
Who is behind the Model? Classifying Modelers
based on Pragmatic Model Features

Andrea Burattin1, Pnina Soffer2, Dirk Fahland3, Jan Mendling4, Hajo A.
Reijers3,5, Irene Vanderfeesten3, Matthias Weidlich6, and Barbara Weber1,7

1 Technical University of Denmark, Kgs. Lyngby, Denmark
2 University of Haifa, Haifa, Israel

3 Eindhoven University of Technology, Eindhoven, The Netherlands
4 Vienna University of Economics and Business, Vienna, Austria
5 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

6 Humboldt-University, Berlin, Germany
7 University of Innsbruck, Innsbruck, Austria

Abstract. Process modeling tools typically aid end users in generic,
non-personalized ways. However, it is well conceivable that different types
of end users may profit from different types of modeling support. In this
paper, we propose an approach based on machine learning that is able
to classify modelers regarding their expertise while they are creating a
process model. To do so, it takes into account pragmatic features of the
model under development. The proposed approach is fully automatic, un-
obtrusive, tool independent, and based on objective measures. An eval-
uation based on two data sets resulted in a prediction performance of
around 90%. Our results further show that all features can be efficiently
calculated, which makes the approach applicable to online settings like
adaptive modeling environments. In this way, this work contributes to
improving the performance of process modelers.

Keywords: process modeling, classification of modelers, model layout

1 Introduction

Process models play an important role in the analysis, redesign, and implemen-
tation of business processes [1,2]. The creation of process models is a design
activity [3], in which a modeler constructs a mental model of a given domain
and externalizes it using a specific modeling tool (including the modeling no-
tation) [4]. This design activity involves deciding which elements to use, which
names to give them, where to position them, and how to connect them. We also
refer to this activity as modeling.

Modeling is not for free. The activity of creating a model imposes a substan-
tial cognitive load on the limited information processing capacity of the modeler’s
brain [5]. In particular, cognitive load depends upon various factors including
task characteristics, modeler characteristics, and tool characteristics. Modeling
research has hardly considered the latter so far [6], and indeed, tools do not an-
ticipate personal differences when they support the modeler [7,8,9,10]. However,

Time

Interactions with the
modeling tool

Fig. 1: Interactions with a modeling tool result in different intermediate models.

personalized support could be highly beneficial for novices who require tips and
guidance, while experts would perceive this as a distraction. If the profile of the
modeler is known, such support can significantly improve performance [11].

In this paper, we lay foundations towards a personalization of modeling tool
support. Our key idea is to support an on-the-fly classification of modelers by
their expertise level while they interact with the tool. To this end, we iden-
tify a set of pragmatic modeling features that presumably reflect the expertise
of the modeler in activity-centric, flow-based process models with AND/XOR
gateways. We evaluate the relevance of these features using real-world modeling
traces of BPMN models in order to classify the modelers as novices or experts.
With a classification accuracy of 90%, our results demonstrate the feasibility of
personalized support.

The remainder of the paper is structured as follows: Section 2 presents back-
ground information and related work; Section 3 describes our approach to classify
modelers. Section 4 evaluates the classification technique on two real datasets
and Section 5 concludes the paper.

2 Background and Related Work

2.1 Process Modeling as a Design Activity

Creating a process model constitutes a complex cognitive design activity. During
this design activity a process modeler solves a problem of how to represent a
described process as a process model, using the syntax of a specific modeling
language. As a problem solving task, this entails the formation of a mental
representation of the problem domain and externalizing this representation as
a process model [4,12]. Doing this, the modeler interacts with the modeling
environment to create the process model. More precisely, the modeler performs
a sequence of modeling interactions (like the creation of an activity or an edge
or the movement of an element) resulting into (intermediate) models [13]. The
resulting (intermediate) models can be characterized by properties referring to
their syntax, semantics, or pragmatics [14]. A graphical representation of these
interactions over time, and possible artifacts obtained, is given in Fig. 1.

2

2.2 Expertise in Modeling

Differences between novices and experts have been intensively studied in the
context of various tasks and artifacts. However, throughout the body of research
that deals with expertise-related differences, no single and agreed upon criterion
is used for distinguishing experts from novices. In fact, in [15], the authors define
and test the effect of different dimensions of expertise, such as familiarity with a
modeling language, intensity of modeling engagement, and knowledge of model-
ing concepts. In particular, they examined the distinction between students and
practitioners, indicating that students exhibit different patterns of interaction
with models as compared to practitioners. Bearing all this in mind, we rely on
studies that concern differences in task performance between experts and novices
for establishing expected differences in our study.

Concerning problem solving in Physics, in [16] authors discuss differences
in the strategies employed by experts and novices, related to the differences in
the mental problem representation they form and the retrieval of appropriate
concepts and solution procedures from long term memory. These differences
between novices and experts, in the availability and ease of retrieval of relevant
concepts and solution strategies, pertain to many other areas.

