Mining Developers’ Workflows from IDE Usage

Constantina Ioannou, Andrea Burattin, and Barbara Weber

Technical University of Denmark,
Kgs. Lyngby, Denmark

Abstract. An increased understanding of how developers’ approach the
development of software and what individual challenges they face, has a
substantial potential to better support the process of programming. In
this paper, we adapt Rabbit Eclipse, an existing Eclipse plugin, to gen-
erate event logs from IDE usage enabling process mining of developers’
workflows. Moreover, we describe the results of an exploratory study in
which the event logs of 6 developers using Eclipse together with Rab-
bit Eclipse were analyzed using process mining. Our results demonstrate
the potential of process mining to better understand how developers’
approach a given programming task.

Keywords: process mining, tracking IDE interactions, developers’ work-
flows, source code

1 Introduction

Increasing the productivity of software development has traditionally been an
important concern of the software engineering field. This includes software de-
velopment processes (e.g., agile and lean development), development principles
and practices (e.g., test-driven development, continuous integration), tools like
integrated development environments (IDEs), but also human factors. Consider-
ing the tremendous productivity differences between developers of 10:1 [4], there
is substantial potential to better support the process of programming by better
understanding how developers’ approach the development of software and what
individual challenges they face.

The process of programming is highly iterative, interleaved and loosely or-
dered [7]. Developers need to understand the requirements presented to them and
form an internal representation of the problem in working memory by extract-
ing information from external sources [3]. Based on the requirements a solution
design is developed [3]. This includes at the general level the decomposition of
requirements into system structures, i.e., modules and, on a more detailed level,
the selection or development of algorithms to implement different modules [18].
The solution design is then implemented using a specific development environ-
ment and a particular programming language [18, 21] and it is evaluated whether
the developed solution is suitable to solve a problem [9, 21, 6]. Depending on the
development process used, the development principles and practices, the used
IDE and programming language as well as personal preferences, experience, and
capabilities the process of programming varies.

In this paper we show the potential of process mining to better understand
how developers’ approach the creation of a solution for a given programming
task using the IDE Eclipse. The contribution of this paper is twofold. First, the
paper provides adaptations of an existing Eclipse plugin, i.e., Rabbit Eclipse,
to produce event logs that can be used for process mining purposes. Second,
it describes the results of an exploratory study in which the event logs of 6
development sessions were analyzed. The work does not only have potential to
better understand the processes developers follow to create a solution to a given
programming task using the IDE Eclipse.

In the future we can use the developed plugin to compare how the usage of
different development principles and practices impacts the way how developers
solve a given problem and use conformance checking to identify deviations from
best practices. Moreover, when integrated with eye tracking, we cannot only
determine how developers interact with the IDE and the different source code
artifacts, but additionally where they have their focus of attention.

2 Background and Related Work

In Section 2.1 we discuss existing research on tracking IDE usage. In this paper
we use the IDE Eclipse together with the Rabbit Eclipse plugin to collect the
interactions of developers with the IDE (cf. Sect. 2.2) that are then used for
process mining (cf. Sect. 2.3).

2.1 Tracking IDE Usage

Research recording the interactions of a developer with the IDE including their
analysis and visualization are related to our work. For example, [17] provides
quantitative insights into how Java developers use the Eclipse IDE. Moreover, [16]
developed DFlow for recording developers’ interactions within the IDE Pharao
including their visualization and applied it to better understand how developers
spend their time. Similarly, Fluorite [23] and Spyware [19] were implemented in
order to collect usage data from the Eclipse IDE and to replay and backtrack
developers strategies visualizing code histories. Unlike our research the focus is
on a single development session, rather than abstract behavior derived from a set
of sessions. Most closely related to our work is [1] in which frequent IDE usage
patterns have been mined and filtered in order to form usage smells. More pre-
cisely, this approach identifies time-ordered sequences of developer actions that
are exhibited by many developers in the field. However, the focus of [1] is on de-
velopers’ interactions with the IDE only. In contrast, our proposal considers the
inter-relationships of interactions and source code artifacts, thus, emphasizing
the way developers solve a programming task rather than how developers use
the IDE.

