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Abstract

Process mining is a family of techniques that aim at analyzing business process
execution data recorded in event logs. Conformance checking is a branch of
this discipline embracing approaches for verifying whether the behavior of a
process, as recorded in a log, is in line with some expected behavior provided
in the form of a process model. Recently, techniques for conformance checking
based on declarative specifications have been developed. Such specifications are
suitable to describe processes characterized by high variability. However, an
open challenge in the context of conformance checking with declarative models
is the capability of supporting multi-perspective specifications. This means
that declarative models used for conformance checking should not only describe
the process behavior from the control flow point of view, but also from other
perspectives like data or time. In this paper, we close this gap by presenting an
approach for conformance checking based on MP-Declare, a multi-perspective
version of the declarative process modeling language Declare. The approach has
been implemented in the process mining tool ProM and has been experimented
using artificial and real-life event logs.

Keywords: Process Mining, Conformance Checking, Linear Temporal Logic,
Business Constraints, Declare

1. Introduction

The fast pace of change in markets is more and more imposing the definition
and use of flexible information systems for supporting business processes of
companies, and organizations in general. In fact, such dynamic markets make
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the complete specification of a business process obsolete in a relatively short span
of time, due to the need of bringing frequent modifications and updates to the
process in order to accommodate for new market conditions and/or regulations.
Notwithstanding these dynamic scenarios, one very important functionality that
any process-aware information system should be able to support is conformance
checking, i.e., the ability to verify whether the actual flow of work is conformant
with the intended business process model. In particular, there are some process
constraints that need to be satisfied for the process to be considered healthy
and aligned with the current business goals.

Examples of such constraints that can be found in the literature are:

• a bank account is opened only in case risk is low (Awad et al., 2009a);

• in case the respondent bank rating review is rejected, an account must never be
opened (Awad et al., 2009a);

• for payment runs with amount beyond 10,000 euros, the payment list has to be
signed before being transferred to the bank and has to be filed afterwards for
later audits (Ly et al., 2011);

• if an open item is not marked as cleared within 30 days, the bank details may
be faulty. Thus, the bank details have to be (re)checked (Ly et al., 2011);

• a passenger ship leaving Amsterdam has to moor in Newcastle within 16 hours
(Maggi et al., 2013b);

• if the size of a fishing boat is above 25 m (100 tons) and it is located at 541
of latitude and 8.51 of longitude, it cannot be engaged in fishing (Maggi et al.,
2013b);

• if employing any electronic storage media other than optical disk technology
(including CD-ROM), the member, broker, or dealer must notify its designated
examining authority at least 90 days prior to employing such storage media
(Giblin et al., 2006);

• if the PainScore of patient p is greater than 7 and the status is uninitialized
then the status must be changed to initialized and a timer event is generated to
treat patient p within 1 h (Middleton et al., 2009);

• if the first test terminates with a particular result code, then all the consequent
executions of the test should return the same result code (Ly et al., 2015);

• orders of more than 1, 000 euros can only be approved by a senior manager (Ly
et al., 2015);

• final approval of the assessment can only be granted by the manager that re-
quested the assessment (Ly et al., 2015);

• every closed project must be validated by a person who did not participate in
the project (4-Eyes principle, also called Separation of Duties) (Ly et al., 2015);

• in case the total number of users permissible on the server has reached the limit,
access privilege to current potential user requires exception approval from IT
administrator (Narendra et al., 2008);

• any [LightPathOperation (LPO)] ID appearing in any partition request must be
different from any LPO ID appearing in any future concatenate request (Hallé
& Villemaire, 2008).

2



Other constraints have been used in the context of real-life data analysis:

• if “hemoglobine foto-elektrisch” occurs in a trace and “Diagnosis Treatment
Combination ID” is equal to 495326, then “hemoglobine foto-elektrisch” is fol-
lowed eventually by “ureum” (3TU Data Center, 2011);

• “A SUBMITTED-complete” and “A PARTLYSUBMITTED-complete” are al-
ways performed by the same actor (3TU Data Center, 2012);

• if “Create fine” is not followed by “Payment” within two months then“Add
penalty” must eventually occur (3TU Data Center, 2015).

These multi-perspective constraints describe the expected process behavior
not only from the control flow point of view, but also from other perspectives
like data or time.1 These perspectives can be evaluated in isolation, but can
also appear simultaneously in the same constraint.

Early works in conformance checking (Cook & Wolf, 1999; Rozinat & van der
Aalst, 2008) mainly focused on the control flow perspective in the context of
procedural models, i.e., on the functional dependencies among performed activ-
ities/tasks in the process, while abstracting from time constraints or data de-
pendencies. These works were mainly based on replaying the log on the model
to compute, according to the proposed approach, the fraction of events or traces
in the log that can be replayed by the model. An evolution of these approaches
is given by alignment-based approaches, where the conformance checking is per-
formed by aligning both the modeled behavior and the behavior observed in the
log (Adriansyah et al., 2011). Only recently, approaches able to deal with data
dependencies have been developed (de Leoni & van der Aalst, 2013; Mannhardt
et al., 2014).

Procedural specifications, such as Petri Nets (Desel & Esparza, 1995) or
BPMN (Object Management Group, 2011), can be problematic to deal with
when the process undergoes a frequent redefinition through time, while they are
very effective for describing processes that are stable in time and predictable.
In dynamic scenarios, declarative process description formalisms are preferred
(Silva et al., 2014; Zugal et al., 2011; Pichler et al., 2011; van der Aalst et al.,
2009; Haisjackl et al., 2013). A declarative approach allows the business analyst
to focus on the formalization of few relevant and relatively stable through time
constraints that the process should satisfy, avoiding the burden to model many
process control-flow details that are fated to change through time. Through
declarative formalisms the processes are kept under-specified so that few rules
allow for multiple execution paths. In this way, the process representation is
more robust to changeable behaviors and, at the same time, remains compact.

In (van der Aalst et al., 2009; Westergaard & Maggi, 2011; Pesic et al., 2007),
the authors introduce a declarative process modeling language called Declare
with formal semantics grounded in LTL (Linear Temporal Logic) (Pnueli, 1977).

1The notion of time taken into consideration in the control flow analysis is qualitative (i.e.,
based on the total order relation between events in a log). The additional perspective we want
to deal with here is the one that takes into consideration a quantitative notion of time (e.g.,
conformance with respect to constraints based on timestamps like deadlines or latencies).
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A Declare model is a set of Declare constraints defined as instantiations of
Declare templates that are parameterized classes of properties. Since Declare
models are focused on ruling out forbidden behavior, Declare is very suitable
for defining compliance models that are used for checking that the behavior of
a system complies certain regulations. The compliance model defines the rules
related to a single instance of a process, and the expectation is that all the
instances follow the model.

Conformance checking approaches based on the control flow perspective have
been defined for declarative models in (Chesani et al., 2009; Montali et al.,
2010; de Leoni et al., 2012, 2014a; Burattin et al., 2012). One of the most
well known tools for conformance checking with declarative specifications is
the LTL Checker presented for the first time in (van der Aalst et al., 2005).
Recently, the additional data perspective has been considered in (Borrego &
Barba, 2014), even if, in this work, the data perspective is not fully integrated
with the control flow perspective. This means that the conformance checking on
data is performed by specifying conditions on a set of global variables that must
be satisfied during the process execution and are completely disconnected from
the control flow. Consider, for example, a diabetic patient who must take sugar
if his or her glucose level is below 50 mg/dl. When a test is completed and the
measured level is 50 or less, then the patient must eventually take sugar. This
constraint clearly relates information coming from data (glucose level below 50
mg/dl) to a behavior imposed on the control flow (eventually take sugar). The
technique presented in (Borrego & Barba, 2014) does not allow for checking this
type of constraints. In addition, with this technique it is not possible to impose
temporal conditions like “the patient must promptly take sugar within 3 minutes
after the glucose test”. Therefore, efficient and fully integrated multi-perspective
conformance checking proposals for declarative models are still missing.