In the area of conceptual modeling and process modeling, two main tasks
are distinguished: reading (understanding) a model and creating a model. The
differences between experts and novices in reading and understanding models
have been studied [17], with a general indication that novices and experts have
different notational needs [18]. Novices have more difficulties to recognize seman-
tic patterns from graphics and tie them to long term memory concepts. Thus,
in general, reading a model entails a higher cognitive load for a novice than for
an expert [6,15]. In particular, this cognitive load and the understanding perfor-
mance can be affected by graphical properties and layout of the model [15].

Novice and expert difference in creating models have also been indicated.
For conceptual models, in [19], authors found that experts focus on generating
a holistic understanding of the problem, making abstractions of problem char-
acteristics by categorizing problem descriptions before developing the solution.
Novices had difficulties in integrating parts of the problem descriptions and map-
ping them into knowledge structures.In [20], authors present the results of an
empirical study aimed at identifying the most typical set of errors frequently
committed by novice systems analysts in four commonly used UML artifacts.
In general, these errors can be interpreted as indicating a difficulty in making
abstractions, which leads to a focus on specific functional details rather than on
solution principles. A good use of graphical cues and layout creation by experts
is indicated by [18] in the context of graphical programming. They claim that
expert’s categorization skills and ability to organize information on the basis of
underlying abstractions are reflected in the expert’s ability take advantage of
secondary notation cues to enable them to recognize sub-term groupings.

Generally speaking, the above discussed differences between experts and
novices can lead to two main conclusions. First, experts and novices would bene-
fit from different kinds of support and guidance while creating a model. Second,

3

it should be possible to distinguish and identify whether a certain model is being
created by a novice or by an expert, as elaborated next.

3 Identifying the Expertise Level of Process Modelers

Many research efforts over the years have been devoted to personalizing systems
based on user properties, organized in a user model (e.g., [21]). In this paper, as
a first step towards a personalized modeling support, we aim at the most basic,
simplest possible user model: a binary classification into novice or expert.

3.1 Classifying Modelers: Requirements and Design Considerations

Following user modeling literature [21], we identify 4 requirements for an ap-
proach for the classification of modelers expertise level:

R1 The approach should be based on objective measures, rather than on mod-
elers’ self-assessment of their expertise level;

R2 The approach should be unobtrusive towards the end user, and not involve
additional efforts of modelers (e.g., for providing information);

R3 The approach should work online, and be applicable to intermediate (incom-
plete) models, since modelers are likely to learn and improve their skills over
time;

R4 The approach should not depend on a particular modeling tool.

With these four requirements, we turn to assess available approaches for
classifying a modeler in terms of expertise level.

One approach is to rely on self-assessment and to ask the modeler to classify
himself/herself, e.g., by choosing a predefined profile in the modeling environ-
ment. Such an assessment is, however, neither based on objective measures (R1),
nor applicable in an online setting since it is not automated (R3).

A second approach is to elicit this information based on a questionnaire
regarding relevant modeler-specific features (like modeling experience, domain
knowledge, cognitive abilities). For example, [11] used a questionnaire-based
modeler’s cognitive style for a personalized modeling support. The need to pro-
vide such information might, however, raise privacy issues, and seem obtrusive by
the modeler (R2). Moreover, due to the manual efforts needed it is not applicable
as an online approach (R3).

A third approach is the classification of modelers based on neuro-physiological
measures [22]. For example, [23] used the Alpha and Theta signals of an EEG
to quantify programmer’s expertise. While such an approach can be automated
and is based on objective measures of cognitive load, it is intrusive and is not
applicable outside of a lab setting (R2).

A fourth approach is classification based on differences in modeling behavior
derived from the recorded interactions with the modeling platform. For example,
[24] showed that the presence of prior domain knowledge facilitates the creation
of an internal representation of the process to be modeled and is associated

4

Features vector =

x1

x2

x3

xn

Feature 1
Feature 2
Feature 3

Feature n

Classification model

Time

In
te

ra
ct

io
n

s
w

it
h

 t
he

m

od
el

in
g

to
o

l
Feature extraction

1

Classification

2 Novice Expert

Fig. 2: Our approach to classify the expertise level of process modelers.

with shorter initial comprehension phases. Moreover, Martini et al. [25] showed
that inexperienced modelers had significantly more comprehension and modeling
phases when compared to more experienced modelers. The drawback of relying
on detected modeling behavior is, however, its tool dependence (R4).

Finally, a fifth approach is using the (intermediate) modeling artifact as a
basis for classification. Considering only model features provides tool indepen-
dence, since the properties that can serve as features are derived from the model
without a need for knowledge about tool interactions. Features related to syntax
and semantics (e.g., presence of deadlocks and lack of synchronization) are less
suited for online settings. This is since existing metrics assume certain proper-
ties of the model (e.g., all elements are fully connected and the model is sound),
assumptions that are mainly applicable to complete models rather than to inter-
mediate ones (R3). In contrast, pragmatic properties, that capture the alignment
of process model elements or the way gateways are used, fulfill all the above men-
tioned requirements and will be used as a basis for our classification approach.