High Level Events

ﬁ‘*&w@mlﬁ

B ®
[]In

Display

Fig. 1. Model: Rabbit Eclipse

2.2 Rabbit Eclipse

Rabbit Eclipse is a statistical plugin, capable of recording developers’ interac-
tion without interrupting their process, within the Eclipse IDE. Fig. 1 gives an
overview of the instrumentation approach employed in this paper.

When implementing a software within Eclipse, developers generate through
their interactions with the IDE various low and high level events. Low level events
are keyboard shortcuts and mouse clicks, whereas high level events are related
to context menu or wizard interactions. Whenever an event is observed, Rabbit
Eclipse is triggered to capture and analyze the interaction. These interactions
are then stored in event logs and upon request of a developer the data collected
by Rabbit Eclipse can be displayed graphically within Eclipse.

The structure of event entries are presented in Fig. 2. For each type of event
entry an event log is produced. At the top of the hierarchy are the classes
DiscreteEvent and ContinuousEvent, which distinguish between the main
types of interactions recorded, i,e. instant and continuous interactions. Command
and Breakpoint events are listed as discrete interactions. On the other hand,
interactions such as switching between files, views, perspectives, launching, Java
elements and session inherit from ContinuousEvent, since the duration for such
activities is relevant.

2.3 Process Mining

Process mining is the bridge between model-based process analysis and data
oriented analysis techniques such as machine learning and data mining [22].
In order to be amenable for process mining the event logs produced should
conform to the minimum data model requirements [8]. These are: the case id,
which determines the scope of the process, an activity which determines the level
of detail for the steps and timestamp, which determines when the activity took
place. Using process discovery a process model explaining the behavior of the
recorded log can be derived. Moreover, using conformance checking deviations
of the event log when compared to a reference behavior can be identified.

<<Java Class>> <<Java Class>>

©DiscreteEvent (©cContinuousEvent
rabbit data $tore model rabbit data store mode!
< time: DateTime < interval: Interval

<<lava Class>> & ContinuousEvent(Interval)
(@ PerspectiveEvent o getinterval()interval

rabbitdata.store model
o il
<<lava Class>> & Y r
@ CommandEvent o getPerspective(}:|PerspectiveDescriptor <<Java Class>>
rabbit data.siora model (©SessionEvent

fabbit data store model

& DiscreteEvent(DateTime)
o getTime():DateTime

o event: ExecutionEvent

& CommandEvent(Date Time,ExacutionEvent) & SessionEvent(Interval)
o getExecutionEvent():ExecutionEvent
<<Java Class>> <<Java Class>> <<Java Class>>
©BreakpointEvent GFileEvent @ PartEvent
Fabbll dete.giom model rabbit data store. model rabii data stora.model
“;:;:;WS':;:W*W'”' < flePatn: IPath < workbenchPart: IWorkbenchPart <<dova Class>
A_ & FlleEvent(Interval IPath) | | o PartEvent(Interval,WorkbenchPart) (& JavaEvent
o BreakpointEvent(DateTime, IBreakpoint Status) & getFilePath()IPath o 1] rabbit data.store modal
© getBreakpoint(JiBreakpoint & element: liavaElement
© gelStatus():Status & JavaEvent{interval, JavaElement)
<<lava Class>> o getElement():liavaElement
O TaskFileEvent
rabbit.aata store. model <<Java Class>>
of task: |Task (@ LaunchEvent
rabist dala sicre, mocdel
FTaskFi -
<-, TBskFlleEl\'GHlEInlBNSI‘\PBEMTBSH T Raunch: Launch
o getTask()ITask s .
o filePaths: InmutableSet<IPath>
o type: ILaunchConfiguration Type
&L ILaunch,IL tion, L
o getFlePaths():Set<IPath>
& getlaunch()iLaunch
o getLaunchC auncnC ype
P YiLaunchC

