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Abstract. The problem of understanding whether a process trace satis-
fies a prescriptive model is a fundamental conceptual modeling problem
in the context of process-based information systems. In business pro-
cess management, and in process mining in particular, this amounts to
check whether an event log conforms to a prescriptive process model, i.e.,
whether the actual traces present in the log are allowed by all behaviors
implicitly expressed by the model. The research community has devel-
oped a plethora of very sophisticated conformance checking techniques
that are particularly effective in the detection of non-conforming traces,
and in elaborating on where and how they deviate from the prescribed
behaviors. However, they do not provide any insight to distinguish be-
tween conforming traces, and understand their differences. In this paper,
we delve into this rather unexplored area, and present a new process
mining quality measure, called informativeness, which can be used to
compare conforming traces to understand which are more relevant (or
informative) than others. We introduce a technique to compute such
measure in a very general way, as it can be applied on process mod-
els expressed in any language (e.g., Petri nets, Declare, process trees,
BPMN) as long as a conformance checking tool is available. We then
show the versatility of our approach, showing how it can be meaning-
fully applied when the activities contained in the process are associated
to costs/rewards, or linked to strategic goals.

Keywords: Conformance Checking · Business Value · Process Mining ·
Goals.

1 Introduction

The increasing availability of event data recorded by information systems, elec-
tronic devices, web services, and sensor networks provides detailed information
about the actual processes in a wide range of systems and organizations. Process
mining techniques [1] can use such event data to discover and enhance processes,
check the conformance of actual with expected behaviours, and ultimately pro-
vide insights on how processes are executed in reality.

The typical starting point for process mining algorithms is an event log. Each
event in a log refers to an activity (i.e., a well-defined step in a process) and is
related to a particular case, in turn identifying a process instance. The events
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belonging to a case are ordered and can be seen as one “run” of the process
(often referred to as a trace of events). Event logs may store additional informa-
tion about events such as the resource (i.e., person or device) responsible for the
execution or triggering of the activity, the timestamp of the event, or additional
data attributes recorded with the event. Typically, three types of process min-
ing techniques can be distinguished [1]: (i) process discovery (learning a model
from example traces in an event log), (ii) conformance checking (comparing
the observed behavior in the event log with the expected behaviors expressed
by a process model), and (iii) model enhancement (extending models based on
additional information in the event logs, e.g., to highlight bottlenecks).

In particular, conformance checking has lately attracted a lot of attention
both from the research community and the industry, being instrumental to un-
derstand the presence, extent, and nature of deviations separating the actual and
expected courses of execution of the process [4]. In an organizational context,
such deviations are key towards a better governance, risk management, and com-
pliance, since they may reveal legal/normative issues, or opportunities to further
improve and optimize processes. In this respect, virtually all approaches in the
conformance checking spectrum focus on the detection of behaviors that do not
comply with a prescriptive process model, and in turn on the fine-grained anal-
ysis of the resulting deviations. Interestingly, no fine-grained insight is instead
provided in the case of compliant behaviors.

In this paper, we delve into this unexplored area, arguing that analyzing,
classifying, and better understanding compliant behaviors is as important as in
the case of non-compliant ones. To do so, we appeal to the fact that business
processes intimately relate to the value chain of an organization, and hence
activities in a process are executed because they ultimately contribute to value.
This, in turn, provides a conceptual basis to measure compliant traces, which
makes some traces more informative about the process than others.

We propose a novel notion of informativeness of a trace. Informativeness
should not be confused with standard measures used to classify traces based on
the value, or reward, they produce. Instead, it directly relates to conformance,
in the following sense: a trace is informative if it conforms to the process model
of interest, and, in addition, it contains behavior that: (i) is not necessary to
achieve conformance, and (ii) such behavior impacts (positively or negatively)
to the resulting value. These two aspects single out behaviors that could have
been skipped according to the process, but that proved meaningful when ascrib-
ing value to the course of execution. Let us substantiate this with a very simple
example. The payment phase of a shop selling process consists of a sequence of
tasks where a clerk performs the payment using the data of the customer and, if
the payment is accepted, puts the paid items in a bag, inserts the receipt in the
bag, and optionally also includes a discount badge for future purchases. Consider
two compliant executions, performed by John and Jane. John strictly follows the
sequence of mandatory tasks. Jane instead decides to also put a discount badge in
the customer bag. If we ascribe value to this process depending on the customer
satisfaction, both executions positively contribute to it, as the customer gets the
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items they wanted. However, the trace produced by Jane is more informative,
as she exhibited a behavior that is not strictly required to conform to the pro-
cess prescriptions, but that positively contributes to the customer satisfaction.
Notice that the trace produced by Jane would have remained informative even
if she performed some optional behavior negatively impacting on the customer
satisfaction, such as inserting advertisement sheets in the customer bag.