3.2 Overview of our Approach

Classification problems have been extensively studied in the literature [26] and
most approaches assume a feature vector as input (cf. Sec. 3.3 for the consid-
ered features). Fig. 2 depicts the general idea proposed by our approach: process
modelers interact with the modeling tool to construct a BPMN diagram. Ex-
amples of interactions are the creation of an activity or edge or the movement
of an element. Hereby, the process model gradually evolves over time resulting
into different (intermediate) models. Input to the classification is one such (in-
termediate) model. In step 1 the set of features used for the classification is
extracted from the model. Then, in step 2 , this features vector is given as in-
put to a trained classification model, which returns the likelihood that the model
(i.e., the features vector) has been created by a novice or by an expert.

3.3 Feature Engineering

Feature engineering is considered the “art of creating predictor variables” [27]:
this human-driven process requires iterations of brainstorming possible features
and studying their impact on the quality of the model. We manually inspected
several models generated by both experts and novices and we investigated the

5

most relevant differences. Moreover, as a consequence of requirement of being
applicable in an online setting (R3) (i.e., support for online measurements) fea-
tures should be computed efficiently. Thus, we also took into consideration the
complexity of computing them.

The first group of features we identified considers the alignment of fragments.
The reasoning behind these features is that the alignment of fragments helps
model comprehension [28]. Poorly aligned fragments obfuscate the process model
and make it difficult to recognize the patterns used. In the context of this paper,
we define a fragment as a SESE component [29] with at least two tasks. We say
that a fragment is aligned if the coordinates of its entry and its exit components
(i.e., the coordinates of the center of entry and exit components) are within a
certain threshold. Formally, two elements a and b located at (xa, ya) and (xb, yb)
are aligned if min{|xa−xb|, |ya− yb|} ≤ 20px. Based on these definitions we can
define the following features:

F1 Alignment of fragments: ratio of aligned SESE fragments over the total num-
ber of fragments in the BPMN model;

F2 Percentage of activities in aligned fragments: ratio of activities belonging to
aligned SESE fragments over the total number of activities;

F3 Percentage of activities in not aligned fragments: ratio of activities belonging
to not aligned SESE fragments over the total number of activities.

The next group of features considers the type and usage of the gateways. The
usage of implicit gateways as well as the reuse of gateways has been pointed
out as bad modeling practice [30,31,28]. Specifically, we call a gateway explicit
if it is represented as a BPMN gateway element. An implicit gateway, in turn,
is a BPMN task element with more than 1 entering (or exiting) connections
(i.e., sequence flows). Finally, a reused gateway is a gateway (either implicit or
explicit) which serves as both split and join, i.e., it has more than 1 incoming
and more than 1 outgoing edges. Based on these definitions we implemented the
following features:

F4 Number of explicit gateways: the total number of explicit gateways in the
BPMN model;

F5 Number of implicit gateways: the total number of implicit gateways in the
BPMN model;

F6 Number of reused gateways: the total number of reused gateways (either
implicit or explicit) in the BPMN model.

Moreover, we have a feature group concerning the style of the edges in a model,
which is perceived as a relevant visual feature [31,32]. We distinguish between
edges and segments: an edge consists of at least one segment and each bend-
point introduces one additional segment into the corresponding edge. Then we
can define the following features:

F7 Percentage of orthogonal segments: ratio of the segments that are “orthog-
onal” (i.e., either vertical or horizontal within a threshold of 10px) over the
total number of segments;

F8 Percentage of crossing edges: ratio of edges that are crossed by some other
edge over the total number of edges.

6

The last set of features considers the process “as a whole” and therefore concerns
more global properties:

F9 M-BP : this measure (in the interval [0, 1]) computes the extent to which
the layout of the model is consistent with the temporal logical ordering of
corresponding activities [31,33], computed using the algorithm in [34];

F10 Number of ending points: the number of nodes with at least one incoming
edge, but no outgoing connection [28].

In sum, a modeling session, i.e., the modeling exercise of one person, is a series
of model snapshots m1,m2,m3, . . . over time, also called intermediate models.
Each model, in turn, is characterized by a vector of 10 numerical features (we
say that m1,m2,m3, . . . is represented by F 1,F 2,F 3, . . .), extracted in step 1 .
Those will be used to distinguish the expertise level of modelers.

3.4 Model Classification

For a given intermediate model, the described features were calculated and
passed in step 2 to a classification model. We used neural networks [35] as
classification mechanism. This well studied classification model can be used to
approximate any discrete-valued target functions: the “universal approximation
theorem” [36] proves that multilayer feedforward networks with as few as a sin-
gle hidden layer are universal approximators and therefore represent the most
general tool available1. What is interesting of these models is their capability
of dealing with complex decomposition of high dimensional spaces into smaller
ones (in our case, we move from a 10-dimensions space to a binary problem).
Additionally, by introducing specific topologies (i.e., hidden layers) it is possible
to increase the chances of making the problem easier to solve (i.e., transforming
the data space into a linear separable one).