Fig. 2. UML Class diagram of the hierarchy of events as recorded by Rabbit Eclipse

Closely related to our work presented in this paper is the emerging area of
software process mining. With the increasing availability of software execution
data, the application of process mining techniques to analyze software execution
data is becoming increasingly popular. The potential of software process min-
ing was first demonstrated by [10, 20]. More specifically, source code repositories
were mined to obtain insights into the software development processes develop-
ment teams employed. Moreover, [2] suggests the usage of localized event logs
where events refer to system parts to improve the quality of the discovered
models. In addition, [11] proposes the discovery of flat behavioral models of soft-
ware systems using the Inductive Miner [13]. In turn, [15] proposes an approach
to discover a hierarchical process model for each component. An approach for
discovering the software architectural model from execution data is described
in [14]. Finally, [12] allows to reconstruct the most relevant statecharts and se-
quence diagram from an instrumented working system. The focus of all these
works is software development processes or the understanding of the behavior
of the software, while our focus is to use process mining to understand how a
developer solves a programming task.

3 Extending Rabbit Eclipse for Process Mining

Although Rabbit Eclipse provides broad and profound statistical results on de-
velopers’ interactions within the Eclipse IDE, the data provided are not sufficient
to enable the mining of developers’ interactions as envisioned. In particular, as
previously highlighted, timestamp and case id notions were not included in the

FILE EVENTS JAVA EVENTS COMMAND EVENTS
FILE_ID DURATION JAVA_ID DURATION CMD_ID COUNT
FILE EVENTS JAVA EVENTS COMMAND EVENTS
FILE_ID DURATION TS_START TS_END JAVA_ID DURATION TS_START TS_END CMD_ID COUNT TS_START
(a)
(b) ()

Fig. 3. Timestamp modifications on three events

collection. Therefore, we needed to expand some events in order to enable their
usage in the context of process mining. Firstly, all the event logs were cus-
tomized to include timestamp and case id by modifying classes DiscreteEvent
and ContinuousEvent. Further, due to the nature of Rabbit Eclipse the col-
lected interactions have no actual relation between them. To resolve this con-
straint focus was given to change the interpretation of FileEvent, JavaEvent,
and CommandEvent (cf. Fig. 2) which seemed the most promising with respect to
our goal. The rest of this section presents the adjustments introduced to enable
the process mining investigations envisioned.

3.1 Adaptations to Enable Process Mining.

To enable the extraction of a workflow from our data, using process mining
techniques, timestamps and case id needed to be included in the recordings.

As mentioned, the event logs for ContinuousEvents (both FileEvent and
JavaEvent) contain durations, which means that entries referring to the same
interaction were merged, whereas, concerning DiscreteEvents (i.e., Command-
Events), event logs report the frequency of such interactions. We instrumented
Rabbit Eclipse to allow the collection of all timestamps, as shown in Fig. 3.
Specifically, for ContinuousEvents timestamps to indicate start and end time
were introduces (i.e., each event represented as time interval) and for Discrete-
Events a single timestamp was added (i.e., each event as time instant).

Additionally, Rabbit Eclipse does not have the notion of a case id. Therefore,
we decided to artificially add one. Specifically, we assumed to have each developer
referring to one different case id as approximation of a single development session.

With these changes in place, we were able to associate Rabbit Eclipse record-
ings to user’s actions. Thus, we obtained a proper event log: we shifted the scope
of Rabbit Eclipse from logging file changes (suitable for software process mining)
to logging user’s interaction with the IDE (suitable for process mining).

