for follow up questions to reflect on their experience in complet-
ing the tasks. We also asked the participants concerning the extent to which
the different software artifacts helped them to answer domain understanding
and code understanding tasks (using a five-point Likert scale). We also in-
structed the participants to indicate Strongly disagree, if they did not use a
specific artifact to answer the domain understanding or code understanding
task. The post-experiment questionnaire was also recorded and then later tran-
scribed. Details of the questionnaire can be found in the external appendix at
https://zenodo.org/record/2602995.

Instrumentation.

Tools and settings. The Rejsekort system was provided to the participants as an
Eclipse project (including features files, step definitions, and the source code).
To prevent the participants from taking their eyes away from the screen when
reading the questions and answering them, we added them as files to the Eclipse
IDE. As shown in Figure 5, in each task, there are two question types, i.e., domain
understanding and code understanding. For each question type, there are two
text files which the participants had to read. The first file contains a specific
question that the participants had to answer and an instruction to open the
second file once they found the answer to the question. The second file contains
an instruction to the participants to say out loud their answers and how they
found the answers.

For collecting eye movement data, we used a Tobii 4C7 eye tracker with a
sampling rate of 90 Hz. The device does not require the participants to wear
any gear. The eye tracker is stationary at the bottom of the laptop’s screen. The
laptop used for the study is an HP Elite book with a 15.6-inch screen and a
resolution of 1920x1080 pixels. The font of the text was increased to 14 point
size to be visible from a distance of 60cm.

Extending iTrace. In order to map the eye-tracking data with the software arti-
facts, we used the iTrace plugin of Eclipse, which we had to extend to record all
needed information8. The iTrace plugin is able to track eye gazes and fixations
on source code entities. Specifically, the entities are extracted from the generated
Abstract Syntax Tree (AST) of source code files. The extensions of iTrace that
we needed to implement concern the mapping of eye-tracking data to feature
files, which are written using the Gherkin language (cf. Section 2.4).

7 See https://tobiigaming.com/product/tobii-eye-tracker-4c/.
8 The new version of the iTrace plugin is availalable on GitHub, at https://github.

com/CIoann/cucitraceSetup.
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4.2 Implementation of the Proposed Method

In order to answer the research questions, we employed the method presented in
Section 3. In the following we report the details concerning the actual realization
of the individual activities previously described

Collect Data. To collect data concerning a developer’s reading interactions within
the IDE we used a modified version of the iTrace plugin for the Eclipse IDE as
reported in Section 4.1. During the task, eye gazes and fixations of subjects were
captured and linked to source code entities. The data of all 13 participants has
been stored in a database, which contains a table for gazes and fixations on files.
These data enabled the identification of the areas of the screen being read by
the subjects while answering the understanding questions. These areas, in turn,
are referring to different resources being displayed by the IDE.

Prepare and Filter Data. To prepare the raw data to be analyzed with process
mining techniques it is important to identify activities, process instances and
processes. In the context of this paper, we defined one process for each of the
two question types that the subjects were asked to answer (i.e., domain under-
standing and code understanding, cf. Fig. 5). Therefore, each subject executed
4 instances of each process (i.e., 4 tasks, each with 2 questions, cf. Fig. 5). The
activities we considered comprise reading the different resources available (i.e.,
either a specific artifact or file depending on the abstraction level) to answer
each question.

As described in Fig. 4 to identify activities and process instances we first
isolated all process instances by considering the first fixation on a question file
and the first fixation on the corresponding answer file. For this study, we decided
to analyze two possible abstraction levels (i.e., two definitions of activities): the
specific file and the artifact type that a file is referring to. When abstracting
at file level, all contiguous fixations on the same file are grouped together into
an activity which consists of reading that specific file. As a consequence, each
process can potentially have as many activities as files available (yet, only a sub-
set of these reading activities is typically performed). Examples of such reading
activities are CheckInAutomaton.java and CheckIn.feature. When focusing
on artifact types, contiguous fixations that refer to files of the same type are
grouped together. The possible types of artifacts in our project are: feature files,
source code, and step code. Therefore, for example, all contiguous fixations on
source code files (even when different files are involved) are grouped together.

Validate Data. During data preparation, we noticed that the data of two partic-
ipants had to be excluded. One participant had to be excluded since there were
prolonged periods during which the participant looked away from the screen re-
sulting in invalid eye-tracking data. Another participant had to be excluded due
to problems with the data recording. Therefore, we included 11 participants in
our analysis. Additionally, we had to exclude data of Task 4 from the study since
it turned out after data collection that the data for some of the participants was
corrupted. Thus, in the following only data related to Task1-3 is analyzed.
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Table 2: Result of data partitioning along the two dimensions considered: ques-
tion type (i.e., domain/code understanding) and the combination of resources
used to provide an answer. Each cell reports the subject IDs that belong to the
corresponding partition of the data. Combinations never used by any subject
are indicated with a dash (‘-’).