We used a feed-forward neural network, with one hidden layer comprising 50
neurons. The input layer contains 10 neurons, one for each feature of the vectorial
representation of the model. The output layer contains 2 neurons, whose values
distinguish between the two classes (i.e., novice or expert). The rationale behind
the topology of the network comes from an experimental phase, where different
configurations have been verified: there is no scientific result defining a generally
optimal structure. Still, there are results suggesting that 1 hidden layer can be
enough [37]. Concerning the number of units, literature [38] suggests a number
of hidden nodes proportional to the number of training samples over a multiple
(between 2-10) of the sum of input/output nodes. In our case, we decided to
focus on our smallest dataset, with 1000 samples, and 2 as multiplier.

4 Evaluation

In this section, we evaluate the accuracy of the classification for predicting if the
modeler is a novice or an expert. As evaluation input, we use data sets that doc-
ument modeling processes of students (as proxies for novices) and practitioners

1 See external appendix for details: https://doi.org/10.5281/zenodo.1251633.

7

https://doi.org/10.5281/zenodo.1251633

(as proxies for experts). Note that our approach is independent of the question
whether students and practitioners always represent valid proxies. For a recent
discussion of student / practitioner differences, refer to [15].

The described approach has been implemented in a Java application2 and
tested on 2 real datasets3. For the implementation, we used the libraries of
the Weka toolkit4 with the corresponding multilayer perceptron. The multilayer
perceptron was trained with a learning rate of 0.3 and a learning momentum of
0.2. Additionally, we set the number of training epochs to 500.

4.1 Description of Datasets

We performed our tests on datasets collected in several modeling sessions in 2010.
Novice data was collected through the participation of students from Eindhoven
University of Technology. Expert data, in turn, was collected as part of a Dutch
BPM round-table event in Eindhoven, as well as in Berlin with practitioners5.
In both settings, the experts were recruited from our network of industry practi-
tioners, who where experienced modelers and highly familiar with BPMN. The
modeling sessions were ran at the universities in a controlled setting. Partici-
pants were aware that the exercises were meant to assess their competence, but
did not know that the tool tracked each modeling step. A textual description of
the processes to be modeled was provided and subjects were asked to model a
BPMN model representing the described process. In this paper we analyze data
referring to two process descriptions.

In the first model (called pre-flight) participants were asked to represent
the steps conducted by an airplane’s crew before take-off. The reference imple-
mentation contains 12 activities and 10 gateways6. In the second model (called
mortgage-1) participants were asked to represent a mortgage application process
with 26 activities and 20 gateways6. While the pre-flight process is fairly simple
and only comprises sequences, parallel branches and several optional activities
without any nesting, the mortgage-1 example is more complex. It contains a long
loop back as well as several levels of nesting depth. In addition, the mortgage-1
process has several outcomes, i.e., rejection because of pre-existing mortgage,
rejection through employee, offer not updated, and customer accepts offer. For
modeling these processes we used Cheetah [39] which is able to record all inter-
actions with the modeling platform and allows to reconstruct all intermediate
models. Thus, for each modeling session (i.e., a single modeling exercise) we have
multiple (intermediate) models based on which the features were calculated.

2 The complete source code of the implementation is available at https://github.

com/DTU-SPE/ExpertisePredictor4BPMN.
3 The dataset is available at https://doi.org/10.5281/zenodo.1194780.
4 See http://www.cs.waikato.ac.nz/ml/weka/.
5 Please note that the data collected from the practitioners has not been published

before. Moreover, the model features used as basis for this paper have not been
reported before, neither for students nor for practitioners.

6 Graphical representations on the appendix: doi.org/10.5281/zenodo.1251633.

8

https://github.com/DTU-SPE/ExpertisePredictor4BPMN
https://github.com/DTU-SPE/ExpertisePredictor4BPMN
https://doi.org/10.5281/zenodo.1194780
http://www.cs.waikato.ac.nz/ml/weka/
https://doi.org/10.5281/zenodo.1251633

Table 1: Number of modeling sessions and (intermediate) models for each experiment
and expertise level included in our datasets.

Experts Novices
Sessions Interm. Models Sessions Interm. Models

mortgage-1 31 7299 144 36141
pre-flight 39 4856 118 14147

Table 2: Mann-Whitney U Test on mortgage-1 and pre-flight datasets. The feature
codes refer to the descriptions in Sec. 3.3.

(a) mortgage-1

Feature W p

F1 1.524e+8 < .001
F2 1.459e+8 < .001
F3 1.199e+8 < .001
F4 1.572e+8 < .001
F5 1.179e+8 < .001
F6 1.359e+8 < .001
F7 1.645e+8 < .001
F8 1.034e+8 < .001
F9 1.688e+8 < .001
F10 1.627e+8 < .001

(b) pre-flight

Feature W p

F1 3.650e+7 < .001
F2 3.934e+7 < .001
F3 3.339e+7 < .001
F4 4.128e+7 < .001
F5 3.252e+7 < .001
F6 3.257e+7 < .001
F7 3.850e+7 < .001
F8 3.463e+7 < .001
F9 3.870e+7 < .001
F10 3.331e+7 < .001

The number of modeling sessions and the number of available models are
reported in Table 1. As we can see, the actual number of sessions and models
differs between expertise levels and between modeling tasks. For this reason, we
used a small fragment of randomly selected models for each experiment.