3.2 Mapping Commands to Resources.

By default, Rabbit Eclipse has no capability to establish links between the com-
mands and the resource where these commands were performed. Therefore,
we instrumented Rabbit Eclipse to be able to take this element into account
together with timing information. The result is an augmented version of the
CommandEvent, as depicted in Fig. 4. This augmentation needed to consider

Current version New version

How long the

. . when interaction occurr
interaction lasted en interaction occurred

Which resources were Wait for
influenced from interaction resource

COMMAND EVENTS
How many times *:> DEV_ID 0

interaction ChD_Tp | o TR v e

occurred -
CATEGORY Edit wait for

COMMAND EVENTS CMD_NAME Copy new event
CMD_ID COUNT FILENAME IceCream.java

TIE-0T-28
_ ISESIARY 18:10:04.401

Resource event
FILE EVENTS occurred

Proces
resour

event

FILE_ID DURATION

Fig. 5. Listener/visitor design pattern for

. . . the implemented tracker
Fig. 4. Command modifications to track

interactions

different scenarios which are possible, including commands involving single or
group of resources (such as renaming a folder or moving files). To better achieve
our goal, we also implemented an interaction tracker, which listens for resource
change events (see Fig. 5). Once the new tracker is triggered, it processes the
event to identify and store affected commands.

3.3 Augmentation of Commands with Java Details.

The version of the JavaEvent class available in the current version of Rab-
bit Eclipse was not able to provide information referring to the specific Java
constructs being modified. This data, however, could contain very important in-
formation for our analysis. To extract this information, we instrumented Rabbit
Eclipse to inspect the Abstract Syntax Tree (AST) of each modified Java class.
This enables the Rabbit Eclipse plugin to capture the modified methods and
correspondingly update the commands.

4 Exploratory Study

This section explains the exploratory study we conducted to evaluate the adapted
version of the Rabbit Eclipse plugin.

4.1 Study Design and Execution

Participants. Six participants were included in the case study. One participant
is a software developer in a medium sized company, while the other five are
newly graduated master students from Computer Science and related fields. All
of them primarily develop in C, C++ and Java, mainly for embedded systems.
Their age ranges from 25 to 29, and they have between 6 months to 2 years of
experience using Eclipse.

Task. Participants had to work on a fairly simple programming task that takes
around 30min/lhour for completion. The task required the participants to first

O—b} Collect Data H Prepare Data H Combine Data H Mine Process }—DO

Fig. 6. Data collection and analysis procedure followed

install our version of Rabbit Eclipse and then to implement an inheritance hier-
archy of classes that derive from an abstract superclass using Java as a program-
ming language. As depicted in Fig. 14, the task consists of five classes, a super-
class called DessertItem and four derived classes, i.e., Cookie, Candy, IceCream
and Sundae. Participants were provided with a description of the classes to be
implemented including the class diagram (cf. Appendix. A) and a test file called
DessertShop. To avoid inconsistent naming between participants, participants
were encouraged to strictly follow the class and method naming as shown in the
class diagram. While working on the task participants were not allowed to ask
for help or explanation since this could affect their way of thinking. After the
participants finished their implementation, they were requested to send the files
collected from the tool. Thereafter, the required data set for process mining was
retrieved.

4.2 Data Collection and Analysis Procedure
Fig. 6 illustrates the data collection and analysis procedure we employed.

Step 1: Collect Data. To collect data concerning a developer’s interactions with
the IDE we asked participants to install our version of Rabbit Eclipse. During
the implementation of the task all interactions of the participants with the IDE
were then recorded using Rabbit Eclipse.

Step 2: Prepare Data. Throughout the second step of the approach and after
receiving the exported raw data sets from all participants, the data set requires
refinement before it can be used for process mining. To begin with, any unre-
lated, captured interactions with projects in the developer’s current workspace
were removed from the data set. Next, since process mining requires homogene-
ity among the data set, any inconsistencies in the data sets were detected and
adjusted. An example of inconsistency is when a participant, instead of using
correctly the requested naming Test.java, used test.java. In addition, the
XML formatted event logs are converted to CSV format.

Step 3: Combine Data. The refined data are combined into one file and are
imported to Disco.