Domain understanding Code understanding

Feature
DTU3, DTU7, DTU8,
DTU9, DTU10, UCY1,

UCY3, UCY4
-

Step Code - -

Source Code DTU6, UCY2
DTU6, DTU7, DTU9,
UCY1, UCY2, UCY4,

UCY5

Feature + Step Code DTU3 -

Feature + Source Code -
DTU3, DTU9, UCY1,

UCY3

Step Code +
Source Code

- DTU3, DTU10

Feature + Step Code +
Source Code

DTU8, DTU3 DTU3 ,DTU8, DTU10

Partition Data. In order to investigate the collected data, we partitioned the
subjects according to the artifacts they focused on while answering the two
questions types (i.e., questions about domain understanding and code under-
standing). Specifically, we considered all possible partitions emerging from the
combinations of the three artifact types (which are feature files, source code and
step code) and we grouped subjects that used the same set of artifact types to
answer the questions. Orthogonally, we divided the process instances into two
categories: the process being followed to answer domain understanding ques-
tions (independently from the task number) and the process of answering code
understanding questions (independently from the task number).

Table 2 reports the division of the subjects among the categories used for
partitioning the data. Each cell of the table reports the IDs of the subjects who
answered the given question using the corresponding subset of resources. For
domain understanding questions, subjects used either:

– only the feature files (eight subjects);
– only the source code (two subjects);
– the feature files and the step code (one subject);
– the feature files, the step code and the source code (two subjects).

To answer code understanding questions, subjects used either:

– only the source code (seven subjects);
– the feature files and the source code (four subjects);
– the step code and the source code (two subjects);
– the feature files, the step code and the source code (three subjects).
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Please note that in the data we used each subject answered three domain under-
standing questions and three code understanding questions. In addition, some
subjects used different subsets of resources to answer questions of the same type.
This is why some subjects appear more than once in Table 2 (column-wise). In
addition, one subject (UCY5) answered all domain understanding questions just
by guessing, therefore they do not appear in the corresponding columns.

Mine the Reading Patterns. Each set of process instances generated from the
partitioning devised in Table 2 has been used to mine process models considering
both file and artifact abstractions as activities. Only combinations actually used
by subjects have been mined and therefore, in total, we extracted 16 maps:
– Eight maps for domain understanding questions: two maps for each of the

four sets of used resources, one with file abstraction and another with artifact
abstraction (cf. Fig. 4);

– Eight maps for code understanding questions: two maps for each of the four
sets of used resources, one with file abstraction and another with artifact
abstraction (cf. Fig. 4).
For the actual mining, we used the tool Disco configured to preserve all

behavior (i.e., 100% for both “activities” and “paths”).

Interpret Results To interpret the reading patterns obtained, we employed quali-
tative coding on the data from the post-experiment questionnaire concerning: 1.
the participants’ perception concerning the usefulness of the different software
artifacts for domain and code understanding; and 2. challenges in completing
domain and code understanding tasks.

To help with the coding process, we used Atlast.ti qualitative analysis soft-
ware9. We employed open and focused coding as described in [37]. More precisely,
for open coding, we analyzed the transcriptions of the interview sessions and
employed line-by-line coding. We added labels on each line of the transcripts.
However, if one line does not yield to useful information, we labelled a text frag-
ment, i.e. a sentence or more. For example, for the following text fragment: “I
think it was easy to find things because of the naming, everything was really
to help me understanding the code”, was assigned with the labels source code
benefit and clear naming in the source code.

We then followed up the results from the open coding with focused coding.
We identified common themes from the data labels that we added in the open
coding. The results of the focused coding can be seen in Tables 3-6.

To ensure consistency and minimize bias in the coding process, a post-hoc
validation was performed. Two of the co-authors were involved in the open cod-
ing process of the post-experiment interview transcripts. One person performed
the open coding process and another person conducted a post-hoc analysis to
ensure consistency. Disagreements were discussed and adjustments were made
on the codes applied on the text. On the focusing coding step, one person was
responsible for the categorization. The result of the categorization was then

9 See https://atlasti.com/.
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examined by another (independent) co-author who was not involved the open
coding process to minimize bias.

5 Results of Method Demonstration

In this section we report the results of the study we conducted to demonstrate
the method, as reported in Section 4. Specifically, Section 5.1 and 5.2 present
the results for domain understanding tasks, while Section 5.3 and 5.4 focuses on
code understanding tasks.