Starting from this intuition, we formalize informativeness into a parameter-
ized, model-agnostic metric that can be effectively used to measure informative-
ness, and classify traces on this basis. The metric is model-agnostic in the sense
that it can be applied on process models expressed in any language (e.g., Petri
nets, Declare, process trees, BPMN) as long as a conformance checking tool is
available. A proof-of-concept implementation to compute this metric is available
as a plug-in for the well-established ProM process mining framework.

To show the effectiveness and versatility of our approach, we ground it within
two scenarios. In the first scenario, prescriptive processes emerge from the so-
phisticated requirement models introduced in [7]. Such models contain hard and
soft goals, which can be decomposed into more specific goals and ultimately
tasks, possibly marked as optional. In this setting, informativeness provides a
tool to compare traces based on the presence of optional behaviors that achieve
or prevent the achievement of soft goals. In the second scenario, we consider
standard BPMN processes whose tasks are associated to costs/rewards.

The rest of the paper is structured as follow: Section 2 introduces the notion
of informativeness, framing it in the context of conceptual modeling. It then
provides the two scenarios used throughout the paper. Section 3 shows how
the informativeness of a process trace can be actually computed, demonstrating
that it reconstructs the intuitive understanding of informativeness as discussed
in Section 2. Section 4 tackles related work and Section 5 concludes the paper
and spells out directions for future work.

2 On the Notion of Informativeness

In this section, we introduce the notion of informativeness from the point of view
of conceptual modeling of processes and we show, via realistic yet to-the-point
examples, how such problems can impact typical scenarios.

2.1 Intended, Allowed, Compliant and Informative Traces

Modeling is the activity of representing the physical and the social world for
the purposes of communication, understanding, problem solving, controlling and
automation [10]. As discussed in depth in [5], according to this view, models are
representations of conceptualizations of reality. Conceptualizations are the result
of cognitive operations created by abstracting (filtering out) certain features
of states of affairs of reality. These conceptualizations, in a sense, delimit the
set of abstractions that can be carved out of reality, i.e., the abstractions that
are deemed acceptable according to that conceptualization. So, for example,



4 A. Burattin et al.

if we have a proper conceptualization of genealogy, the concepts of ancestor,
descendent, father, mother, offspring and their ties allow us to build individual
abstractions representing particular states of affairs (e.g., John is the father of
Paul and Mary is an ancestor of John), which are constructed by abstracting
from a number of features of reality according to these concepts (e.g., from the
weight and hair color of John, Paul and Mary). Moreover, this conceptualization
proscribes a number of abstractions that represent states of affairs unacceptable
according to that conceptualization (e.g., John being his own ancestor, John
having two biological fathers, John’s biological father changing with time).

If a model is a representation of a conceptualization, an adequate model
of a conceptualization is one that accepts as valid instances (or allowed model
instances) exactly those that represent the state of affairs deemed acceptable
by that conceptualization [5]. We call these instances intended model instances.
Models, however, are frequently under-constrained, thus, accepting as allowed,
instances that are non-intended. Frequently, they are also over-constrained, thus,
excluding as valid (i.e., as allowed) intended instances. In the case of process
modeling, model instances are execution traces, i.e., possible executions of a
process model.

In Figure 1, we contrast the set of intended instances (traces) of a process
model with the set of allowed traces delimited by a given process specification.
As we can observe, there are traces that are intended according to the underlying
conceptualization of reality, but are excluded by the process model (the differ-
ence between intended and allowed traces). Moreover, we have traces that are
allowed by the model, but do not correspond to intended traces (the difference
between allowed and intended traces). Furthermore, as shown in Fig. 1, a sub-
set of the intended traces (i.e., executions that are actually enacted in reality)
can be recorded in event logs. The difference between the set of intended traces
present in a log and the set of allowed ones delimits the set of non-compliant
traces. In other words, a non-compliant trace is one that is intended by a given
conceptualization (as evidenced by the event log), but is not prescribed by the
process model that aims at capturing that conceptualization. In contrast, the
intersection between the set of allowed traces and those recorded in the log is
called the set of compliant traces.