In this paper, we aim at closing this gap by proposing a conformance checking
approach based on Declare that allows for defining multi-perspective constraints
jointly considering data, temporal, and control flow perspectives. To this aim,
we formally define Multi-Perspective Declare (MP-Declare), an augmented ver-
sion of Declare that, being based on Metric First-Order Linear Temporal Logic
semantics, allows for the definition of activation, correlation, and time condi-
tions to build constraints over traces.

We assess the validity of the proposed approach both on artificial and real-
life event logs. Controlled artificial data, involving logs containing up to 5
million events, are used to test the scalability of the proposed approach, while
a real-life event log is used to demonstrate its suitability to define and check
multi-perspective constraints in real-life scenarios. In particular, through our
evaluation, we want to answer the following research questions:

RQ1 What is the effectiveness of the proposed approach?

RQ1.1 What are the violations that can be detected using multi-perspective
constraints (absolute effectiveness)?

RQ1.2 What are the violations that can be detected using multi-perspective
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constraints that are not identifiable with the existing control flow-
based conformance checking approaches (relative effectiveness)?

RQ2 How does the execution time of the proposed approach compare to that
of similar existing approaches (efficiency)?

The rest of the paper is structured as follows. In Section 2, we discuss the
related work. Section 3 provides some background notions needed to understand
the main contribution of the paper. In Section 4, we introduce the semantics of
Multi-Perspective Declare based on Metric First-Order Linear Temporal Logic.
In Section 5, we discuss the proposed conformance checking algorithms. Sec-
tion 6 and 7 discuss the implementation of the approach and its evaluation,
respectively. Section 8 concludes the paper and spells out directions for future
work.

2. Related Work

The scientific literature reports several works in the field of conformance
checking (van der Aalst, 2011). Typically, the term conformance checking refers
to the comparison of observed behaviors – as recorded in an event log – with
respect to a process model. In the past, most of the conformance checking
techniques were based on procedural models. State of the art examples of these
approaches are reported in (Cook & Wolf, 1999; Rozinat & van der Aalst, 2008;
Adriansyah et al., 2011; de Leoni & van der Aalst, 2013; Mannhardt et al.,
2014; van der Aalst, 2012, 2013; de Leoni et al., 2014b; Munoz-Gama et al.,
2014; Knuplesch et al., 2010; Awad et al., 2009b; Taghiabadi et al., 2013, 2014).

In (Cook & Wolf, 1999; Rozinat & van der Aalst, 2008), for the first time, the
concept of conformance checking with respect to (procedural) process models
was investigated. In (Adriansyah et al., 2011), the authors introduce confor-
mance checking augmented with the notion of alignments. Alignment-based
approaches have also been used in (de Leoni & van der Aalst, 2013; Mannhardt
et al., 2014; Taghiabadi et al., 2013, 2014), where the authors propose techniques
for conformance checking with respect to time- and data-aware procedural mod-
els. In all these cases, however, authors applied conformance checking techniques
to event logs and procedural models that cannot be applied to declarative mod-
els. As discussed in the introduction and demonstrated in (Silva et al., 2014;
Zugal et al., 2011; Pichler et al., 2011; van der Aalst et al., 2009; Haisjackl
et al., 2013), declarative specification are useful to capture process behaviors in
turbulent environments where several execution paths are allowed.

In the above techniques, conformance checking is meant to be a post-mortem
analysis. Other approaches, like those reported in (Knuplesch et al., 2010; Awad
et al., 2009b), deal with compliance checking at design-time, before the process
is deployed and executed. In (Knuplesch et al., 2010), the authors present
an approach for checking procedural compliance models in cross-organizational
business processes. These models are limited to the control flow perspective. In

5



(Awad et al., 2009b), a process model is queried and checked with respect to
(procedural) compliance queries expressed in BPMN-Q.

In recent years, an increasing number of researchers are focusing on the con-
formance checking with respect to declarative models. For example, in (Chesani
et al., 2009), an approach for compliance checking with respect to reactive busi-
ness rules is proposed. Rules, expressed using Declare, are mapped to Abductive
Logic Programming, and Prolog is used to perform the validation. The approach
has been extended in (Montali et al., 2010), by mapping constraints to LTL,
and evaluating them using automata. The entire work has been contextualized
into the service choreography scenario. In (Grando et al., 2012, 2013), Grando
et al. used Declare to model medical guidelines and to provide semantic (i.e.,
ontology-based) conformance checking measures. In (Burattin et al., 2012), the
authors report an approach that can be used to evaluate the conformance of a
log with respect to a Declare model. In particular, their algorithms compute,
for each trace, whether a Declare constraint is violated or fulfilled. Using these
statistics the approach allows the user to evaluate the “healthiness” of the log.
The approach is based on the conversion of Declare constraints into automata
and, using a so-called “activation tree”, it is able to identify violations and
fulfillments. The work described in (de Leoni et al., 2012, 2014a) consists in
converting a Declare model into an automaton and perform conformance check-
ing of a log with respect to the generated automaton. The conformance checking
approach is based on the concept of alignment and as a result of the analysis
each trace is converted into the most similar trace that the model accepts. One
of the most well known tools for conformance checking with declarative specifi-
cations is the LTL Checker presented for the first time in (van der Aalst et al.,
2005).

However, in all these approaches neither data nor time perspectives are taken
into account. In addition, automata-based approaches to conformance checking
are very difficult to extend to the multi-perspective case since the verification of
data-aware constraints faces a combinatorial blow up of the state-space, com-
monly known as the state explosion problem.

In a recent work, reported in (Borrego & Barba, 2014), the data perspective
for conformance checking with Declare is expressed in terms of conditions on
global variables disconnected from the specific Declare constraints expressing
the control flow. In other words, data constraints are not bound to control
flow constraints and thus it is not possible to bind the behavior to specific
data attributes. Moreover, the work does not take the temporal perspective
into account. In contrast, we provide a formal semantics in which the data
perspective, the temporal perspective and the control flow are connected with
each other.

In (Westergaard & Maggi, 2012; Maggi & Westergaard, 2014), the authors
propose an approach for checking Declare constraints augmented with temporal
conditions, whereas, in (De Masellis et al., 2014), an approach for monitoring
data-aware Declare constraints at runtime is presented. These approaches fo-
cus separately on the time perspective (Westergaard & Maggi, 2012; Maggi &
Westergaard, 2014) and on the data perspective (De Masellis et al., 2014) and
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it is not possible to express constraints involving multiple perspectives at the
same time. In addition, a full-fledged implementation of such approaches is not
available.

The result of our state of the art analysis is that conformance checking tech-
niques for multi-perspective declarative process models are missing. With this
work, we aim at filling this gap. In particular, first, we describe and formalize
MP-Declare (i.e., Declare augmented with data and time constraints). Then,
we provide an algorithmic framework to efficiently check the conformance of
MP-Declare with respect to event logs.

3. Preliminaries

In this section, we present the fundamental concepts required to understand
the rest of the paper.

3.1. Process Mining and XES

The basic idea behind process mining is to discover, monitor and improve
processes by extracting knowledge from data that is available in today’s systems
(van der Aalst, 2011). The starting point for process mining is an event log. XES
(eXtensible Event Stream) (IEEE Task Force on Process Mining, 2013; Verbeek
et al., 2010) has been developed as the standard for storing, exchanging and
analyzing event logs.

Each event in a log refers to an activity (i.e., a well-defined step in some
process) and is related to a particular case (i.e., a process instance). The events
belonging to a case are ordered with respect to their execution times. Hence,
each case follows a specific sequence of events (i.e., a trace). Event logs may store
additional information about events such as the resource (i.e., person or device)
executing or initiating the activity, the timestamp of the event, or data elements
recorded with the event. In XES, data elements can be event attributes, i.e.,
data produced by the activities of a business process and case attributes, i.e.,
data that are associated to a whole process instance. In this paper, we assume
that all attributes are globally visible and can be accessed/manipulated by all
activity instances executed inside the case.