5.1 Engagement with Software Artifacts During Domain
Understanding (RQ1.1)

In this section we report the data investigation needed to answer RQ1.1: we aim
at understanding how developers engaged with the different artifacts in order to
solve domain understanding tasks. For this, we show process maps depicting the
interaction behavior at two abstraction levels: artifact types and files. For these
maps, we aggregated domain understanding questions of all tasks. In five cases,
however, subjects did not use any resource (w.r.t. those reported in Table 2): they
decided to just guess their answers. For this reason, we ended up with a total of
28 process instances (11 subjects, each answering three domain understanding
questions except in five cases; i.e., 11 * 3 - 5 = 28) among 4 categories (i.e.,
Feature, Source Code, Feature + Step Code, Feature + Step Code + Source
Code). Please note that all raw data as well as process maps at both levels of
abstraction are available online at https://zenodo.org/record/2602995.

Artifact type abstraction. First, we analyze the behavior when the artifact
type abstraction is employed (cf. Fig. 4). Maps mined for the four partitioning
of the subjects are reported in Fig. 6. As previously mentioned, each map shows
the different reading patterns used by the subjects where each node is a fixation
period (i.e., a reading activity) on the corresponding artifact. Each edge indicates
direct succession in the artifacts being fixated. In addition, both nodes and edges
are color-coded with their absolute frequencies (i.e., how often fixations/direct
successions on artifacts were observed).

Maps depicted in Fig. 6a, 6b, 6c and 6d show, respectively, the processes
followed when only feature files were investigated, when only the source code was
used, when feature files and step code was read, and when all resources types
were used. As expected by the study design and the data analysis technique
(cf. Section 4.2), all maps always start with fixations on questions and always
terminate with fixation on answers. It is relevant to note that, when subjects had
been using either just the feature files (Fig. 6a) or just the source code (Fig. 6b)
or on feature and step code (Fig. 6c), their reading patterns were compact, as
opposed to the case when subjects used feature, step code and source code. In this
latter case (Fig. 6d) the pattern is less structured, yet the thickest connections
show that subjects started their reading from features files, continued with the
step code and finally they went to the source code.
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Fig. 6: Process maps mined for domain understanding questions considering the
artifact type abstraction for activities (cf. Fig. 4). Larger figures are available at
https://zenodo.org/record/2602995.
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Fig. 7: Process maps mined for domain understanding questions considering the
file abstraction for activities (cf. Fig. 4). Larger figures are available at https:

//zenodo.org/record/2602995.

File abstraction. After the high-level overview obtained with the artifact ab-
straction, we analyze the same process instances but, this time, with focus on
file abstraction. This means that we grouped fixations referring to the same file
being read (cf. “Specific artifact” in Fig. 4). Maps depicted in Fig. 7a, 7b, 7c,
and 7d show, respectively, the processes followed when only feature files were
investigated, when only the source code was used, when feature files and step
code was read, and when all resources types were used. The semantics of the
maps is the same as for the previous abstraction.

It is relevant to note that the processes followed by subjects who only used
feature files (Fig. 7a) or feature files and step code (Fig. 7c) had a very compact
reading patters also at this abstraction level. Instead, for subjects who used the
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source code, Fig. 7b unveils the actual complexity (that was not perceivable in
Fig. 6b): they navigated many Java files and, as the homogeneous thickness of
edges suggests, there was no clear sequence being followed (i.e., all events equally
likely to happen one after the other). Finally, subjects who used feature, step
code, and source code (i.e., Fig. 7d) had to navigate several resources but it is
possible to note that most of the time the first files being inspected (i.e., the files
directly exiting question) were feature files, followed by step code, and then the
actual java files. This observation suggests that these subjects were more guided
towards the identification of the Java sources to inspect.

In conclusion, we answer RQ1.1 by observing that it has been possible to
group subjects into four categories. Each group showed different interaction pat-
terns when reading the resources. In addition, the two abstractions of activities
allowed to “drive” our investigations by starting from a general view (i.e., ar-
tifact abstraction) and then dig down into the more fine grained definition of
the patterns (i.e., file abstraction). It is important to note that these questions
(i.e., domain understanding) could be answered by just reading the feature files,
which happened in the majority of the cases. For three questions, however, two
subjects (i.e., DTU8 and DTU3) decided to also analyze the step code and, in
two cases, the source code as well in order to “validate” their answer, as will be
explained in Section 5.2.

5.2 Benefits and Challenges of Software Artifacts for Domain
Understanding (RQ1.2)

To improve the interpretation of the results presented using the reading patterns,
we analyzed the benefits and the challenges associated to the usage of different
artifacts. These results are complemented with data from our retrospective think
aloud session concerning the perceived benefits and challenges of the different
software artifacts used in answering the domain understanding tasks.

Feature File. Figure 8 depicts the extent to which participants perceive the
feature file useful to accomplish the domain understanding tasks respectively.
The majority of the participants (8 out of 11) either strongly agree or agree on
the usefulness of a feature file for answering domain related questions. This is
also reflected in the choice of reading pattern (i.e., the overwhelming majority
of subjects answered domain understanding questions by only relying on the
feature file). Only DTU6, UCY2, and UCY5 abstained from using the feature
file.