Before turning to the results of the classification, we compare the differ-
ences between the 2 groups of users (i.e., novices and experts) in our 2 datasets
(considering intermediate models created during the last 70% of the modeling
session). Specifically, we used the Mann-Whitney U Test to understand whether
the features described in Sec. 3.3 are proper discriminators of the 2 groups.
Results of the test are reported in Table 2 and clearly show that statistically
significant differences between novices and experts exist for all 10 considered
features. Table 3 reports the descriptive statistics for the two analyzed datasets
with mean, standard deviation (SD) and standard error (SE) for each feature
and both experts and novices. The descriptive statistics clearly depict, for both
datasets (i.e., mortgage-1 and pre-flight), that experts prefer to align elements
(cf. values of F1, F2, F3), experts prefer explicit gateways over implicit ones (cf.
F4 and F5) and they reuse less gateways when compared to novices (cf. F6).
Additionally, novices model less orthogonal segments (cf. F7) and also keep the
layout less consistent with the temporal logical ordering of activities (cf. F9).

9

Table 3: Descriptive group statistics for experts and novices for the two datasets
analyzed. The feature codes refer to the descriptions in Sec. 3.3.

mortgage-1 pre-flight
Feature Group Mean SD SE Mean SD SE

experts 0.862 0.256 0.003 0.817 0.311 0.004
F1

novices 0.807 0.261 0.001 0.764 0.361 0.003
experts 0.459 0.17 0.002 0.505 0.243 0.003

F2
novices 0.434 0.177 0.0009 0.441 0.259 0.002
experts 0.09 0.164 0.002 0.078 0.151 0.002

F3
novices 0.1 0.151 0.0008 0.098 0.188 0.002
experts 11.901 4.54 0.053 6.84 2.665 0.038

F4
novices 10.194 4.468 0.024 5.937 2.515 0.021
experts 1.309 1.487 0.017 0.371 0.845 0.012

F5
novices 1.576 1.614 0.008 0.495 1.079 0.009
experts 0.344 0.615 0.007 0.501 1.079 0.015

F6
novices 0.316 0.627 0.003 0.471 0.773 0.006
experts 0.712 0.223 0.003 0.572 0.267 0.004

F7
novices 0.603 0.179 0.0009 0.494 0.18 0.002
experts 0.008 0.026 0.0003 0.012 0.041 0.0006

F8
novices 0.022 0.044 0.0002 0.008 0.035 0.0003
experts 0.95 0.067 0.0008 0.95 0.103 0.001

F9
novices 0.877 0.126 0.0007 0.906 0.125 0.001
experts 2.743 1.14 0.013 1.598 0.88 0.013

F10
novices 2.267 1.012 0.005 1.64 0.911 0.008

4.2 Prediction on Single Intermediate Models

The problem at hand is a binary classification problem (i.e., novice vs expert).
Therefore, to characterize the quality of our predictions, we used the F-score
(also known as F1) measure. This measure is the harmonic mean of precision
and recall and is suitable for capturing the classification quality [40]. We created
different datasets with a different number of models (up to 1000, 2000, 4000 and
8000 BPMN models) considering BPMN models created during the last 70% of
the modeling session (i.e., we discarded the intermediate models created during
the initial 30% of the modeling session, to avoid almost-empty models). Then,
using a 10-fold cross validation [26] we computed the average performance for
each fold. Fig. 3 depicts the outcomes of our tests. Clearly, the larger the dataset
size, the better the outcome, since the system is able of better approximating
the classification function. With the largest datasets, we were able to achieve an
F-score of at least 0.88 (for pre-flight) and 0.94 (for mortgage-1). The compar-
ison with 5 other classifiers is reported in the external appendix of this paper
together with further implementation details1. To validate the necessity of our
feature set, Fig. 4 shows, in turn, the F-scores, if subsets of features were used.
The classification performance is notably worse when only subsets are used, as
the classification model is not capable of accurately discriminating based just on
these features. Additionally, the trend is not monotonically increasing but fluc-
tuating, which suggests that the learning model is probably too complex given
the data and it started to overfit the task, thus decreasing the performance.

10

0.5

0.6

0.7

0.8

0.9

1

1000 2000 4000 8000

F-
sc

o
re

Dataset size (number of random BPMN models used)

pre-flight mortgage-1

Fig. 3: F-scores on 10-fold cross validation tests, performed on different dataset
sizes (models randomly selected), for the two tasks.