Step 4: Mine Process. Disco was then used to analyze the data and settings were
configured so that for all experiments the case id used was the developer’s id
and the timestamp used was the start time of events. Further, specific settings
defined for each experiment are displayed in Table 1.

All participants were able to fulfill the task within the given time frame (i.e.,
all programming sessions lasted between 30 minutes and 1 hour). Most of the

Table 1. Settings used for Disco to obtain the four results

Result’s Name Participants Event Log Activity Attribute
1 Most Common Commands 5 cmds command -

2 Developers’ Workflow 5 cmds file command
3 Classes Workflow 5 cmds command file

4 Source Code Workflow 4 javas method and file -

Save

Undo

Paste

Copy
Content assist

Next word

—
——
Previous word ——
—
New T——

——

Show view

o

10 20 30 40 50 60 70 80 90

Frequency

Fig. 7. Most common commands used

participants used expected methodologies and commands, however, as indicated
in Tab. 1 for all analyses one of the participants had to be excluded because
of generating a considerable amount of noise events, as well as for the fourth
analysis two participants were excluded due to failed recordings from the tool.

4.3 Results

Most Common Commands. A statistical analysis of the entire sample using
Disco showed that in total 323 commands were executed for all five participants
(most common are shown in Fig. 7). When we observe the distribution of com-
mand interactions retrieved, we can see that only a small amount of the available
Eclipse standard commands were executed. In fact, only 31 different commands
occurred out of the 350 available. A possible explanation for that might stem
from the simple nature of the given task. Moreover, our analysis showed that
participants tend to use and repeat similar commands. Out of 31 different com-
mands used, the most common are: Save, Undo and Paste which concurs with
results of previous studies [17].

Developers’ Workflow. Fig. 8 displays the connection between file switching
and command interactions. The file resources implemented throughout the task
are indicated as nodes and the command interactions leading from one file to
another as edges. The diagram shows that half of participants begun their imple-
mentation by interacting with DessertItem. java which was the superclass and
then moved to the implementation of subclasses, while the other half, begun in-
teracting with subclasses (i,e. Candy. java, Sundae. java) and then moved to the
superclass. These two approaches participants followed (cf. Fig, 9) are denoted
in literature [5] as “top-down” versus “bottom-up” approach. When following a

Cang;/::]ava p— 59

CoaK\eFjava — ;o7
116

Top - Down

DessertItem

Sund;gejava - ‘

candy | | cookie | [Icecream

Sundae
Bottom - Up

Fig.9. Class outline with corresponding

Fig.8. Workflow Diagram depicted by programming techniques

Disco

Previoys Word e 34

® ®
Fig. 10. Workflow Dia- Fig.11. Workflow Diagram of
gram of Ice Cream.java Cookie.java

top-down approach a developer begins with the main problem and then subdi-
vides it into sub problems. Whereas when employing a bottom-up approach the
developer begins with sub-problems building up to the main problem.

Classes Workflow. As observed in Fig. 8, class Cookie. java has the highest
amount of interactions, whereas, IceCream. java has the least. To explore further
this aspect we applied process mining focusing on these two classes separately.
In Fig. 10 and Fig. 11 the generated workflow diagrams are shown. In this
case, command interactions appear as nodes and the switching between them is
represented as edges. From Fig. 10 we can infer the absence of high interaction
traffic and this is expected since IceCream. java was fairly simple to implement.
On the other hand, Fig. 11 illustrates Cookie. java which is more demanding:
this is reflected in a more complex routing of the interactions, including self loops
and repetition. This suggests that there is a diversity in the approach used when
dealing with classes of different difficulty level.