Overall, the participants agree that the feature helped them answer the do-
main understanding tasks more easily and quickly. Table 3 shows in more detail
how the feature file helped them to answer domain understanding and code un-
derstanding tasks respectively. We can see from Table 3, a number of participants
found a feature file useful because it provides an overview of what the system
does. The concrete example outlined in a scenario in a feature file also helps the
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indicates that the feature file was not used.

Table 3: Benefits of a feature file for domain understanding.

Benefits of a feature file Participants Quotes

Domain
Underst.

Provide outline of require-
ments and verification condi-
tions

“So basically the verification checks are in there [...]. it
clearly stated the conditions for when a card was not
valid. It had tests that this card is not valid under these
conditions” (DTU3)
“It has all the scenario that I was looking for, it has some-
thing about having three requirements and there are three
scenarios so I went through that” (DTU10)

Provide insight on the struc-
ture and intention of the code

“Help [to understand] the flow of the code how it would
go” (UCY3)
“It tells you how the code behind it is structured” (DTU8)
“Its important to have feature file to guide you through
the source code” (UCY4).

Easy to understand due to the
use of natural language

“This file is just written in natural language, so I could
understand the file and what is written in there” (DTU9)
“It was in natural language, you can understand it more
easily than reading source code” (UCY4)

Easy to understand due to the
Given-When-Then structure

“Then I could easily answer, especially that I know like
the structure, so we have given and then, so precondition
should be in given statement” (DTU9)
“It was very useful to look up in the feature file to find the
answer, I understand that it was usually the first lines is
the [pre-]conditions” (UCY4).

participants to get an insight of what the code does and what it is expected to
do without the effort of reading the code. Moreover, participants outlined that
the formulation of the scenario in natural language helped them. In addition,
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two participants highlighted that the Given-When-Then structure of a scenario
helped them to locate relevant information.

Despite the high adoption of feature files for domain understanding tasks
participants were challenged by the steep learning curve, since most of the par-
ticipants used BDD for the first time during the study. Remembering where the
different files are located and navigating the different packages turned out to be
challenging for first time users: “[It was challenging] to find the correct feature
file and the correct scenario” (UCY3); “I did not understand how it worked in the
beginning. Then I remember that the feature file exists it was easier” (UCY4).

Step definition. Figure 8 depicts the extent to which the participants perceive
the step definition useful to answer the domain understanding tasks. Most par-
ticipants indicate that the step definition is not useful for domain understanding.
This is in line with the reading patterns, which show that only two participants
used the step code, i.e., DTU3 and DTU8. These results are not very surpris-
ing, since the answer for domain questions can be found in the feature file and
thus there is no need to check the step definition (given the assumption that the
feature file is complete). In turn, one participant questioned the completeness
of the scenario in the feature file, which led him to inspect all relevant artifacts
including step code even after he looked at the correct scenario in a feature file:
“I was doubting if there was any other checks that might have been missing in
the feature file” (DTU8).

Source Code. Figure 8 depicts the extent of participants’ agreement concern-
ing the usefulness of the code for domain understanding tasks. We can see from
Figure 8 that only three out of 11 participants found the source code useful
(strongly agree and agree) for domain understanding. This is in line with the
reading patterns where only four participants used the source code (two of them
in combination with the step code), i.e., DTU3, DTU6, DTU8, and UCY2. This
can be explained by the fact that the answer could be easily found in the feature
file. The lacking familiarity with BDD could be a potential explanation of why
a few participants relied on the source code rather than the feature files: “I was
not able to distinguish what are preconditions or like examples in the scenario.
For some questions, I went in to the source code to have a clear idea” (DTU9).
Another participant that used the source code for domain understanding tasks
mentioned that the comments in the source code were helpful for domain un-
derstanding tasks: “The source code had like small explanation in the comments
which was useful” (DTU6).

5.3 Engagement with Software Artifacts During Code
Understanding (RQ2.1)

This section describes the investigations needed to answer RQ2.1 by under-
standing how developers engaged with different artifacts in order to answer code
understanding questions. Similarly to the procedure we reported in Section 5.1,
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we mined the maps with activities as files and activities as artifacts for each
group of subjects reported in Table 2. Since all the 11 subjects used at least
one artifact to answer the three code understanding questions, we have a total
of 33 process instances, distributed among the four groups of subjects. Please
note that all raw data as well as larger pictures of the process maps are available
online at https://zenodo.org/record/2602995.