Many authors in the literature of process mining have proposed metrics for
characterizing and ranking non-compliant traces (according to different degrees
of non-conformance). But what about the set of compliant traces? Traditionally,
all compliant traces are thought of as standing in the same footing and, as such,
are thought as having equal importance for the process analyst. As previously
mentioned, in this paper, we defend the notion of informativeness of a trace, i.e.,
how informative that trace is for the process analysis. As we elaborate in the
sequel, how informative a trace is depends on the relation between the activities
constituting a process and the value-based elements outside the process, namely,
the goals (and anti-goals) of suitable stakeholders. Specifically, the important
aspect to consider is the value that is brought by the execution of activities that
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Log

Allowed traces

Intended traces

Fig. 1. Representation of the traces involved in the scenario presented in this paper.
The color indicates the informativeness (light green: not informative; dark green: very
informative) of intended traces. We aim at “giving colors” (i.e., assign informativeness)
to compliant traces (i.e., traces in the log also allowed by the process model).

are not strictly required to make the trace compliant: these are the ones that
make the execution interesting if they impact on value.

The main ingredients of process models are actions (intentional events). As
discussed in [6], actions are manifestations of intentions inhering in the stakehold-
ers. Goals (as expressed in frameworks such as i* [6, 7, 14]) are the propositional
content of the stakeholders’s intentions. In other words, every action is caused by
a certain intention of a stakeholder, whose propositional content is formulated
as a goal. Goals can be either mandatory or optional for specific stakeholders.
Mandatory top goals (i.e., mandatory goals that are not components of other
goals) are termed hard goals. Optional top goals are called soft goals.4 Optional
goals in general (i.e., “nice-to-have” goals) are also called preferences. Moreover,
goals relate to each other via decomposition (or refinement) relations. These can
be either OR-decompositions (representing that the satisfaction of any sub-goal
is sufficient for satisfying the composed goal) or AND-decompositions (mean-
ing the satisfaction of the composed goal requires the joint satisfaction of all
mandatory sub-goals). Moreover, goals (both optional and mandatory) can re-
late to each other via contribution relations. These contributions can be either
positive (e.g., the satisfaction of a goal A implies the satisfaction of another goal
B - called a make contribution) or negative (e.g., the satisfaction of a goal B is
incompatible with the satisfaction of a goal C - termed a break contribution).
Analogously, the execution of actions can, while addressing a goal, exert positive
or negative contributions to other goals.

Process models are designed to explicitly coordinate the execution of action
types that together afford the satisfaction of the stakeholder’s goals. So, all in-
tended and compliant traces of a process model should satisfy all the mandatory
goals that motivated the creation of that process. However, compliant traces
can differ wrt. their informativeness, i.e., the degree to which they positively or
negatively contribute to the satisfaction of optional goals. The stronger is the
contribution that a trace makes wrt. these goals, the more value (positive or
negative)5 it adds to the stakeholder(s) at hand. In other words, the informa-

4 We are fully aware of the different senses in which the term soft goal is employed in
the literature [6], namely, alternatively as a synonym to non-functional requirement,
fuzzy propositional content, or propositional contents without a generally accepted
satisfaction criteria. Here, as in [7], we use the term in the specific sense just defined.

5 As discussed in [12], even though people intuitively assume a positive connotation
of the term value, value emerges from events that impact goals either positively
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Fig. 2. Fragment of the wholesale book seller requirement model from [7].

tiveness of a trace is a measure of how much value (either negative or positive)
a trace brings to the stakeholder(s) whose goals motivate the design of that
process.

2.2 Running Examples

To better introduce the problem tackled in this paper, let us analyze some real-
istic examples. We start by introducing a language where the goals are explicitly
reported in the formalism and then we move to another scenario where goals
need to be manually elicited.