Furthermore, Fig. 5 shows the pairwise Pearson correlation coefficients for all
features. Overall, there is little indication for linear correlations between the
features, suggesting that they may indeed capture complementary aspects. To
demonstrate that our approach (in line with requirement R3) is applicable in
an online setting we conducted a performance analysis. The computation of the
features was performed by instrumenting Cheetah to compute the features and
measure the time. Only the time to compute the actual feature is taken into
account. To compute the features, 18341 samples were randomly taken from the
mortgage-1 dataset, which is the bigger of the datasets used. The test has been
performed on a standard laptop with Windows 10 Enterprise and Java 1.8, Pro-
cessor Intel Core i7-7500U 2.7GHz and 16 GB RAM. During the test, a typical
usage was maintained (i.e., no dedicated computation for the test, just to sim-
ulate a modeling environment, with several other software applications running
at the same time). Fig. 6 shows the average time required to compute each fea-
ture. Our results demonstrate that the calculation of most features is very fast.
Feature F9, in turn, is more time consuming (93.12 ms). Still, all 10 features
can be calculated in just a bit more than 100ms, which is certainly sufficient for
application in the intended use cases.

4.3 Prediction of Modeler Expertise in the Entire Session

Our trained classifier predicts if model mi was created by an expert if exp(F i) =
1 or by a novice if exp(F i) = 0 with an accuracy of 0.88−0.94. In this section we
discuss how early exp(·) can predict that the modeler is an expert in a modeling
session (from the features F i of a partial model mi).

To be robust against temporary changes in the classification over a few model
snapshots, we derived a smoothing expert classifier exp′(F i) that takes the
average of exp(·) over the last N feature snapshots in the modeling sessions
F i,F i−1, . . . ,F i−N+1. If exp′(F i) > k for a threshold k, we consider mi as an
“expert model” in the session.

Using the exp(·) classifier trained on 8000 random samples from the last 70%
of a modeling sessions (based on Fig. 4) and choosing N = 20 and k = 0.6
(based on hyper-parameter optimization) led to the following results: in the first

11

0.5

0.6

0.7

0.8

0.9

1

1000 2000 4000 8000

F-
sc

o
re

Dataset size (number of random BPMN models used)

pre-flight mortgage-1

pre-flight (with all features) mortgage-1 (with all features)

(a) Performance using F1, F2, F3.

0.5

0.6

0.7

0.8

0.9

1

1000 2000 4000 8000

F-
sc

o
re

Dataset size (number of random BPMN models used)

pre-flight mortgage-1

pre-flight (with all features) mortgage-1 (with all features)

(b) Performance using F4, F5, F6.

0.5

0.6

0.7

0.8

0.9

1

1000 2000 4000 8000

F-
sc

o
re

Dataset size (number of random BPMN models used)

pre-flight mortgage-1

pre-flight (with all features) mortgage-1 (with all features)

(c) Performance using F7 and F8.

0.5

0.6

0.7

0.8

0.9

1

1000 2000 4000 8000

F-
sc

o
re

Dataset size (number of random BPMN models used)

pre-flight mortgage-1

pre-flight (with all features) mortgage-1 (with all features)

(d) Performance using F9 and F10.

Fig. 4: F-scores on 10-fold cross validation tests performed on different dataset
sizes, considering different subsets of features. Each chart also reports, for com-
parison purposes, the values obtained using all features.

25% of any modeling session, exp(·) predicts any models to be from an “expert”,
i.e., exp errs on the “expert side”. In the last 70% of a modeling session for
mortgage-1 (pre-flight):

– exp′ correctly predicted “expert” in 100% (94.5%) of the modeling sessions;
– in 90% (76.9%) of the sessions, this prediction occurred between 0.3-0.4

(0.3-0.55) of the modeling time at an average of 0.32 (0.35); exp′ remained
stable at “expert” until the end from 0.3-0.45 (0.3-0.75) of the modeling time
onwards at an average of 0.33 (0.45);

– exp′ falsely predicts “experts” for a short period in 13.8% (25.4%) of the
modeling sessions of novices; the false prediction is stable until the end in
just < 1% (5%) of the novice sessions.

4.4 Discussion and Limitations

First and foremost, the presented approach to classify modelers meets the re-
quirements R1-R4 put forward in Section 3.1. The classification is grounded
in objective measures (R1), as the classification features capture properties of
(intermediate) models only (e.g., the ratio of aligned model fragments or the
type and usage of gateways). Feature calculation and classification from the
model alone is fast (a bit more than 100ms) rendering our approach unobtru-
sive (R2). Modelers do not have to spend any additional effort and, unless it is

12

Fig. 5: Correlation coefficient matrix for all features.

5.36 5.31 5.44 0.03 0.03 0.03 0.02 1.19

93.12

0.01
0

25

50

75

100

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Ti
m

e
(m

s)

Features

Fig. 6: Average time required to compute each feature over 18341 samples ran-
domly selected from the mortgage-1 dataset (which is the biggest).

desired, would not even be aware of the classification. Our experiments further
highlighted that the features are well-suited to classify, potentially incomplete,
intermediate models. We thus in addition conclude that the approach can be
used online (cf. R3), coping with learning and improvement effects of modelers.
Moreover, our approach is independent of a specific tool (cf. R4) as the respec-
tive features can be computed in any tool for the creation of activity-centric,
flow-based process models with AND/XOR gateways.