Artifact type abstraction. The maps referring to the behavior of the subjects
with artifact type abstraction (cf. Fig. 4) is reported in Fig. 9. As discussed in
Section 5.1, due to the study design and to the data analysis technique (cf. Sec-
tion 4.2), all maps always start with fixations on questions and always terminate
with fixation on answers. In addition, it is possible to note that the complexity of
the pattern increases proportionally with the number of different artifacts being
used: when subjects only used the source code (Fig. 9a) we see the simplest pat-
tern, then come the two patterns with two different artifacts each (i.e., Feature
+ Source Code as in Fig. 9b, and Step Code + Source Code as in Fig. 9c), and
finally the pattern where all three artifacts are used to answer (Fig. 9d) which
shows the most complex behavior. However, in this last case (Fig. 9d), the thick-
ness of the edges suggests that subjects went most often from the question to the
feature files, then to the step code and finally to the source code. It is important
to note that this ideal behavior, in the map, is actually diluted because several
subjects repeated this whole sequence (or only parts of it) several times.

Files abstraction. Fig. 10 reports the patterns followed when answering code
understanding questions by focusing on activities emerging from file abstractions
(cf. “Specific artifact” in Fig. 4). In case of subjects who just used the source code
to answer code understanding questions it is possible to note that the pattern
being followed (Fig. 10a) is very complicated and unstructured since most of
connections have the same frequency (i.e., all source files have been inspected
with no clear order). Such a lack of structure is manifested only at this level of
granularity (at the artifact level, i.e., Fig. 9a it was not). For the three other
groups of subjects (i.e., Feature + Source Code as in Fig. 10b, Step Code +
Source Code as in Fig. 10c, and Feature + Step Code + Source Code as in
Fig. 10d) the complexity of the patterns is consistent with observations at the
artifact level (cf. resp. Fig. 9b, Fig. 9c, and Fig. 9d).

It is worth to mention that all subjects managed to locate the source code
containing the answer to the questions. However, participants who used feature
files, step code and source code appeared to have more structured way of reaching
the target resource.

In conclusion, we answer RQ2.1 by observing that it has been possible to
distribute subjects over four partitions based on the resources used to achieve
their answers. Each group showed different interaction patterns when reading
the resources. In addition, as for RQ1.1, the two abstractions of activities helped
the investigation by starting from a general view and then allowing to inspect
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more granular information. It is important to note that these questions, referring
to code understanding, always required analysis of the actual source code. The
navigation patterns seem to suggest that exploring the step code helped subjects
to be more precise in the identification of the relevant source code (i.e., the source
code with the answer to the question). However, as discussed in Section 5.4,
during the post-experiment interview, several participants found the step code
as not useful for code understanding as it did not contain the actual answer.

5.4 Benefits and Challenges of Software Artifacts for Code
Understanding (RQ2.2)

To improve the interpretation of the results presented using the reading patterns,
we analyzed the benefits and the challenges associated to the usage of different
artifacts. These results are complemented with data from our retrospective think
aloud session concerning the perceived benefits and challenges of the different
software artifacts used in answering the code understanding tasks.

Feature File. Figure 11 depicts the extent to which participants perceive the
feature file useful to accomplish the code understanding tasks. The usefulness of
a feature file for code understanding is not as prominent as for domain under-
standing tasks, i.e., 6 out of 11 participants indicate (strong) agreement. This
is in close alignment with the reading patterns that demonstrate that 6 out of
11 participants used the feature file for code understanding tasks (i.e., DTU3,
DTU8, DTU9, DTU10, UCY1, and UCY3).

Benefits outlined by participants are summarised in Table 4. Feature files
are perceived as helpful for code comprehension tasks because they direct them
to look at relevant classes and methods in the source code. Subsequently, they
were able to find the answer from the source code. However, a feature file itself
does not provide the answers for code understanding tasks (unlike in domain
understanding tasks). As expressed by one participant:

“[A feature file] did not help me because it does not specify how the
procedure [method] is done.” (UCY4)

Step definition. Figure 11 depicts the extent to which the participants per-
ceive the step definition useful to answer the code understanding tasks. For code
comprehension tasks 3 out of 11 participants found the step code useful (strongly
agree). As outlined in Table 5 the participants using the step code particularly
found the navigational support provided by the step code helpful. As can be
inferred from the reading patterns only 3 out of 11 participants used the step
definition for code understanding (i.e., DTU3, DTU8, and DTU10). One possible
explanation could be that the participants lacked the required familiarity with
BDD to fully exploit the navigational support and therefore preferred to use the
source code for identifying the answers. Moreover, the step code can only pro-
vide navigational support, but does not provide the answer to the question. For
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Fig. 11: Extent of usefulness of artifact types (i.e., feature file, step code, source
code) for code understanding tasks. N represents the total number of subjects.
The numbers in the bars indicate the number of subjects. Strongly disagree
indicates that the feature file was not used.

Table 4: Benefits of a feature file for code understanding.

Benefits of a feature file Participants Quotes

Code
Underst.