3.2. Metric First Order Temporal Logic

In this paper, we use Metric First Order Temporal Logic (MFOTL) first in-
troduced in (Chomicki, 1995). MFOTL extends propositional metric temporal
logic (MTL) (Koymans, 1990) to merge the expressivity of first-order logic to-
gether with the MTL temporal modalities. Since a business process is supposed
to finish sooner or later, we deal with a fragment of MFOTL where all traces
are finite.

In the following, we call “structure” a triple D = (∆, σ, ι). ∆ is the domain
of the structure, i.e., an arbitrary set. σ is the signature of the structure, i.e., a
triple σ = (C,R, a), where C is a set of constant symbols, R is a set of relational
symbols, and a is a function that specify the arity of each relational symbol. ι
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is the interpretation function of the structure that assigns a meaning to all the
symbols in σ over the domain ∆.

Definition 1 (Timed temporal structure). A timed temporal structure over the
signature σ = (C,R, a) is a pair (D, τ) where D is a finite sequence of structures
D = (D1, . . . , Dn) and τ = (τ1, . . . , τn) is a finite sequence of timestamps with
τi ∈ N.2 D is assumed to have constant domains, i.e., ∆i = ∆i+1, for all
1 ≤ i < n. Each constant symbol in C has an interpretation that does not vary
over the time. The sequence of timestamps τ is monotonically increasing, i.e.,
τi ≤ τi+1, for all 1 ≤ i < n.

We indicate with I = [a, b) an interval, where a ∈ N and b ∈ N ∪ {∞}, and
with V a set of variables. To express MFOTL formulas, we use the syntax:

Definition 2 (MFOTL Syntax). Formulas of MFOTL over a signature σ =
(C,R, a) are given by the grammar

φ ::= t1 ≈ t2 | r(t1, . . . , ta(r)) | ¬φ | φ1 ∧ φ2 | ∃x.φ | XIφ | φ1UIφ2 | YIφ | φ1SIφ2

where φ, φ1, φ2 ∈MFOTL, I = [a, b) is an interval, r is an element of R, x
ranges over V , and t1, t2, . . . belong to V ∪ C.

A valuation is a mapping v : V → ∆. With abuse of notation, if c is a
constant symbol in C, we say that v(c) = c. For a valuation v, a variable x ∈ V ,
and d ∈ ∆, v[x/d] is the valuation that maps x to d and leaves unaltered the
valuation of the other variables.

Definition 3 (MFOTL Semantics). Given (D, τ) a timed temporal structure
over the signature σ = (C,R, a) with D = (D1, . . . , Dn), τ = (τ1, . . . , τn), φ
a formula over S, v a valuation, and 1 ≤ i ≤ n, we define (D, τ, v, i) � φ as
follows:

(D, τ, v, i) � t ≈ t′ iff v(t) = v(t′)
(D, τ, v, i) � r(t1, . . . , ta(r)) iff (v(t1), . . . , v(ta(r)))) ∈ ι(r)

(D, τ, v, i) � (¬φ1) iff (D, τ, v, i) 2 φ1
(D, τ, v, i) � φ1 ∧ φ2 iff (D, τ, v, i) � φ1 and (D, τ, v, i) � φ2

(D, τ, v, i) � ∃x.φ1 iff (D, τ, v[x/d], i) � φ1, for some d ∈ ∆
(D, τ, v, i) � YIφ1 iff i > 1, τi − τi−1 ∈ I, and (D, τ, v, i− 1) � φ1
(D, τ, v, i) � XIφ1 iff i < n, τi+1 − τi ∈ I and (D, τ, v, i+ 1) � φ1

(D, τ, v, i) � φ1SIφ2 iff for some j ≤ i, τi − τj ∈ I,
(D, τ, v, j) � φ2 and (D, τ, v, k) � φ1
for all k ∈ [j + 1, i+ 1)

(D, τ, v, i) � φ1UIφ2 iff for some j ≥ i, τj − τi ∈ I,
(D, τ, v, j) � φ2 and (D, τ, v, k) � φ1
for all k ∈ [j, i)

2Note that every timestamp available in a XES log can be translated into an integer.
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Table 1: Semantics for some Declare templates.

Template LTL semantics Activation

existence FA A
absence ¬FA A

choice FA ∨ FB A, B
exclusive choice (FA ∨ FB) ∧ ¬(FA ∧ FB) A, B

responded existence G(A→ (OB ∨ FB)) A
response G(A→ FB) A
alternate response G(A→ X(¬AUB)) A
chain response G(A→ XB) A
precedence G(B → OA) B
alternate precedence G(B → Y(¬BSA)) B
chain precedence G(B → YA) B

not responded existence G(A→ ¬(OB ∨ FB)) A
not response G(A→ ¬FB) A
not precedence G(B → ¬OA) B
not chain response G(A→ ¬XB) A
not chain precedence G(B → ¬YA) B

We add syntactic sugar for the normal connectives, such as true ≡ ∃x.x ≈
x, φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2), ∀x.φ ≡ ¬∃x.¬φ φ1 → φ2 ≡ (¬φ1) ∨ φ2 and
φ1 ↔ φ2 ≡ (φ1 → φ2) ∧ (φ2 → φ1). We also add temporal syntactic sugar,
FIψ ≡ trueUIψ (timed future operator), GIψ ≡ ¬(FI(¬ψ)) (timed globally
operator), and OIψ ≡ trueSIψ (timed once operator). The non-metric variants
of the temporal operators are obtained by specifying I = [0,∞).

3.3. Declare

Declare is a declarative process modeling language originally introduced by
Pesic and van der Aalst in (van der Aalst et al., 2009; Pesic et al., 2007). Instead
of explicitly specifying the flow of the interactions among process activities,
Declare describes a set of constraints that must be satisfied throughout the
process execution. The possible orderings of activities are implicitly specified by
constraints and anything that does not violate them is possible during execution.
In comparison with procedural approaches that produce “closed” models, i.e.,
all that is not explicitly specified is forbidden, Declare models are “open” and
tend to offer more possibilities for the execution. In this way, Declare provides
flexibility and is very suitable for highly dynamic processes characterized by
high complexity and variability due to the turbulence and the changeability of
their execution environments.

A Declare model consists of a set of constraints applied to activities. Con-
straints, in turn, are based on templates. Templates are patterns that define
parameterized classes of properties, and constraints are their concrete instan-
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tiations (we indicate template parameters with capital letters and concrete ac-
tivities in their instantiations with lower case letters). They have a graphical
representation understandable to the user and their semantics can be formalized
using different logics (Montali et al., 2010), the main one being LTL over finite
traces, making them verifiable and executable. Each constraint inherits the
graphical representation and semantics from its template. Table 1 summarizes
some Declare templates (the reader can refer to (van der Aalst et al., 2009) for
a full description of the language).

Templates existence and absence require that A occurs at least once and
never occurs in every process instance, respectively. Templates choice and ex-
clusive choice indicate that A or B occur eventually in each process instance.
The exclusive choice template is more restrictive because it forbids A and B
to occur both in the same process instance. The responded existence template
specifies that if A occurs, then B should also occur (either before or after A).
The response template specifies that when A occurs, then B should eventu-
ally occur after A. The precedence template indicates that B can only occur if
A has occurred before. Templates alternate response and alternate precedence
strengthen the response and precedence templates, respectively, by specifying
that activities must alternate without repetitions in between. Even stronger or-
dering relations are specified by templates chain response and chain precedence.
These templates require that the occurrences of A and B are next to each other.
Declare also includes some negative constraints to explicitly forbid the execution
of activities. The not responded existence template indicates that if A occurs
in a process instance, B cannot occur in the same instance. According to the
not response template any occurrence of A cannot be eventually followed by
B, whereas the not precedence template requires that any occurrence of B is
not preceded by A. Finally, according to the not chain response and not chain
precedence, A and B cannot occur one immediately after the other.