Turning to the actual classification results, the general trend is encouraging,
with an F-score of 0.88 for pre-flight and 0.94 for mortgage-1. Our results suggest
that in terms of classification the mortgage-1 task seems easier when compared to
the pre-flight one. This is plausible since the pre-flight lacks complex behavioral
structures (i.e., no nested blocks or loops). Therefore, models of novices and
experts do not differ so much as for more complex models.

Our results have impact both for modeling theory and practice. The ability
to distinguish in an automated manner between groups of modelers (i.e., novices
or experts) has potential applications in the context of teaching scenarios or as
part of an adaptive modeling editor that classifies the user while modeling and
adjusts itself based on the classification. The accuracy of the smoothing online-
predictor exp′ to distinguish novices and experts already early in the modeling
session supports this idea; while reliable classification is only available after a
third of the modeling session, it may be exactly at the right time to identify
novices and offer support. The false positive rate of up to 25% in temporary

13

expert classifications suggests that users need to stay in control of adaptations
of the modeling environment.

The assessment of expertise and professional capabilities is needed for differ-
ent purposes: for recruitment, for deciding on assignment of employees to tasks,
for team formation [41], or for forming relatively uniform groups for training.
Current approaches for this assessment (e.g., based on success in a modeling
task) suffer limitations – specifically biases that stem from differences in domain
knowledge, from the specific modeling task selected for the assessment, or from
accidental success or failure. The approach we present overcomes these limita-
tions by considering a combination of features which are evidence-based and less
subject to conscious and intentional manipulation: it would be very difficult to
intentionally introduce bias in such assessment.

Although the feature extraction was conducted in the context of Cheetah
platform, it is not dependent on a specific modeling tool, but can be generalized
to any other BPMN-based process modeling environment. The general approach
could also be applied to modeling notations other than BPMN, however, in this
case the feature extraction would need to be adapted to the specific notation.

The features F1-F10 considered in this paper together are relevant for ac-
curately classifying expert and novice modelers: sub-groups of features show
significantly lower F-scores than all features combined (Fig. 4), and the features
discriminate even partial expert and novice models (Sec. 4.3). Other classifiers
can be used for the same set of features with the same or even better accuracy1.
A threat to generalizability to larger models and applicability in individual cases
may be the thresholds used in F1-F3 and F7. Validating the features against more
(and larger models) and modeler preferences is subject of future work.

Another limitation of our work is that we used the same tasks for training
and prediction. This is a setting that is applicable to teaching or recruitment
scenarios, where many modelers work on the same modeling task. To improve
the generalizability of the approach and to make it applicable in settings where
models are more heterogeneous, inter-model predictions are required. Some of
the features considered in our prediction depend on the model (e.g., the number
of gateways) and thus have to be adapted for inter-model predictions.

5 Conclusion and Future Work

In this paper we demonstrated that novices and experts can be differentiated to a
large extent based on how they lay out their model. By basing our classification
approach on a model’s layout, we were able to provide an approach that is
automated, based on objective-measures, that is unobtrusive, and independent
of a particular modeling tool. Our performance analysis further demonstrated
that the approach is applicable in online settings. With this paper we focused
on inter-model classification.

Future work will generalize the approach by additionally considering intra-
model classification. We plan to continue the feature engineering and selection

14

processes by considering features that capture the evolution of model properties
over time. In parallel, different prediction techniques can also be investigated.

Acknowledgements This research was funded by the Austrian Science Fund

(FWF): P26140–N15 and P26609N15.

References

1. Burton-Jones, A., Meso, P.: The effects of decomposition quality and multiple
forms of information on novices’ understanding of a domain from a conceptual
model. J. AIS 9(12) (2008)

2. Fettke, P.: How conceptual modeling is used. Communications of the AIS (CAIS)
25 (12 2009) 571–592

3. Recker, J., Safrudin, N., Rosemann, M.: How novices design business processes.
Information Systems 37(6) (2012) 557–573

4. Soffer, P., Kaner, M., Wand, Y.: Towards Understanding the Process of Process
Modeling: Theoretical and Empirical Considerations. In: Proc. ER-BPM’11. (2012)
357–369

5. Wickens, C.D., Hollands, J.G.: Engineering Psychology and Human Performance.
3 edn. Pearson (1999)

6. Figl, K.: Comprehension of procedural visual business process models a literature
review. Business & Information Systems Engineering 59 (2017)

7. Koschmider, A., Reijers, H.A.: Improving the process of process modelling by the
use of domain process patterns. Enterprise IS 9(1) (2015) 29–57

8. Koschmider, A., Hornung, T., Oberweis, A.: Recommendation-based editor for
business process modeling. Data Knowl. Eng. 70(6) (2011) 483–503

9. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data Knowl.
Eng. 66(3) (2008) 438–466

10. Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process
modeling. In Dumas, M., Reichert, M., Shan, M.C., eds.: Business Process Man-
agement, Berlin, Heidelberg, Springer Berlin Heidelberg (2008) 4–19