Mapping to relevant method “The feature file helped me to find out what is the method
that is being used to verify the card” (DTU3)
“I used it to find initially where I had to look into the
source code” (UCY3)
“I saw there is a part where it validates, it is a condition
to have a valid credit card, linked with a company provided
so i checked the source code after, how it matches the
credit card with the company provided” (UCY1)
“The feature file tells you where you will find which piece
of code” (DTU8)

Mapping to the relevant step
definition

“It told me where to look in the step definition” (DTU3)

example, participant UCY4 mentioned that the step definition was not useful
for code understanding because of the detailed procedure in the source code.
Another participant pointed out that to fully leverage the benefits from the step
definition to navigate to the corresponding implementation, the IDE should be
equipped with a feature that allows you to go to a specific code automatically.
However, the Eclipse IDE that we used in this study did not have such a feature:
“You need to have a good tool that allows you to go to [relevant] code” (DTU3).
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Table 5: Benefit of a step definition for code understanding

Benefit of a step definition Participant Quote

Code
Underst.

Mapping to relevant method “The step code [definition] was essential. The step
code told me what method is being called” (DTU3)
“[A step definition] tells you actually even more
clearly where exactly I have to look. It tells you in
which part of the source code which function is hid-
den” (DTU8)
“[A step definition] told me which object and method
that I need to look for in the source code (DTU10)

Source Code. Figure 11 depicts the extent of participants’ agreement concern-
ing the usefulness of the code for code understanding tasks. Meanwhile, all of the
participants are in (strong) agreement concerning the usefulness of the source
code for code understanding. As we can see from Table 6, the participants’
responses indicate that the source code is very useful for code understanding,
primarily because the source code provides a detailed implementation which led
them to the answers. The source code is beneficial if the methods, classes, and
packages are clearly named.

Table 6: Benefits of the source code for code understanding

Benefits of the source code Participants quotes

Code
Underst.

Clear naming for methods,
classes, and packages

“The wording in the functions, like by looking at
it, I know that there is the answer” (DTU9)
“I think it was easy to find things because of the
naming really to help me understanding the code”
(DTU10)
“[The source code] helped me because [of the]
keywords in the question that link to company
provider credit card and I found this very easy,
because there was a method that states this”
(UCY1).
“[The source code] was very helpful with good
structure and correct names of the classes”
(UCY2)

Provide detailed implementation “It shows how things are implemented is only in
the source code” (DTU3).
“The source code actually contains the answer”
(DTU8)
“[The source code] told me what detail of what
checks are done” (DTU10)
“The source code help me a lot, because it has the
detail procedure” (UCY4)
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5.5 Discussion and Limitations of Study Results

Discussion of Study Results. Analyzing our data at the artifact level pro-
vided insights into how participants navigated between different artifacts (i.e.,
feature, step code, and source code) for accomplishing domain and code under-
standing tasks. Analyzing our data at the file level, in turn, provided some first
indications that, when asked for code understanding questions, participants us-
ing feature files and step code had more targeted reading patterns (i.e., focus
predominantly on files relevant for performing the task at hand). A potential av-
enue for future work could be a confirmatory study investigating the association
of different reading patterns with comprehension task performance.

Our results show that depending on the task to be addressed (domain un-
derstanding versus code understanding) different reading patterns can be ob-
served, i.e., participants adjust their reading patterns in a task-dependent man-
ner. Moreover, the choice of reading patterns is closely aligned with the benefits
and challenges experienced by participants.

Domain Understanding. For domain understanding tasks the feature file was
perceived as the most beneficial artifact. Mentioned benefits of a feature file are
that it is easy to understand, provides insights into the code’s intention, and
provides an outline of the requirements. The benefits that we identified further
corroborate the benefits of BDD reported in past studies [3, 10, 22]. Participants,
however, also experienced a steep learning curve, a challenge that has been also
reported in [3]. Moreover, one participant pointed out that a scenario described
in one of the feature files had a pre-condition which did not have a corresponding
implementation in the source code. Such an issue has been described in [34] as
a consequence of adding unnecessary detail to a feature file. Completeness of a
feature file is an attribute that practitioners found to be important for a feature
file [34]. We could see in our data that one participant who did not trust the
completeness of the feature file validated his answer using the step code and
source code. Our study complements the study by Oliveira and Marczak [34] on
the importance of conforming to quality guidelines in formulating feature files.

Code Understanding. For code understanding, in turn, the source code was per-
ceived as the most useful artifact. Still both the feature file and the step code was
perceived as an important navigational aid. Concerning the code understanding
task, participants who exploited all BDD artifacts (i.e., feature, step code and
source code) were able to complete their task by inspecting fewer irrelevant Java
files. Instead, subjects who used only the source code inspected more Java files,
several of them not task relevant. The reading patters are in line with the results
of RQ2.2, in Section 5.4. Our participants found that BDD artifacts (i.e., fea-
ture and step code) are useful in code understanding, particularly for identifying
the relevant part of the source code. This finding supports a previous study that
mentions that one of the benefits of BDD is that it improves traceability between
requirements and code [22].
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A number of our participants also reported that clear naming of methods,
classes, methods, and packages helps in code understanding. Past code under-
standing studies reported that intention revealing variable names improve code
understanding [4, 23, 38]. The finding of our study indicates that the intention
revealing variable names in the source code might have rendered the step defi-
nition less important. To investigate whether BDD uptake increases in the pres-
ence of obfuscated code or whether its benefits are more clearly seen for code
understanding is subject for a future study.