Example 1. We consider the setting of [7], where business processes implicitly
emerge from the representation of requirements. In particular, [7] puts forward a
sophisticated goal-oriented modeling framework. It uses, as a basis, the classical
goal-oriented approach described before, where (i) both hard and soft goals are
considered; (ii) goals are subject to AND/OR decomposition into sub-goals and
ultimately tasks; (iii) hard goals achieve or prevent the achievement of soft goals.
In addition, [7] adopts: (i) optional goals, to express goals that should not neces-
sarily be achieved towards the achievement of their parent goals; (ii) preference
goals, to capture the relative importance of certain soft goals; (iii) temporal con-
straints on the executability of tasks, in a way that is reminiscent of declarative,
constraint-based processes. For self-containedeness, we depict in Figure 2 an ex-
cerpt of the case study from [7], which tackles a wholesale book seller. Goals are
represented as rounded rectangles, tasks as hexagons. Hard goals are colored,
whereas soft goals are white. Optional goals are marked with a circle on top.
Cloud-shaped soft goals denote preference goals. Beside AND/OR contribution
arcs, we have dashed arcs labeled with “++” (resp., “– –”) to indicate that when
the source goal is achieved (or the source task is executed) then the target goal

or negatively. More specifically, the value ascribed to an event consists of benefits
(positive value contributions) or sacrifices (negative value contributions).
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is also achieved (resp., cannot be achieved); thin arcs labeled with “pre” indi-
cate that the target element cannot be achieved/executed until the source one
is achieved/executed. The CC and MO goals do not contain optional parts.

The presence of optional goals that are sub-goals of hard goals in the model,
which in turn underlies the presence of optional tasks, is the basis to understand
how informative different traces are. Informativeness depends on how behavior
that is exhibited, but is not essential towards conformance, actually impacts
(either negatively or positively) on the overall, resulting value.

Consider, for example, the soft goal Transaction Reliability as the main fo-
cus to understand the overall, produced value. Consider now the following four
conforming scenarios:

Scenario Book-CC. The book order is paid via credit card, and then the
corresponding receipt is sent by executing the Send Electronic Receipt task.

Scenario Book-CC-PR. Similar to the previous scenario, with the addition
that also a printed receipt is sent, by executing the Print Receipt task.

Scenario Book-CC-2PR. Extension of the previous scenario, ensuring that a
separate printed receipt is submitted. This is done by executing, after Print
Receipt, the two tasks that Submit and Deliver the Receipt.

Scenario Book-MO-PR. An alternative scenario where payment is done us-
ing a money order, and then the corresponding receipt is sent both electron-
ically and physically, by respectively performing the Print Receipt and Send
Electronic Receipt tasks.

Scenario Book-CC is not particularly informative (when compared to other
compliant traces), since it conforms to the requirements but does not include
any non-mandatory behavior with the purpose of satisfying the Transaction Re-
liability soft goal. Scenario Book-CC-PR is more informative: the execution
of Print Receipt could be removed without jeopardizing conformance, but its
presence ensures the reliability of the overall transaction. Scenario Book-CC-
2PR is as informative as scenario Book-CC-PR: the presence of the additional
tasks for submitting and delivering the receipt is not essential to guarantee con-
formance, but at the same time does not interact with reliability of the transac-
tion, which is already implicitly achieved by the fact that the receipt has been
previously printed. Finally, scenario Book-MO-PR is not informative. In fact,
it consists of an initial behavior that achieves the hard goal Payment Done via
Money Order , and has also the effect of guaranteeing reliability of the overall
transaction. This initial portion of the entire scenario is essential towards con-
formance, since its removal would jeopardize the achievement of the Payment
Received goal, in turn preventing the fulfillment of the book order. The fact that
this essential part satisfies the reliability of the transaction makes the execution
of the Print Receipt task irrelevant, and hence not informative, as opposed to
scenarios Book-CC-PR and Book-CC-2PR.

Interestingly, scenario Book-MO-PR would actually become informative if
the scope of the analysis covers all soft goals, not just Transaction Reliability .
In such a case, in fact, the optional execution of Print Receipt prevents the
company to enhance its green profile, which would not happen if such a task
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Fig. 3. Fragment of an e-commerce, order-to-delivery process.

was not present in the scenario. This is an example of informativeness arising
from a negative impact to the overall produced value. /

For the next example, we consider a BPMN process model. In this case, the
goals (i.e., the values) are not explicit so different interpretations are possible.

Example 2. Consider the fragment of an online order-to-delivery process shown
in Figure 3. Each process instance relates to a cart case object, which is manip-
ulated by the customer. When the process starts, the cart is initialized. Then,
the customer may navigate through multiple product pages by browsing the e-
commerce website. For each navigated page, after accessing the page itself, the
customer may possibly decide to add the accessed product to her own cart (in
this case, the cart enters into the nonempty state). When all pages of interest
have been navigated, the customer may decide to quit, or to finalize the order.6

This, in turn, amounts to placing the order and then paying for all the products
in the cart, which has the effect of moving the cart into the paid state.