Consider, for example, the response constraint G(a→ Fb). This constraint
indicates that if a occurs, b must eventually follow. Therefore, this constraint is
satisfied for traces such as t1 = 〈a, a, b, c〉, t2 = 〈b, b, c, d〉, and t3 = 〈a, b, c, b〉,
but not for t4 = 〈a, b, a, c〉 because, in this case, the second instance of a is not
followed by a b. Note that, in t2, the considered response constraint is satisfied
in a trivial way because a never occurs. In this case, we say that the constraint
is vacuously satisfied (Kupferman & Vardi, 2003). In (Burattin et al., 2012), the
authors introduce the notion of behavioral vacuity detection according to which a
constraint is non-vacuously satisfied in a trace when it is activated in that trace.
An activation of a constraint in a trace is an event whose occurrence imposes,
because of that constraint, some obligations on other events (targets) in the same
trace. For example, a is an activation for the response constraint G(a → Fb)
and b is a target, because the execution of a forces b to be executed, eventually.
In Table 1, for each template the corresponding activation is specified.

An activation of a constraint can be a fulfillment or a violation for that con-
straint. When a trace is perfectly compliant with respect to a constraint, every
activation of the constraint in the trace leads to a fulfillment. Consider, again,
the response constraint G(a→ Fb). In trace t1, the constraint is activated and
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fulfilled twice, whereas, in trace t3, the same constraint is activated and fulfilled
only once. On the other hand, when a trace is not compliant with respect to a
constraint, an activation of the constraint in the trace can lead to a fulfillment,
but also to a violation (at least one activation leads to a violation). In trace t4,
for example, the response constraint G(a→ Fb) is activated twice, but the first
activation leads to a fulfillment (eventually b occurs) and the second activation
leads to a violation (b does not occur subsequently). An algorithm to discrimi-
nate between fulfillments and violations for a constraint in a trace is presented
in (Burattin et al., 2012).

In (Burattin et al., 2012), the authors define two metrics to measure the
conformance of an event log with respect to a constraint in terms of violations
and fulfillments, called violation ratio and fulfillment ratio of the constraint
in the log. These metrics are valued 0 if the log contains no activations of
the considered constraint. Otherwise, they are evaluated as the percentage of
violations and fulfillments of the constraint over the total number of activations.
In our experiments, we also use activation sparsity introduced in (Burattin et al.,
2012), which measures the percentage of events in the log that are activations
for the constraint.

Tools implementing process mining approaches based on Declare are pre-
sented in (Maggi, 2013). The tools are implemented as plug-ins of the process
mining toolkit ProM.

4. MFOTL Semantics for Multi-Perspective Business Constraints

In this section, we introduce a multi-perspective version of Declare (MP-
Declare) based on Metric First-Order Linear Temporal Logic (MFOTL). While
many reasoning tasks are clearly undecidable for MFOTL, this logic is appro-
priate to unambiguously describe the semantics of MP-Declare constraints. To
demonstrate that the subset of MFOTL formulas needed to describe the seman-
tics of MP-Declare constraints is decidable, in Section 7.1, we show that the
validity of an MP-Declare constraint in a trace can be algorithmically verified.
In Section 7.2, we also show that the computational complexity of our proposed
algorithmic framework is suitable to guarantee good performances also when it
is applied to large logs and models (this is also confirmed by the benchmark
analysis illustrated in Section 6).

To define the new semantics for Declare, we have to contextualize the defi-
nitions given in Section 3.2 in XES. Consider, for example, that the execution
of an activity pay is recorded in an event log and, after the execution of pay at
timestamp τi, the attributes originator, amount, and z have values John, 100,
and July. In this case, the valuation of (activityName, originator, amount, z)
is (pay, John, 100, July) in τi. Considering that in XES, by definition, the ac-
tivity name is a special attribute always available, if (pay, John, 100, July) is
the valuation of (activityName, originator, amount, z), we say that, when pay
occurs, two special relations are valid event(pay) and ppay(John, 100, July).
In the following, we identify event(pay) with the event itself pay and we call
(John, 100, July), the payload of pay.
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The semantics for MP-Declare is shown in Table 2. As an example, we
consider the response constraint “activity pay is always eventually followed by
activity get discount” having pay as activation and get discount as target. The
timed semantics of Declare, introduced in (Westergaard & Maggi, 2012), is ex-
tended by requiring two additional conditions on data, i.e., the activation condi-
tion ϕa and the correlation condition ϕc. The activation condition is a relation
(over the variables corresponding to the global attributes in the event log) that
must be valid when the activation occurs. If the activation condition does not
hold the constraint is not activated. In the case of the response template, the
activation condition has the form pA(x) ∧ ra(x), meaning that when A occurs
with payload x, the relation ra over x must hold. For example, we can say that
whenever pay occurs and client type is gold then eventually get discount must
follow. In case pay occurs, but client type is not gold, the constraint is not
activated. The correlation condition is a relation that must be valid when the
target occurs. It has the form pB(y) ∧ rc(x, y), where rc is a relation involving,
again, variables corresponding to the (global) attributes in the event log, but, in
this case, relating the valuation of the attributes corresponding to the payload
of A and the valuation of the attributes corresponding to the payload of B. In
our example, we can say that whenever pay occurs and client type is gold then
eventually get discount must follow and the due amount corresponding to ac-
tivity get discount must be lower than the one corresponding to activity pay. In
the following, with abuse of notation, we specify the interval characterizing the
time perspective of an MP-Declare constraint (I = [a, b)) with ϕτ . In addition,
we suppose that the first event of a case occurs at time τ0, A occurs at time τA,
and B occurs at time τB .

We give now a detailed description of the templates listed in Table 2. Tem-
plate existence requires that A occurs at least once with the activation condition
ϕa holding true, and τA ∈ [τ0 + a, τ0 + b) in every process instance. Template
absence requires that A never occurs with the activation condition ϕa holding
true, and τA ∈ [τ0 + a, τ0 + b) in every process instance. Templates choice and
exclusive choice indicate that A with the activation condition ϕa holding true,
and τA ∈ [τ0 + a, τ0 + b) occurs, or B with the activation condition ϕa holding
true, and τB ∈ [τ0 + a, τ0 + b) occurs in every process instance. The exclusive
choice template is more restrictive because it forbids A and B to occur both in
the same process instance under the specified conditions.

The responded existence template indicates that, if A occurs with the activa-
tion condition ϕa holding true, then B should also occur (either before or after
A) with the correlation condition ϕc holding true, and τB ∈ [τA − b, τA − a)
(if B occurs before A), or τB ∈ [τA + a, τA + b) (if B occurs after A). The
response template specifies that, when A with the activation condition ϕa hold-
ing true occurs, then B should eventually occur after A with the correlation
condition ϕc holding true, and τB ∈ [τA + a, τA + b). The precedence template
indicates that B with the activation condition ϕa holding true can occur only
if A has occurred before with the correlation condition ϕc holding true, and
τA ∈ [τB − b, τB − a). Template alternate response specifies that, when A with
the activation condition ϕa holding true occurs, then B should eventually occur
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Table 2: Semantics for MP-Declare constraints.