10

Cookie.java-getCost
5

Cookie - TDp - Down
main Body

' { \

Cookie.java-Cookie:
4

. Method - Method - Method -
Cecte ats el getCost getNumber getPrice
Bottom - Up

Cookie java-getPricePerDozen
4

®

Fig.13. Class outline with corresponding programming

Fig.12. Workflow Dia- techniques

gram Cookie.java

Source Code Workflow. In Fig. 12 an attempt to process mine the source
code interactions in Cookie. java is displayed. The method names of the class
are indicated as nodes and the arrows indicate the flow participants followed.
Participants followed two patterns (cf. Fig, 13), either they begun by building
the body of the class and then implementing the methods in detail or the oppo-
site. This was observed not only within the Cookie.java but also in the other
implemented classes. Therefore this realization, implies that the workflow tech-
niques mentioned (top down and bottom up) are applied not only for the class
design but also for the methods, showing potential in performing process mining
on source code development.

5 Summary and Conclusions

In this paper we presented an extension of the Rabbit Eclipse plugin that is
able to collect developers’ interactions with Eclipse that can be used for process
mining. Moreover, we presented the results of an exploratory study where 6 de-
velopers developed a small piece of software using Eclipse together with Rabbit
Eclipse. The analysis of the data using process mining allowed us to identify the
most commonly used commands. Moreover, we could observe that the partici-
pating developers employed different object oriented programming techniques,
i.e., top down and bottom up, to solve the programming task. In addition, we
could identify differences in creating single classes. Our results demonstrate that
it is possible to mine developers’ workflows from their interactions within an
IDE. However, it has to be noted that the existing work is subject to several
limitations such as the low number of subjects and the task difficulty.

In the future we plan to extend our study with more subjects and more com-
plex tasks. Another avenue of future research is the integration with eye tracking,
thus allowing us to complement our results with data on where developers fo-

11

cused their attention. In addition, future work will consider (retrospective think
aloud) to obtain insights into the developer’s thinking process.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Mining Sequences of Developer Interactions in Visual Studio for Usage Smells.
IEEE Transactions on Software Engineering, 43(4):359-371, 2017.

. Wil van der Aalst. Big software on the run: In vivo software analytics based on

process mining (keynote). In Proceedings of ICSSP 2015, pages 1-5. ACM, 2015.
R. Brooks. Towards a theory of the cognitive processes in computer programming.
International Journal of Man-Machine Studies, 9(6):737-751, 1977.

T. DeMarco and T. Lister. Peopleware: Productive Projects and Teams. Dorset
House Publishing Co., New York, 1987.

Yves Pigneur Shusma Patel Dimitri Konstantas, Michel Leonard. Object-Oriented
Information Systems. Springer, Geneva, Switzerland, 2003.

R Guindon, H Krasner, and B Curtis. Cognitive process in software design: activ-
ities in early, upstream design. In Human-computer Interaction INTERACT’87,
pages 383-388. Elsevier Science Publishers B.V. (North Holland), 1987.
Raymonde Guindon and B. Curtis. Control of cognitive processes during software
design: what tools are needed? In Proc. CHI'88, pages 263268, 1988.

IEEE Task Force on Process Mining. Process Mining Manifesto. Business Process
Management Workshops, pages 169-194, 2011.

Elaine Kant and Allen Newell. Problem Solving Techniques for the design of
algorithms. Information Processing €& Management, 20(1-2):97-118, 1984.
Ekkart Kindler, Vladimir Rubin, and Wilhelm Schéfer. Incremental workflow min-
ing based on document versioning information. In Software Process Workshop,
volume 3840 of LNCS, pages 287-301. Springer, May 2005.

M. Leemans and W. M. P. van der Aalst. Process mining in software systems:
Discovering real-life business transactions and process models from distributed
systems. In Proceedings of MODELS, pages 44-53, Sept 2015.

Maikel Leemans, Wil M. P. van der Aalst, and Mark G. J. van den Brand. Re-
cursion aware modeling and discovery for hierarchical software event log analysis
(extended). CoRR, abs/1710.09323, 2017.

Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Discovering
block-structured process models from event logs - a constructive approach. In
Application and Theory of Petri Nets and Concurrency. Springer, 2013.

Cong Liu, Boudewijn F. van Dongen, Nour Assy, and Wil M. P. Aalst. Software ar-
chitectural model discovery from execution data. In 18th International Conference
on Evaluation of Novel Approaches to Software Engineering, 03 2018.