We consider now 4 scenarios, accounting for different instances of this process:
Cart-Empty. The customer visits the pages of some products, but does not

add any product to the cart, and consequently abandons the process.
Cart-Abandon. The customer visits the pages of some products, and adds a

product to her cart costing 20 euros. Then, the customer decides not to
finalize the cart, and so simply abandons.

Cart-Pay. As the previous scenario, but now the customer finalizes the order,
going through the placement task, and paying 20 euros.

Cart-PayMore. An extended version of the previous scenario, where the cus-
tomer adds two products to the cart, one costing 20 euros and another costing
30 euros, finally paying a total amount of 50 euros.

All scenarios contain optional behaviors: the only mandatory task is Create Cus-
tomer Cart, while all the others denote optional, possibly informative behavior.

We now analyze informativeness by considering, as value, the impact of each
scenario on the evolution of the carts, considering that potentially informative
traces should make the cart nonempty, and then possibly also paid. With this
objective in mind, scenario Cart-Empty is not informative, since the cart sim-
ply stays in the init state. Scenario Cart-Abandon is instead informative: the
customer adds an item to the cart making it nonempty, through the execution of

6 For simplicity, we model this as a deferred choice, but in reality we should also ensure
that the customer cannot proceed to the order finalization if the cart is empty.
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the optional Add Product to Cart task. Scenario Cart-Pay is more informative
than Cart-Abandon: the cart is further moved to the paid state through the
execution of the optional process fragment consisting of the sequence of Place
Order and Pay for All the Products tasks. Scenario Cart-PayMore is as infor-
mative as Cart-Pay: more items are added to the cart, but in terms of state
evolution of the cart, this has the same overall effect than in Cart-Pay. In par-
ticular, the second execution of Add Product to Cart is not informative, as it was
preceded by another instance of the same task that made the cart nonempty.

An alternative assignment of values (and hence informativeness) is by con-
sidering the potential/concrete monetary gain associated to the tasks involved
in the process. In particular, assume that the Add Product to Cart task gets as-
sociated to the potential gain of the added products, and that the Pay for All
Products task gets associated to the overall, paid amount. The other tasks do not
come with any gain instead. With this objective in mind, scenario Cart-Empty
is not informative, as it does not contain any optional behavior involving any
gain. Scenario Cart-Abandon is instead informative: the customer decides to
add a product to the cart for a potential gain of 20 euros. Scenario Cart-Pay
is more informative than Cart-Abandon, because of the presence of a second
optional task, in particular Pay for All Products, also coming with a concrete
gain of 20 euros. Scenario Cart-PayMore is, in this interpretation of value,
even more informative as Cart-Pay: it contains the execution of three optional
tasks that come with positive gains: the two executions of Add Product to Cart,
and the execution of Pay for All Products, incurring respectively in a gain of 20
(potential), 30 (potential), and 50 (concrete) euros.

Notice that various ways to aggregate such task-related costs into a single
value may be singled out. Depending on such aggregation, different values for
informativeness may be obtained, giving more weight to traces that end up with
an actual gain (possibly for orders containing few items), or to traces with a cart
containing very costly products that in the end are however not paid. /

The examples provided in this section can help to better understand the
general concept and the aim of informativeness and, at the same time, they can
serve as a guide to the actual realization of the metric.

3 Informativeness Metric

In this section, we present a possible realization of the informativeness metric.
We formally define the metric and then investigate how it can be instantiated to
the two examples previously described. Additionally, we report about a proof-
of-concept implementation for the computation of the metric.

3.1 Realization and Formal Definition

Let us first define the basic elements that are needed to compute how informative
a process trace is. Given a set of unique event identifiers U (e.g., U ⊆ N), a set of



10 A. Burattin et al.

attribute names An and a set of attribute values7 Av, an event e = (id, f) is a tu-
ple made of a unique event identifier id ∈ U and a key-value relation f : An → Av

mapping attribute names to the corresponding values. Common attributes con-
tained in events are name, timestamp, and originator. With a projection opera-
tor π on events it is possible to extract specific values of specific attributes from
the attribute key-value relation, i.e., πa((id, f)) = f(a). For example, consider
event e = (42, {name = ‘purchase’, timestamp = 2019-06-03, cost = 100}), then
πname(e) = purchase and πcost(e) = 100. If the key-value relation does not
contain any mapping for the given attribute name, then the default value 1 is
returned, i.e., π⊥(e) = 1. Additionally, the event identifier can be extracted with
πid(e) = 42. For readability purposes, in the rest of the paper, we assume that
no attribute in f is named id, thus πid is always unambiguous.