11. Claes, J., Vanderfeesten, I.T.P., Gailly, F., Grefen, P., Poels, G.: The structured
process modeling method (SPMM) what is the best way for me to construct a
process model? Decision Support Systems 100 (2017) 57–76

12. Claes, J., Vanderfeesten, I., Pinggera, J., Reijers, H.A., Weber, B., Poels, G.: Visu-
alizing the Process of Process Modeling with PPMCharts. In: Proc. TAProViz’12.
(2013) 744–755

13. Pinggera, J., Soffer, P., Zugal, S., Weber, B., Weidlich, M., Fahland, D., Reijers,
H.A., Mendling, J.: Styles in business process modeling: an exploration and a
model. Software and Systems Modeling (2013)

14. Krogstie, J.: Quality of Models. In: Model-Based Development and Evolution of
Information Systems. Springer London, London (2012) 205–247

15. Mendling, J., Recker, J.C., Reijers, H., Leopold, H.: An empirical review of the con-
nection between model viewer characteristics and the comprehension of conceptual
process models. Information Systems Frontiers (2018) 1–25

16. Larkin Jill, John McDermott, D.P.S., Simon, H.A.: Expert and novice performance
in solving physics problems. Science 208(4450) (1980) 1335–1342

15

17. Reijers, H.A., Mendling, J.: A study into the factors that influence the under-
standability of business process models. IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans 41(3) (May 2011) 449–462

18. Petre, M.: Why looking isn’t always seeing: readership skills and graphical pro-
gramming. Communications of the ACM 38(6) (1995) 33–44

19. Batra, D., Davis, J.G.: Conceptual data modelling in database design: similarities
and differences between expert and novice designers. International journal of man-
machine studies 37(1) (1992) 83 – 101

20. Narasimha, B., Leung, F.S.: Assisting novice analysts in developing quality con-
ceptual models with uml. Communications of the ACM 49(7) (2006) 108 – 112

21. Jawaheer, G., Weller, P., Kostkova, P.: Modeling user preferences in recommender
systems: A classification framework for explicit and implicit user feedback. ACM
Transactions on Interactive Intelligent Systems (4(2)) (2014)

22. Riedl, R., Léger, P.: Fundamentals of NeuroIS-Information Systems and the Brain.
Studies in Neuroscience, Psychology and Behavioral Economics. Springer (2016)

23. Crk, I., Kluthe, T., Stefik, A.: Understanding programming expertise: An empirical
study of phasic brain wave changes. ACM Trans. Comput.-Hum. Interact. 23(1)
(2016) 2:1–2:29

24. Pinggera, J.: The Process of Process Modeling. Phd thesis, U. of Innsbruck (2014)
25. Martini, M., Pinggera, J., Neurauter, M., Sachse, P., Furtner, M.R., Weber, B.:

The impact of working memory and the process of process modelling on model
quality: Investigating experienced versus inexperienced modellers. Scientific Re-
ports 6 (may 2016) 25561

26. Aggarwal, C.C.: Data Mining. Springer International Publishing, Cham (2015)
27. Baker, R.: Big Data and Education. Columbia University, New York (2015)
28. Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling guide-

lines (7PMG). Information & Software Technology 52(2) (2010) 127–136
29. Polyvyanyy, A.: Structuring process models. Phd thesis, Univ. of Potsdam (2012)
30. Haisjackl, C., Soffer, P., Lim, S.Y., Weber, B.: How do humans inspect bpmn

models: an exploratory study. Software & Systems Modeling (Oct 2016)
31. Bernstein, V., Soffer, P.: Identifying and quantifying visual layout features of

business process models. In: Proceedings of BPMDS, Springer (2015) 200–213
32. Gschwind, T., Pinggera, J., Zugal, S., Reijers, H.A., Weber, B.: A linear time

layout algorithm for business process models. JVLC 25(2) (2014) 117 – 132
33. Figl, K., Strembeck, M.: On the Importance of Flow Direction in Business Process

Models. In: Proceedings of ICSOFT-EA. (2014) 132–136
34. Burattin, A., Bernstein, V., Neurauter, M., Soffer, P., Weber, B.: Detection and

quantification of flow consistency in business process models. SoSyM (2017)
35. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)
36. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural

Networks 4(2) (1991) 251 – 257
37. Huang, G.B.: Learning capability and storage capacity of two-hidden-layer feed-

forward networks. IEEE Transactions on Neural Networks 14(2) (2003) 274–281
38. Hagan, M., Demuth, H., Beale, M., De Jesús, O.: Neural Network Design. (2014)
39. Pinggera, J., Zugal, S., Weber, B.: Investigating the Process of Process Modeling

with Cheetah Experimental Platform. In: Proc. of ER-POIS. (2010) 13–15
40. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.

First edn. Cambridge University Press (2008)
41. Niknafs, A., Berry, D.: The impact of domain knowledge on the effectiveness of

requirements engineering activities. Empirical Software Engineering 22(1) (2017)
80–133

16

	Who is behind the Model? Classifying Modelers based on Pragmatic Model Features