Cong Liu, B. van Dongen, N. Assy, and W. M. P. van der Aalst. Component
behavior discovery from software execution data. In 2016 IEEE Symposium Series
on Computational Intelligence (SSCI), pages 1-8, Dec 2016.

Roberto Minelli and Michele Lanza. Visualizing the workflow of developers. Pro-
ceedings of VISSOFT, pages 2-5, 2013.

G.C. Murphy, M. Kersten, and L. Findlater. How are Java software developers
using the Elipse IDE? IEEE Software, 23(4):76-83, 2006.

Nancy Pennington, Y. Lee Adrienne, and Bob Rehder. Cognitive Activities
and Levels of Abstraction in Procedural and Object—Oriented Design. Human-
Computer Interaction, 10:171-226, 1995.

12

19. Romain Robbes and Michele Lanza. SpyWare: A Change-aware Development
Toolset. Proceedings of ICSE, pages 847-850, 2008.

20. Vladimir Rubin, Christian W. Giinther, Wil M. P. van der Aalst, Ekkart Kindler,
Boudewijn F. van Dongen, and Wilhelm Schéfer. Process mining framework for
software processes. In Proceedings of ICSP 2007, pages 169-181. Springer, 2007.

21. David P. Tegarden and Steven D. Sheetz. Cognitive activities in OO development.
Int. J. Human-Computer Studies, 54(6):779-798, 2001.

22. W.M.P. van der Aalst. Process Mining: Data Science in Action. Springer, 2016.

23. YoungSeok Yoon and Brad a. Myers. Capturing and analyzing low-level events from
the code editor. Proceedings of the 8rd ACM SIGPLAN workshop on Evaluation
and usability of programming languages and tools - PLATEAU ’11, page 25, 2011.

A Task Description

=<Java Class>>
(@ DessertShop
(default package)

<<lava Class=>
(4 Desserthem
(defaut packags) o numberoftems: int
o RECEIPT_WIDTH: int
%l TAX_RATE: double

] 0.7 % COST_WIDTH: int
& Dessertitem(String)
o gethiame():String T &)
of getCosti):int ®Candy @ numberOfitems (yint
[? (default paokage) @ enterttem(Desserttem):void

o name: String

<<Java Class>> @ clear(jvoid
(3 Cookie LG @ weight double @ totalCost(yint
{detaut package) @lceCream O (R & cants2dolarsAndCents(int:String
o number: int (defauit package) @ cost int © totalTax(yint
o pricePerDozen: int a cost: int & candy(string double, int) @ toString():String
5 cost int e o mcoutrmt .
&*Cookie(String, int int) & lceCream(String, int) @ setrc L
§ © gefifeight():double
@ getCost()int @ gefCost(yint
© gethumber(yint
© getPricePerDozen(Jint <<lava Class>>
(® Sundae
(dstaut package)
a toppingHame: String
a toppingPrice: int
o cost: int
& SundaeString, nt, String, it}
® getCost(yint
© gefTopping():String

Fig. 14. The given class diagram

The task is the implementation of inheritance hierarchy of classes that de-
rive from an abstract superclass. Please follow the task carefully and develop
the required units. It is crucial to follow the given naming for your variables
methods and classes as shown in Fig. 14. The following classes are required:
(a) DessertItem abstract superclass. (b) Candy, Cookie, IceCream classes which
derive from DessertItem superclass and (c¢) Sundae class which derives from Ice-
Cream class. A Candy item has a weight and a price per pound which are used to
determine its cost. The cost should be calculated as (cost) * (price per pound). A
Cookie item has a number and a price per dozen which are used to determine its
cost. The cost should be calculated as (cost) * (price per dozen). An IceCream
item simply has a cost, and the cost of a Sundae is the cost of the IceCream
plus the cost of the topping. The DessertShop class was given to developers and
contained the main functions of the shop and the test for the classes.