The set of all events is denoted with E, the set of all possible sequences
of events is called T = E∗, and a sequence of events t ∈ T is called trace.
Single events of t = 〈e1, e2, . . . , en〉 are accessed by the corresponding index, e.g.,
t(1) = e1, t(2) = e2. The length of a trace is denoted as |t| = n. Given a trace
t = 〈e1, e2, . . . , en〉, the deletion of some events from it (without perturbing the
order of the remaining ones) generates a so-called sub-sequence8 of the original
trace. Note that a sub-sequence is also a trace. The set of all possible sub-
sequences of t, which are not empty and not equal to t itself, is denoted with
S(t) and contains 2|t| − 2 traces.9

Given a trace t and a sub-sequence s ∈ S(t), we define the diff operator,
which returns the sequence of events to be removed from t to generate s:

diff(t, s) = 〈ei | ei ∈ t ∧ ei /∈ s〉.

The actual implementation of the diff operator can use the unique event identifier
(i.e., πid(e)) to establish if an event belongs to the original trace or not.

In order to define the informativeness of a sub-sequence s ∈ S(t), it is neces-
sary to know which attributes bring value and how to aggregate them. Therefore,
given an attribute name a, a value adapter m, and an aggregation operator �,
we define:

informativeness(s, t, a,m,�) = m
⊙

e∈diff(t,s)

πa(e). (1)

The simplest implementation of informativeness just counts the number of re-
moved events and is realized with a = ⊥ (recall π⊥(e) always returns 1), m = 1
and � = Σ. In this case, we obtain the definition

∑
e∈diff(t,s)

1 = |diff(t, s)|.
Another example of informativeness function is the inverse of the costs of the

7 In this context, value denotes a symbolic/numeric constant.
8 Sub-sequences should not be confused with sub-strings.
9 Consider the set I of indexes of events in trace t: I = {1, 2, . . . , |t|}. By taking only

events from a subset of I, we can generate a possible sub-sequence of t. Therefore,
the set of all possible sub-sets of I, also called power-set P(I), contains the indexes
of all possible sub-sequences and |P(I)| = 2|I| = 2|t|. From this value, we need to
remove two special sub-sequences: the empty and the original ones. Therefore, we
end up with 2|t| − 2 possible sub-sequences.
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Algorithm 1: Trace informativeness

Input: t ∈ T : a trace;
M ∈M: the reference model;
C :M×T → {true, false}: a conformance function which, given a model
and a trace, returns ‘true’ if the trace is compliant, ‘false’ otherwise;
a,m,�: configuration of the informativeness function as in Eq. 1.

Output: The informativeness of the trace and the activities bringing it

. Check that the current trace is compliant with the model

1 if C(M, t) = false then
2 return error . The initial trace must be compliant

3 end

. Initialize structures to keep maximal informativeness

4 smax ← 0
5 tmax ← t

. Iterate over all possible sub-sequences of t
6 foreach t′ ∈ S(t) do
7 if C(M, t′) = true then . Continue if the sub-sequence is compliant

8 s← informativeness(t′, t, a,m,�)
9 if s > smax then

10 smax ← s
11 tmax ← t′

12 end

13 end

14 end

15 return (smax, diff(t, tmax)) . The difference between t and tmax contains

the most informative activities. If no sub-sequence is compliant,

then the informativeness is 0

tasks present in the original trace but not in the sub-sequence, i.e., a = cost,
m = −1, � = Σ, thus obtaining −

∑
e∈diff(t,s)

πcost(e).