Template MFOTL Semantics

existence FI(A ∧ ∃x.ϕa(x))
absence ¬FI(A ∧ ∃x.ϕa(x))

choice FI(A ∧ ∃x.ϕa(x)) ∨ FI(B ∧ ∃x.ϕa(x))
exclusive choice (FI(A ∧ ∃x.ϕa(x)) ∨ FI(B ∧ ∃x.ϕa(x)))∧

¬(FI(A ∧ ∃x.ϕa(x)) ∧ FI(B ∧ ∃x.ϕa(x)))

responded existence G(∀x.((A ∧ ϕa(x))→ (OI(B ∧ ∃y.ϕc(x, y))∨
FI(B ∧ ∃y.ϕc(x, y)))))

response G(∀x.((A ∧ ϕa(x))→ FI(B ∧ ∃y.ϕc(x, y))))
alternate response G(∀x.((A ∧ ϕa(x))→

X(¬(A ∧ ϕa(x))UI(B ∧ ∃y.ϕc(x, y)))))
chain response G(∀x.((A ∧ ϕa(x))→ XI(B ∧ ∃y.ϕc(x, y)))
precedence G(∀x.((B ∧ ϕa(x))→ OI(A ∧ ∃y.ϕc(x, y)))
alternate precedence G(∀x.((B ∧ ϕa(x))→

Y(¬(B ∧ ϕa(x))SI(A ∧ ∃y.ϕc(x, y))))
chain precedence G(∀x.((B ∧ ϕa(x))→ YI(A ∧ ∃y.ϕc(x, y)))

not responded existence G(∀x.((A ∧ ϕa(x))→ ¬(OI(B ∧ ∃y.ϕc(x, y))∨
FI(B ∧ ∃y.ϕc(x, y)))))

not response G(∀x.((A ∧ ϕa(x))→ ¬FI(B ∧ ∃y.ϕc(x, y))))
not precedence G(∀x.((B ∧ ϕa(x))→ ¬OI(A ∧ ∃y.ϕc(x, y)))
not chain response G(∀x.((A ∧ ϕa(x))→ ¬XI(B ∧ ∃y.ϕc(x, y)))
not chain precedence G(∀x.((B ∧ ϕa(x))→ ¬YI(A ∧ ∃y.ϕc(x, y)))

after A with the correlation condition ϕc holding true, and τB ∈ [τA+a, τA+b).
Another occurrence of A with the activation condition ϕa holding true is not
allowed in [τA, τB). Template alternate precedence indicates that B with the ac-
tivation condition ϕa holding true can occur only if A has occurred before with
the correlation condition ϕc holding true, and τA ∈ [τB − b, τB − a). Another
occurrence of B with the activation condition ϕa holding true is not allowed in
[τA, τB). The chain response template specifies that, when A with the activa-
tion condition ϕa holding true occurs, then B should occur immediately after
A with the correlation condition ϕc holding true, and τB ∈ [τA + a, τA + b).
The chain precedence template indicates that B with the activation condition
ϕa holding true can occur only if A has occurred immediately before with the
correlation condition ϕc holding true, and τA ∈ [τB − b, τB − a).

The not responded existence template indicates that if A occurs with the
activation condition ϕa holding true, then B cannot occur with the correlation
condition ϕc holding true, and τB ∈ [τA − b, τA − a), or τB ∈ [τA + a, τA + b).
According to the not response template, when A with the activation condition
ϕa holding true occurs, then B cannot eventually occur after A with the corre-
lation condition ϕc holding true, and τB ∈ [τA + a, τA + b). The not precedence
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Time ----
A BActivity

φcφaData condition

Time condition{ ≤ φτ

Time ----
A BActivity

φcφaData condition

Time condition{ ≤ φτ

Time ----
A BActivity

φcφaData condition

Time condition{ ≤ φτ

(a) Fulfillment

(b) Violation (c) Violation

Figure 1: Fulfillment and violation scenarios for the response template. (a) reports a typical
fulfillment scenario. In (b), the violation is due to the violation of the correlation condition
ϕc. In (c), the violation is due to the violation of the time condition ϕτ .

template requires that B with the activation condition ϕa holding true can-
not occur if A has occurred before with the correlation condition ϕc holding
true, and τA ∈ [τB − b, τB − a). According to the not chain response template,
when A with the activation condition ϕa holding true occurs, then B cannot
occur immediately after A with the correlation condition ϕc holding true, and
τB ∈ [τA + a, τA + b). Finally, the not chain precedence template indicates
that B with the activation condition ϕa holding true cannot occur if A has oc-
curred immediately before with the correlation condition ϕc holding true, and
τA ∈ [τB − b, τB − a).

Graphical representations of the semantics of three MP-Declare templates
are reported in Figures 1, 2 and 3. In particular, these figures report the se-
mantics for response, alternate response and chain response templates. Each
figure shows possible scenarios of violations and fulfillments for the correspond-
ing template. A scenario is described reporting events as rounded circles. Each
circle is associated to an activity (A, B, or C) and a data condition (either an
activation condition ϕa or a correlation condition ϕc). The time condition ϕτ
is reported above the horizontal curly bracket. Crossed data or time conditions
indicate violated conditions.

The response template in Figure 1 indicates that, if A occurs at time τA with
ϕa holding true, B must occur at some point τB ∈ [τA+a, τA+b) with ϕc holding
true. The alternate response template in Figure 2 specifies that, if A occurs at
time τA with ϕa holding true, B must occur at some point τB ∈ [τA + a, τA + b)
with ϕc holding true. A is not allowed in the interval [τA, τB ] if ϕa is true. Any
event different from A is allowed and, also, A is allowed if ϕa is false. The chain
response template in Figure 3 indicates that, if A occurs at time τA with ϕa
holding true, B must occur next at some point τB ∈ [τA + a, τA + b) with ϕc
holding true.
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Time ----
A BActivity

φcφaData condition

Time condition{ ≤ φτ

(a) Fulfillment

Time ----
A BActivity

φcφaData condition

Time condition{ ≤ φτ

Time ----
A BActivity

φcφaData condition

Time condition{ ≤ φτ

----
Time ----

A BActivity

φcφaData condition

Time condition{ ≤ φτ

A
φa

Time ----
A BActivity

φcφaData condition

Time condition{ ≤ φτ

A
φa

(b) Violation

(d) Fulfillment

(c) Violation

(e) Violation

Figure 2: Fulfillment and violation scenarios for the alternate response template. (a) reports
a typical fulfillment scenario. In (b), the violation is due to the violation of the correlation
condition ϕc. In (c), the violation is due to the violation of the time condition ϕτ . The acti-
vation in (d) is a fulfillment because the second occurrence of A does not satisfy the activation
condition. In contrast, (e) reports a violation since, in this case, the second occurrence of A
satisfies the activation condition.

Time

A BActivity

φcφaData condition

Time condition {≤ φτ

(a) Fulfillment

Time

A BActivity

φcφaData condition

Time condition ≤ φτ{

Time

A BActivity

φcφaData condition

Time condition ≤ φτ{

(b) Violation (c) Violation

Figure 3: Fulfillment and violation scenarios for the chain response template. (a) reports a
typical fulfillment scenario. Note that, in this case, the two events are contiguous. In (b), the
violation is due to the violation of the correlation condition ϕc. In (c), the violation is due to
the violation of the time condition ϕτ .
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5. Conformance Checking Algorithms

As stated in the previous section, with MP-Declare, it is possible to express
Declare constraints taking into account also the temporal and the data perspec-
tives of a business process. As an example, it is possible to express constraints
like:

• activity a must occur between 10 and 11 hours before activity b;

• if activity a writes a variable x with value <1000, then b must occur after
two days.

Therefore, using this language, it is possible to define multi-perspective compli-
ance models that can be used for several purposes like, for example, for repre-
senting Service Level Agreements (SLAs). In this context, it is useful to provide
the user with techniques to detect whether cases are actually fulfilling the re-
quired set of constraints or not. In this section, we present algorithms to check
the conformance of an event log with respect to an MP-Declare model.

Note that, in order to keep this section clear and understandable, here we
just report the pseudocode of the algorithms without considering possible opti-
mizations. In Section 6, we discuss in detail the optimizations used to improve
the performance of the implemented conformance checker.