A challenge that was reported by one of our participants pertains to IDE
limitations. The study conducted by Solis and Wang [46] suggest that current
BDD tools like Cucumber, SpecFlow, and the xBehave family, lack comprehen-
sive support for the BDD approach. Our study identified another limitation of
existing BDD tools, i.e., the lack of support in linking a feature file or a step
definition and source code (in Section 5.4).

Limitations of Conducted Study. This subsection describes limitations con-
cerning the conducted study. While we could demonstrate that process mining
can be used to identify and visualize reading patterns from eye-tracking data
during comprehension tasks, we cannot make general statements concerning the
distribution of the observed patterns under varying conditions. In the rest of this
section several limitation are discussed in detail.

Task Description. In our study participants had to read different resources like
feature files, step definitions, and source code. This means that, for example,
if the scenarios in a feature file are poorly formulated, participants might have
difficulty in understanding it, which might, in turn, lead to a different perception
of a certain artifact in terms of usefulness and subsequently to different reading
patterns (e.g., decreased usage of the artifact). To minimize this threat, the
artifacts were inspected by other researchers who did not participate in the
study design nor in the final study. In addition, we performed a pilot study with
one individual who was not included as a study participant to assess the quality
of the study design in general.

The distribution of reading patterns might change depending on the quality of
the different artifacts. Several of our participants outlined the high source code
quality (cf. Table 6). However, one could speculate that the usefulness of the
source code is perceived as lower in the absence of intentional revealing names,
while, in turn, the navigational support provided by the step code (cf. Table 5)
could be perceived as more useful and consequently resulting in a higher usage of
the step code files. As for future work we plan to conduct an experiment where
the task materials differ in terms of source code quality. We expect that feature
files and step code files will be increasingly used when the source code lacks
intention revealing names and we expect a positive impact on task performance
through the navigational support provided.

Selection of Participants. To recruit the participants we used convenience sam-
pling. This selection strategy, as we mentioned in Section 4.1, led to the inclusion
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of participants who were unfamiliar with BDD, which might prevent us from cap-
turing the intended construct. To minimize sampling threat, we provided training
and introduction to BDD to all participants. Our study shows that some of the
participants with little to no familiarity with BDD managed to use the BDD
artifacts (i.e., feature file as well as step code) during the tasks. Furthermore,
our study aimed at better understanding how developers’ interact with different
software artifacts when answering domain and code understanding questions and
not at drawing any conclusions about cause-effect relationships (e.g., how the
observed patterns are associated with comprehension task performance).

Evaluation Apprehension. In this study, an observer was present while the partic-
ipant worked on completing the task. This was done to allow proper calibration
of the eye tracker and also to administer the think aloud questions. Having an
observer present may bias the results, as the participants might try to perform
better when being evaluated, also known as the Hawthorne effect. To minimize
this effect, we mentioned to the participants that we are interested in the way
they interact with the different software artifacts and not in judging their per-
formance.

Low Number of Participants. Another threat to external validity is the rather
low number of participants, i.e., 11 participants. Goldberg and Kotval performed
an eye-tracking study with 12 participants and mentioned that it is a typical
number in an eye-tracking study [13]. Despite the small sample size we could
for both domain and code understanding tasks observe different reading pat-
terns. The process maps provide some indication that the presence of feature
files and step code could be associated with improved task performance. Due
to the small sample size we analyzed our data qualitatively and did not draw
conclusions using statistical inferences. As for future work we plan to conduct a
confirmatory experiment to investigate the impact of feature files and step code
on comprehension task performance.

6 Discussion and Limitations

This section discusses the results as well as limitations of the general method we
proposed in Section 3.

6.1 Discussion of the Proposed Method

Our results show that process mining can be used to identify reading patterns
from eye-tracking data and visualize how participants interact with different
resources at different levels of granularity. We demonstrated the approach by
conducting an exploratory study with 11 participants and complemented the
analysis of reading patterns with think aloud data providing insights into per-
ceived benefits and challenges associated with the different resources to better
understand the choice of reading patterns.
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With the method we demonstrated also the partitioning of the subjects based
on which activities each of them engaged with to answer a questions. Corre-
sponding reading patterns, for each partition of the subjects, can be extracted
and analyzed. In addition, we show that the reading patterns can be generated
for different abstraction levels: we focused on activities as reading each file or
activities as reading files that belong to the same artifact type (i.e., feature, or
step code, or source code).