With these definitions in place, it is possible to obtain the informativeness of a
trace t wrt. a model M as the maximal informativeness among all sub-sequences
in S(t) that are compliant with M . Alg. 1 reports a possible way of computing
the metric. The algorithm takes as input the trace t, the model M and a confor-
mance function C. Additional inputs are a, m and �, as previously mentioned
in Eq. 1, to configure the informativeness function. The first check performed
by the algorithm is to verify that the trace is indeed compliant with the model
(lines 1-3). After that, all possible sub-sequences are iterated (line 6) and, for the
compliant ones (line 7), the corresponding informativeness is computed (line 8).
The best informative score is kept with the sub-sequence producing it (lines 9-
12). Finally, the best informativeness, together with the tasks involved in its
computation are returned to the user (line 15). If the trace does not contain any
optional behavior, then no sub-sequence is compliant and therefore the maximal
informativeness is never re-assigned, with 0 being returned.
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The computational complexity of the algorithm is controlled by two main
factors: the number of sub-sequences and the complexity of the conformance
checking technique (the informativeness function has linear complexity on the
number of events of the sub-sequence). Such complexity could represent a limi-
tation for using this formalization in complex scenarios. However, in this paper,
we prefer to focus on conceptual aspects, consciously leaving out all possible
optimizations, to not sacrifice understandability.

3.2 Example of Measure Calculation

It is interesting to observe how the informativeness measure can be calculated
on the previous examples (cf. Sec. 2.2). For Example 1, let us denote by CC
and MO the traces that respectively achieve the two goals Payment Done via
Credit Card and Payment Done via Money Order (recall that they contain all
mandatory tasks). We use the following notation to represent task executions:
T (ir, ig), where T is a task (compactly denoted using the bold initials of its de-
scription, as shown in Figure 2), while ir and ig are two boolean (0/1) attributes
respectively indicating whether the task impacts (in a positive or a negative way)
on the achievement of soft goals Transaction Reliability and Enhance Company
Green Profile. We can then compactly indicate, with a slight abuse of notation,
CC(0, 0) and MO(1, 0). These two boolean attributes, if not natively present in
the trace, can be computed by pre-processing the trace, e.g., by relying on the
planning technique from [7]. To compute informativeness, we also need a con-
formance function that accepts the traces and the model, and that judges the
trace compliant if and only if it achieves the top, hard goal Book Order Fulfilled .
This, again, can be directly computed using the planning technique from [7].

We consider a = ir, m = 1, and the aggregation operator � = Σ. Then the
scenarios correspond to the following informative traces:

Scenario Book-CC: trace 〈CC(0, 0),SER(0, 1)〉 with informative value 0, since
no sub-sequence is compliant.

Scenario Book-CC-PR: trace 〈CC(0, 0),SER(0, 1),PR(1, 1)〉 with informative
value 1, since PR can be removed without threatening conformance, and it
brings a value of 1 for ir (since it achieves the corresponding soft goal).

Scenario Book-CC-2PR: trace 〈CC(0, 0),SER(0, 1),PR(1, 0),SR(0, 0),DR(0, 0)〉
with informative value 1, since the sub-sequence 〈PR(1, 0),SR(0, 0),DR(0, 0)〉
can be safely omitted, and only PR brings value (as in the previous scenario).

Scenario Book-MO-PR: trace 〈MO(1, 0),SER(0, 1),PR(0, 1)〉 with informa-
tive value 0. Notice that, in this case, PR has ir = 0, since the corresponding
soft goal has been already achieved via MO, which constitutes an essen-
tial, non-omittable behavior. Informativeness would become 2 if we consider
a = ig instead, since both tasks SER and PR actually interact with the cor-
responding soft goal (the first by temporarily achieving it, the second by
reverting the achievement).

For Example 2, let us adopt the following notation for representing task
executions: T (gp, gc), where T is a task (compactly represented using the bold
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initials of the task descriptions, as shown in Figure 3), gp is the potential gain
associated with the execution of the activity, and gc is the concrete gain of the
task. If the activity does not bring any gain, the values are omitted. For example,
scenario Cart-Abandon is described as 〈CC,RP,RP,AP(20, 0),RP〉.

As reported in the example, we can think on several value definitions. We
consider here valuable executions with expensive items in the cart, or with paid
items. To achieve that, we assume m = 1, � = Σ, and a = gp or a = gc,
respectively. Then we obtain:

Cart-Empty: 〈CC,RP,RP,RP〉 with informative value 0 in both cases (despite
there are activities which are not needed).

Cart-Abandon: 〈CC,RP,RP,AP(20, 0),RP〉 with informative values 20 and 0
(an item is added to the cart, but no payment is done).

Cart-Pay: 〈CC,RP,RP,AP(20, 0),RP,PO,PP(0, 20)〉 with informative values
20 and 20 (the added item is then paid).

Cart-PayMore: 〈CC,RP,RP,AP(20, 0),RP,AP(30, 0),PO,PP(0, 50)〉 with in-
formative values 50 and 50 (using the same line of reasoning of Cart-Pay).