5.1. General Framework

The proposed approach for the conformance checking of MP-Declare con-
straints is based on several procedures. The main component iterates through all
traces of the input log and, for each constraint of the input MP-Declare model,
computes violations and fulfillments by calling the CheckTraceConformance

procedure. This procedure, described in Algorithm 1, takes as inputs a trace
and a constraint and generates the set of violating and fulfilling events for that
specific constraint in that specific trace. The basic idea of this procedure is to
iterate through all the events of the trace and, for each of them, call specific
template-dependent operations (lines 4, 6, 9, 12, 14).

The described algorithms might be seen as a general “framework” that can
be used for conformance checking with respect to different templates. Each
template that needs to be verified must properly define the following required
operations:

• opening : this procedure is called once per trace, before starting the anal-
ysis of the first event of the trace;

• fulfillments: this procedure is called for each event of the trace and is
supposed to return the set of fulfillments that have been observed so far
and the set of pending activations to remove;

• violations: this procedure is called for each event of the trace and is sup-
posed to return the set of violations that have been observed so far and
the set of pending activations to remove;
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Algorithm 1: CheckTraceConformance

Input: trace: a trace
c = 〈t, A, T, ϕa, ϕc, ϕτ 〉: a constraint

Output: Set of violating and fulfilling events

1 pending← ∅
2 fulfillments← ∅
3 violations← ∅
/* Opening operations */

4 t.opening()
5 foreach e ∈ trace do

/* Fulfillment check */

6 ∆f ,∆p ← t.fulfillment(e, trace, pending, fulfillments, T, ϕa, ϕc, ϕτ )
7 fulfillments← fulfillments ∪∆f

8 pending← pending \∆p

/* Violation check */

9 ∆v,∆p ← t.violation(e, trace, pending, violations, T, ϕc, ϕτ )
10 violations← violations ∪∆v

11 pending← pending \∆p

/* Activation check */

12 pending← pending ∪ t.activation(e,A, pending, ϕa)

13 end
/* Final check and closing operations */

14 ∆f ,∆v ← t.closing(pending, fulfillments, violations)
15 fulfillments← fulfillments ∪∆f

16 violations← violations ∪∆v

17 return violation, fulfillments

• activation: this procedure is called for each event of the trace and is
supposed to update the set of activations that have been observed so far
(i.e., whether the current event is a new activation or not);

• closing : this procedure is called once per trace, after all the events have
been analyzed. Possible new fulfillments or violations are returned.

In this paper, we illustrate the procedures for three templates, i.e., response,
alternate response, and chain response. We consider these three specifications
sufficiently representative in order to provide a clear idea of the capabilities
of our framework.3 In each procedure, given the set of all possible activities
A, we define a constraint as a tuple: c = 〈template, A, T, ϕa, ϕc, ϕτ 〉, where
template indicates which template the constraint is referring to, template ∈

3All the procedures for conformance checking based on MP-Declare have been implemented
and are publicly available (see Section 6).
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{existence, absence, choice, responded existence, . . . }; A ⊆ A is the nonempty
set of activations; T ⊆ A is the nonempty set of targets; ϕa and ϕc indicate,
respectively, the activation and the correlation condition; and ϕτ represents the
time condition.

Note that, in the proposed algorithms, we use this definition of constraint
just for readability purposes. This definition still reflects an MFOTL formula in
a straightforward manner. We also use functions verify(ϕa, A), verify(ϕc, A,B),
and verify(ϕτ , A,B). The first function evaluates ϕa with respect to the at-
tributes reported in A. The second function evaluates ϕc with respect to the
attributes defined in A and B. The third function compares the timestamps
attached to A and B in order to see whether ϕτ is satisfied or not. These func-
tions play an important role in the verification of constraints involving multiple
perspectives. In fact, through these functions the validity of the conditions on
data and timestamps is assessed. As already mentioned, each event recorded in
an event log brings a payload of attributes. In the description of the algorithms,
we use the πa(e) operator to get the value of an attribute a of an event e. For
example, we use πactivity(e) to select the activity name associated to e.

5.2. Template-Dependent Procedures

The first template we consider is response and the corresponding procedures
are reported in Algorithm 2. The opening procedure does nothing. The fulfill-
ment procedure checks whether the input event refers to a target. If this is the
case, then all pending activations that can be correlated to this target (in case
the time and the correlation conditions are satisfied) become fulfillments. The
activation procedure checks whether the input event refers to an activation of
the constraint and the activation condition ϕa is satisfied (in this case the event
has to be added to the set of pending activations). Violations are identified in
the closing procedure (the violation procedure is not used in this case). Here,
all pending activations that do not have a corresponding target when the entire
trace has been processed become violations.

Response

template.opening()

1 do nothing

template.fulfillment(e, trace, pending, fulfillments, T, ϕa, ϕc, ϕτ )

1 ∆f ,∆p ← ∅
2 if πactivity(e) ∈ T then
3 foreach act ∈ pending do
4 if verify(ϕc, act, e) and verify(ϕτ , act, e) then
5 ∆f ← ∆f ∪ {act}
6 ∆p ← ∆p ∪ {act}
7 end

8 end

9 end
10 return ∆f ,∆p
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Response (continued from previous page)

template.violation(e, trace, pending, violations, T, ϕc, ϕτ )

1 return ∅, ∅ /* Actual violations are not identified here */

template.activation(e,A, pending, ϕa)

1 if πactivity(e) ∈ A and verify(ϕa, e) then
2 return {e}
3 end
4 return ∅

template.closing(pending, fulfillments, violations)

1 return ∅, pending /* No fulfillment updates. All pending activations

are now violations */

Algorithm 2: Procedures for the response template.

The procedures for the alternate response template are reported in Algo-
rithm 3. In particular, opening defines a new data structure (possibleTargets)
that will be used by the other procedures. The fulfillment procedure starts
by checking whether the input event refers to an activation and the activation
condition is satisfied. If this is the case, the procedure checks whether there is
exactly one pending activation and at least one possible target. If this is the
case, if for at least one possible target the time and the correlation conditions
are satisfied, the pending activation becomes a fulfillment (fulfillment, lines 7-8).
If the activity referring to the input event is a target, the event is added to the
set of possible targets (fulfillment, line 15). The violation procedure also starts
by checking whether the input event refers to an activation and the activation
condition is satisfied. If this is the case, the procedure checks whether there
is exactly one pending activation. If this is the case, the pending activation
becomes a violation (the pending activation cannot be a fulfillment because, in
this case, the invocation of the fulfillment procedure moves it from the pending
set to the fulfillment set). The activation procedure checks whether the input
event refers to an activation and the activation condition is satisfied. In this
case, the set of possible targets is reset to the empty value and the event is
returned to be added to the set of pending activations. The closing procedure
verifies that if there is a pending activation, this activation can be correlated
at least to one possible target. If this is the case (if the time and the correla-
tion conditions are satisfied), then the activation becomes a fulfillment (closing,
line 8), otherwise it is marked as a violation (closing, line 12).