The reading patterns identification methodology presented in this paper can
represent an important data exploration tool to investigate the typical behavior
aggregated by all subjects (within a certain group). This information can be used
as input for confirmatory studies as well as to improve supporting tools to better
reflect user needs. In addition, these maps might be useful when it is important
to verify that subjects follow some prescriptive behavior (en example of such
behavior is to double check different resources before providing an answer).

Please note that the visualisation of reading patterns requires the applica-
tion of abstraction going beyond eye-tracking metrics (such as fixations and sac-
cades). With eye movement data collected at a sampling rate of 90Hz (common
in consumer eye-trackers, e.g., in the case of Tobii 4C) we obtain approximately
54000 gaze points for every 10 minutes of data recording. Traditional eye-tracking
research usually employs the notion of Areas of Interest [16] to provide spatial
abstractions. While this can be easily achieved for settings where all artifacts
are visible at all time, our setting is of more dynamic nature, i.e., the artifacts
visible to the participants change over time. By using iTrace and interlinking
gaze points with source code entities we are able to map the data onto activities
(corresponding to dynamic Areas of Interest) and visualize them using process
mining in a flat 2-dimensional map. In traditional eye-tracking settings artifacts
are either visible at all time or the identification of dynamic areas of interest has
to be done manually [16]. Moreover, traditional visualisations for such settings
require video (e.g., showing the scan-path over time).

6.2 Limitations of the Proposed Method

This subsection describes limitations concerning the usage of process mining to
identify and visualize reading patterns derived from eye-tracking data.

Data Collection Using Eye-Tracking. The method presented in this paper relies
on eye-tracking data. Eye-trackers are hardware equipment subject to two main
problems: accuracy in space and accuracy in time. Space accuracy concerns the
precision in detecting the position of a fixation. For example, if we want to have
a very fine grained abstraction on the reading patterns (e.g., which methods are
read, more precise than what presented in Fig. 4), then we would need to ensure
that methods appear far enough from another, to compensate possible mistakes
on the fixation coordinates identified by the eye tracker. The time accuracy of
an eye tracker refers to the pace at which the fixations are detected. This time
has to be commensurate to the amount of information we expect subjects to
read. If this is not the case, it may happen that fixations on specific resources
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are not detected which, in turn, results in missing activities. However, for most
scenarios this does not represent a problem, since even consumer eye trackers
have sampling rate of 90Hz (e.g., in the case of Tobii 4C).

Linking Eye-Tracking Data with Artifacts. To collect the data and to link the
eye movement data with the actual artifacts, there is need for specific software.
In our demonstration we used the iTrace plugin, which assumes for its correct
operation that the source code is not altered during a session. Therefore, with the
tool being currently used, it is possible to investigate only comprehension tasks,
where the resources are static throughout the duration of the whole experiment.
Ideally, however, this limitation can be overcome by adopting tools which are
capable of mapping fixations to artifacts which are changing over time. Then,
the very same method can be used to investigate not only comprehension, but
also design tasks.

7 Conclusions and Future Work

In this paper, we proposed a method to identify and visualize reading patterns
occurring during comprehension tasks. We applied our method in an exploratory
study investigating developers’ behavior using gaze data collected using an eye
tracker and a verbal questionnaire.

We could demonstrate that our method can be used to partition the set of
subjects into different groups according to their reading patterns. The quali-
tative analysis of the post-experiment questionnaire revealed the benefits and
challenges associated with the different artifacts providing some insights into
the choice of reading patterns.

Since the current method is limited to tasks involving artifacts that remain
unchanged over time, we plan to extend our work towards evolving artifacts,
which would allow the application of the method to design tasks.

Moreover, we plan to use the maps elicited in our exploratory study as a
starting point for future confirmatory studies. For example, the process maps
provide some indication that the presence of feature files and step code could be
associated with improved task performance. Moreover, there is some indication
that the high quality of the source code made it less necessary for participants
to rely on the navigational support provided by BDD artifacts. Both of these
aspects could be investigated in the future. Additionally, it would be highly
interesting to combine the method proposed in this paper with research on cog-
nitive activities similar to [43, 12, 51, 20]. This would allow us to combine reading
patterns with insights into cognitive processes.
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A Task Description

Tasks consist of answering questions regarding domain understanding and code
understanding. In this appendix, we present two screenshots with question and
corresponding answer files along with the structure of the software artifacts. We
choose to present Task 1.1.0 and Task 1.2.0 as example. Task 1.1.0 is a domain
understanding question (see Fig. 12) whereas Task 1.2.0 is a code understanding
question (see Fig. 13). The remaining tasks are available at https://github.

com/CIoann/cucitrace.

Fig. 12: The domain understanding question for Task 1.1.0 and the answer Task
1.1.1 files are shown
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Fig. 13: The code understanding question for Task 1.2.0 and the answer Task
1.2.1 files are shown