We might derive new attributes combining values from others, e.g., gtot = gp +
2gc, where we assign some value for having products in the cart but, when these
are paid, the value significantly increases. Clearly, domain knowledge as well as
specific goals are needed to define what the actual attribute is meant to capture.

A similar line of reasoning could be carried out when informativeness has to
be calculated considering the impact of tasks to the cart states, assuming that
the information about the state transitions of the cart is readily available in the
trace (or that the trace has been pre-processed accordingly).

3.3 Implementation

A proof-of-concept implementation of the technique is available as a ProM plug-
in (see https://github.com/delas/informativeness). The plug-in considers
models represented as process trees and relies on existing conformance checking
plug-ins. Nevertheless, as mentioned before, extending the technique to cope with
other modeling languages is merely a trivial implementation exercise (as confor-
mance checking techniques are already available in ProM). Our implementation
uses, as parameters, a = ⊥, m = 1 and � = Σ, grounding the informativeness
function as in Eq. 1 to

∑
e∈diff(t,s)

1 = |diff(t, s)|.

4 Related Work

In [7], Liaskos et al. propose an approach for representing and reasoning about
goal prioritization in Goal-Oriented Requirements Engineering (GORE). In par-
ticular, they employ a version of i* models with optional goals, preferences
and preference priority markers (weights). In addition, they use an existing
preference-based planner over that extended i* model to search for alternative
plans that best satisfy a given set of mandatory and preferred requirements.
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Their notion of a “preferred plan” addresses a similar issue as the notion of
informativeness proposed here. However, their approach differs from ours in im-
portant ways. Given that their main focus is requirements engineering, their
contribution addresses exclusively design-time (type-level) plans. Here, in con-
trast, given our emphasis on process mining, the focus is on the informative
compliant (token-level) traces. As such, while their approach compare alter-
native plans defined over a model, we focus on comparing informative values of
different variants of particular compliant traces by identifying the added value of
optional parts of that trace. Furthermore, despite dealing with a similar notion,
the author did not explicitly propose a precise value-based metric for measuring
how informative process traces are.

Within process mining [1], many techniques have been proposed for model-
to-log comparison, i.e., analyze the relationships between a log and a process
model [4]. For example, to investigate the quality of a discovered model it is
possible to compute three quality measures [3]: fitness [11, 2] (answering the
question: “is the model able to replay the log?”), precision [9, 8] (“is the model
underfitting the log?”), and generalization [13] (“is the model overfitting the
log?”). These three measures are typically combined with a fourth one, called
simplicity, which quantifies the “complexity” of the structure of the model (this
measure is not particularly related to a specific log but measures specific prop-
erties of the model). As argued before though, conceptually speaking, all these
measures are detecting the extent to which a model and a log “deviate”. There-
fore, traces that are compliant with the model cannot be distinguished between
each other. Historically, process mining researchers always focused on quanti-
fying the extent to which a trace is problematic (e.g., not fitting the model).
Though, no effort has been put in establishing how informative a trace is.

5 Final Considerations and Future Work

We have presented a metric, namely informativeness, to identify compliant exe-
cutions of business processes which are of particular interest. Such executions can
be used to gain better understanding of the process and to trigger further investi-
gations, such as improvement or redesign initiatives. Informativeness summarizes
the performed behavior that goes beyond the necessary tasks required by the ref-
erence model and that impact on value. This non-trivially combines the employed
definition of value and that of non-mandatory behavior. It is worth pointing out
that in imperative languages non-mandatory behavior is typically observed in
the presence of optional tasks or repetitions. Considering BPMN models, for ex-
ample, optional tasks are realized with inclusive and exclusive gateways (i.e., OR
and XOR), which are also involved in the construction of loops. To realize loops
it is also possible to use task markers (i.e., loop and multiple instance markers).
In the context of declarative languages, non-mandatory behavior can be caused
by the presence of such control-flow structures (i.e., loops or optional tasks), but
also by the fact that the model is under-constrained. Under-constrained models
are fairly common in the declarative domain and, by using the informativeness
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metric presented in this paper, it is possible to highlight undesired, compliant
behaviors.

Many future works are conceivable, starting from a proper realization of the
metric: the algorithm reported in this paper aimed solely to understandability,
but for practical purposes it is inefficient. Specific implementations, tailored to
concrete modeling languages, can leverage the corresponding semantic properties
to drastically reduce the computational requirements.
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