Alternate Response

template.opening()

1 define possibleTargets← ∅ as a data structure available throughout the entire
CheckTraceConformance algorithm
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Alternate Response (continued from previous page)

template.fulfillment(e, trace, pending, fulfillments, T, ϕa, ϕc, ϕτ )

1 ∆f ,∆p ← ∅
2 if πactivity(e) ∈ A and verify(ϕa, e) then
3 if |possibleTargets| ≥ 1 and |pending| = 1 then
4 act← element ∈ pending /* There is only one element */

5 foreach p ∈ possibleTargets do
6 if verify(ϕc, act, p) and verify(ϕτ , act, p) then
7 ∆f ← ∆f ∪ {act}
8 ∆p ← ∆p ∪ {act}
9 break /* It is possible to exit the loop */

10 end

11 end

12 end

13 end
14 if e ∈ T then
15 possibleTargets← possibleTargets ∪ {e}
16 end
17 return ∆f ,∆p

template.violation(e, trace, pending, violations, T, ϕc, ϕτ )

1 ∆v,∆p ← ∅
2 if πactivity(e) ∈ A and verify(ϕa, e) then
3 if |pending| = 1 then
4 act← element ∈ pending /* There is only one element */

5 ∆v ← ∆v ∪ {act}
6 ∆p ← ∆p ∪ {act}
7 end

8 end
9 return ∆v,∆p

template.activation(e,A, pending, ϕa)

1 if πactivity(e) ∈ A and verify(ϕa, e) then
2 possibleTargets← ∅
3 return {e}
4 end
5 return ∅
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Alternate Response (continued from previous page)

template.closing(pending, fulfillments, violations)

1 ∆f ,∆v ← ∅
2 if |pending| = 1 then
3 targetFound← false
4 act← element ∈ pending /* There is only one element */

5 foreach p ∈ possibleTargets do
6 if verify(ϕc, act, p) and verify(ϕτ , act, p) then
7 targetFound← true
8 ∆f ← ∆f ∪ {act}
9 end

10 end
11 if not targetFound then
12 ∆v ← ∆v ∪ {act}
13 end

14 end
15 return ∆f ,∆v /* Both fulfillment and violation are updated */

Algorithm 3: Procedures for the alternate response template.

The procedures for the chain response template are reported in Algorithm 4.
As for the response template, opening does nothing. The fulfillment and the
violation procedures verify whether there is exactly one element in the set of
pending activations. In this case, they check whether the input event refers to a
target and the time and correlation conditions are fulfilled. If this is the case, the
pending activation becomes a fulfillment, otherwise it is marked as a violation.
The activation procedure checks whether the input event refers to an activation
and the activation condition is satisfied (in this case the event has to be added
to the set of pending activations). The closing procedure checks whether there
is still a pending activation when the entire trace has been processed. In this
case, the pending activation becomes a violation.

Chain Response

template.opening()

1 do nothing
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Chain Response (continued from previous page)

template.fulfillment(e, trace, pending, fulfillments, T, ϕa, ϕc, ϕτ )

1 ∆f ,∆p ← ∅
2 if |pending| = 1 then
3 act← element ∈ pending // There is only one element

4 if πactivity(e) ∈ T and verify(ϕc, act, e) and verify(ϕτ , act, e) then
5 ∆f ← ∆f ∪ {act}
6 ∆p ← ∆p ∪ {act}
7 end

8 end
9 return ∆f ,∆p

template.violation(e, trace, pending, violations, T, ϕc, ϕτ )

1 ∆v,∆p ← ∅
2 if |pending| = 1 then
3 act← element ∈ pending // There is only one element

4 if πactivity(e) /∈ T or not verify(ϕc, act, e) or not verify(ϕτ , act, e) then
5 ∆v ← ∆v ∪ {act}
6 ∆p ← ∆p ∪ {act}
7 end

8 end
9 return ∆v,∆p

template.activation(e,A, pending, ϕa)

1 if πactivity(e) ∈ A and verify(ϕa, e) then
2 return {e}
3 end
4 return ∅

template.closing(pending, fulfillments, violations)

1 return ∅, pending /* No fulfillment updates. All pending activations

are now violations */

Algorithm 4: Procedures for the chain response template.

The algorithms for the existence and the choice templates are straightfor-
ward. The algorithms for the other templates specified in Table 2 can be very
easily derived from the ones described in this section. In particular, the al-
gorithms for the precedence, the alternate precedence and the chain precedence
are the same as the ones described for response, alternate response and chain
response, respectively. The only difference is that, for the precedence templates,
the traces in the input log have to be parsed from the end to the beginning.
Similarly, the algorithms for checking the negative templates are the same as
the ones described for the corresponding positive templates. In this case, every
fulfillment for a positive template becomes a violation for the corresponding
negative template and vice versa.

22



HashMap<

     String,

     HashMap<

          String,

          HashMap<

               String,

               Set<Integer>

>>>

Key: target 

Value: indexes of pending activations

Key: trace id

Key: activation

Figure 4: Java fragment with the type definition of the data structure storing the indexes of
pending activations for different response constraints in different traces.

6. Implementation and Optimizations

The entire approach has been implemented as a plug-in of the process mining
toolkit ProM called Declare Analyzer.4 In particular, the plug-in receives as
inputs an event log and a model, and evaluates the conformance of the log with
respect to the model. In the implementation of the tool, we devised and applied
several optimizations. The source code of the plug-in is available online.5 Here,
we mention some of the improvement strategies we implemented.

In Algorithm 1, one of the inputs is a constraint. However, in the actual
implementation, this procedure is not invoked for each constraint, but only once
for all constraints in the model that are instantiations of the same template.
We store in constant time access data structures, the information related to
all constraints instantiations of the same template thus reducing the number
of invocations of the algorithm. As an example, the data structure to store
pending activations for the response template is reported in Figure 4.

In addition, traces that do not contain any activation for the template un-
der examination are not taken into consideration, and, also, cases referring to
the same trace are analyzed only once. We would also like to mention that
the presented algorithms have been designed to exploit the multi-core technolo-
gies nowadays available (either local or distributed over several computational
nodes). Indeed, the processing of each trace is independent from all the others.
Also, the analysis of each template in the model is independent from all the
others. Therefore, it is possible to parallelize and distribute the analysis over
different computational nodes and drastically improve the performances.

7. Evaluation

In this section, we first investigate the correctness and the computational
complexity of the proposed algorithms. Then, we evaluate the efficiency of the

4The software can be downloaded from http://www.promtools.org/prom6.
5The source code can be downloaded from https://svn.win.tue.nl/trac/prom/browser/

Packages/DeclareAnalyzer/Trunk.
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proposed approach and its applicability to a real-life scenario.

7.1. Correctness

The proposed algorithms correctly check the conformance of the correspond-
ing MP-Declare templates. We investigate only the response template. However,
it is possible to derive similar proofs for all the other templates.

Consider the response constraint between activities a and b. Then, the con-
straint provided to the CheckTraceConformance (Algorithm 1) is c = 〈response,
{a}, {b}, ϕa, ϕc, ϕτ 〉. This constraint is fulfilled in a trace if, every time a occurs
with ϕa holding true, b occurs eventually after a with ϕτ and ϕc holding true.
In this proof, we analyze all the possible behaviors that are significant to check
the conformance of the considered constraint given its MFOTL semantics.

Algorithm 1, first, calls the opening procedure of response (Algorithm 2),
which does nothing. Then, it iterates over all the events of the trace. We can,
therefore, distinguish two macro situations, i.e., whether the trace contains an
activation of the considered constraint or not:

Case 1: the trace does not contain any instance of a (which is the only activa-
tion of the constraint). Then, pending is always empty, since the activation
procedure always returns the empty set (Algorithm 2, activation, line 4).
Because of that, in Algorithm 1, fulfillments and violations will always
be empty, since fulfillment iterates over pending (Algorithm 2, fulfillment,
line 3) and violation just returns the empty set. Finally, closing returns
pending, which is empty. The result is that violations and fulfillments
are both empty. This result is in line with the MFOTL semantics of the
constraint, i.e., the constraint is satisfied, but never activated in the given
trace.

Case 2: the trace contains an activation of the constraint (with ϕa holding
true). The iteration over the events of the trace (Algorithm 1, line 5) does
nothing until event e referring to the activation is reached. When such an
event is reached, the activation procedure (Algorithm 2, activation, line
2) produces the addition of the event to pending (Algorithm 1, line 12).
Then, the main iteration continues. At this stage, we can have two possible
behaviors, and, therefore, we have to distinguish two additional sub-cases.
The precondition holding for both these sub-cases is that pending already
contains event e referring to a:

Case 2.1: an instance of b occurs after a with ϕτ and ϕc holding true.
As previously said, when the main loop (Algorithm 1, line 5) reaches
the event referring to b, pending already contains event e referring
to a. The fulfillment procedure is called, and the event referring
to b is recognized as a target event (Algorithm 2, fulfillment, line
2). Therefore, fulfillment adds e to both ∆f and ∆p (Algorithm 2,
fulfillment, lines 5-6). These two sets are returned to Algorithm 1,
which, in lines 7-8, adds e to fulfillments and removes e from pending.
pending is now empty and, therefore, the result of the procedure is
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that the constraint is activated and fulfilled once. This result is in
line with the MFOTL semantics of the constraint.

Case 2.2: no instance of b occurs after a with ϕτ and ϕc holding true. In
this case, pending already contains event e referring to a, but the main
loop (Algorithm 1, line 5) never reaches a target event (Algorithm 2,
fulfillment, line 2), which is the condition of the fulfillment procedure
needed to convert pending activations into fulfillments. Therefore,
CheckTraceConformance exits the loop (Algorithm 1, line 13) with
pending still containing event e. The procedure closing is called and
returns pending (containing e), which is then added to violations (Al-
gorithm 1, lines 14, 16). Therefore, the procedure terminates return-
ing one violation. This result is in line with the MFOTL semantics
of the constraint.

7.2. Computational Complexity

From the computational complexity point of view, Algorithm 1 is called for
each trace in the input log and for each constraint in the input MP-Declare
model (i.e., |Log| · |Model| times) and its complexity is linear in the number of
events in each trace (|Log(t)|, for trace t). In particular, opening and closing
are called |Log| · |Model| times; fulfillment, violation, and activation are called
|Log| · |Model| ·

∑
t∈Log |Log(t)| times.

The complexity of the template-dependent procedures, instead, depends on
the actual template. In particular, we have the following complexities:

• Response: opening, violation, activation, and closing are constant; fulfill-
ment has linear complexity in the number of pending activations in the
current trace (which is at most the number of events in the trace);

• Alternate Response: opening, violation, and activation are constant; ful-
fillment and closing are linear in the number of possible targets in the
current trace (which is at most the number of events in the trace);

• Chain Response: all procedures require a constant amount of time.

7.3. Benchmarks

In order to gain some insights on the computational feasibility of our im-
plementation (RQ2), we run several tests in different possible scenarios. In
particular, we tested our implementation against logs with different sizes and
different trace lengths. We generated traces with 10, 20, 30, 40, and 50 events
and, for each of these lengths, we generated logs with 25 000, 50 000, 75 000,
and 100 000 traces. Therefore, in total, we used 20 logs. The number of events
contained in each log is reported in Table 3. In addition, we created 10 Declare
models. In particular, we created two models with 10 response constraints, one
only containing constraints on the control flow (without conditions on data and
time), and another one including multi-perspective constraints (with conditions
on time and data). We followed the same procedure to create models with 20,
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Number of log traces
25 000 50 000 75 000 100 000

E
v
e
n
ts

p
e
r

tr
a
c
e 10 250 000 500 000 750 000 1 000 000

20 500 000 100 0000 1 500 000 2 000 000
30 750 000 150 0000 2 250 000 3 000 000
40 1 000 000 2 000 000 3 000 000 4 000 000
50 1 250 000 2 500 000 3 750 000 5 000 000

Table 3: Number of events for each log.
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Figure 5: Execution times in milliseconds grouped based on the number of traces in the logs.
The plot on the left hand side refers to models with control flow constraints. The plot on
the right hand side refers to models with control flow, data and time constraints. Note the
different scales between the two graphs.

30, 40, and 50 constraints. Models and logs are publicly available (Burattin,
2015).

We checked each log against each model, and we repeated the procedure five
times in order to get the average execution times for each configuration. To
provide more accurate results, the times reported here are measured without
considering the time needed to generate the graphical visualization (we per-
formed the tests on a custom command-line version of ProM). All these tests
have been performed using two machines, with the following hardware configu-
rations: (i) 4 x Eight-Core Intel(R) Xeon(R) CPU E5-4640 0 @ 2.40GHz; (ii)
2 x Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz.

Figure 5 and Figure 6 provide a graphical representation of the average
execution times (and standard deviations) for the analysis of all models and
logs. In particular, in Figure 5, the execution times are grouped based on
the number of traces in the logs. The graph on the left-hand side reports the
execution times using models with control flow-based constraints, the one on the
right-hand side reports the execution times using multi-perspective constraints.
In Figure 6, the execution times are grouped based on the number of events in
each trace.

As the statistics clearly show, the time required to perform the analysis
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directly depends both on the number of events in each trace, and on the actual
size of the log. Moreover, the evaluation using models with data and time
constraints require a higher execution time. This is due to the execution time
required by the data validation engine for the evaluation of the data conditions.
Indeed, in order to process the activation and correlation conditions (expressed
in the algorithms with the verify function calls), we use the external tool JEval.6

To use the tool’s APIs, it is necessary to declare a set of variables and their
corresponding values. Then, JEval parses the given condition (which is provided
as a string), replaces the variables with the proper values, and computes the
actual boolean result. This procedure requires additional execution time.

In general, it is worthwhile noting that the most expensive configuration
(a model with 50 multi-perspective constraints, and a log with 100 000 traces
and 5 000 000 events) requires, on average, 255 369 milliseconds, i.e., about 4.2
minutes. This shows the applicability of the proposed approach to very large
datasets.

Finally, we compared our approach with the approaches reported in (van der
Aalst et al., 2005), (Burattin et al., 2012), and (de Leoni et al., 2014a), when us-
ing control flow-based constraints. In particular, we executed tests using models
with 10, 20, 30, and 40 constraints. We used logs with 10, 20, 30, and 40 events
per trace and 25 000, 50 000, 75 000, and 100 000 traces. We repeated each test
five times. Figure 7 reports the average execution time for each configuration.
For these benchmarks we used a Windows 7 system equipped with an Intel Core
i7-2620M CPU @ 2.70GHz and 8GM RAM. As the tables show, the execution
times needed using the approach described in this paper are comparable with
the ones needed using the approach described in (van der Aalst et al., 2005) for
small models and small logs containing short traces. However, for larger models

6See http://jeval.sourceforge.net/ for more information.
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25k 50k 75k 100k 25k 50k 75k 100k 25k 50k 75k 100k 25k 50k 75k 100k
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(a) Average execution times needed using the approach described in this paper.
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(b) Average execution times needed using the approach described in (van der Aalst et al., 2005).
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(c) Average execution times needed using the approach described in (Burattin et al., 2012).

Figure 7: Execution times needed to check control flow-based constraints using three different
conformance checking approaches available in the literature.

and logs, our approach outperforms the one described in (van der Aalst et al.,
2005). To check the conformance of a log containing 100 000 traces of length 40
against a model containing 40 constraints, the former requires about 1 minute
and 30 seconds, the latter about 3 minutes and 30 seconds. In addition, our
approach outperforms the approach described in (Burattin et al., 2012): using
the smallest logs, our approach is more than 5 times faster, and to process the
largest log, the approach described in (Burattin et al., 2012) requires more than
3 hours of processing (compared to 1 minute and 30 seconds required by our ap-
proach). We do not report benchmarks for the approach described in (de Leoni
et al., 2014a), since it takes 26 minutes to check the conformance of 500 traces
against 20 constraints (the smallest log considered in our tests contains 25 000
traces).

7.4. Application to a Dutch Financial Institution

Through the proposed approach, it is possible to effectively detect violations
of multi-perspective constraints (RQ1). The log we used to support this claim is
a real-life log provided for the BPI challenge 2012 and taken from a Dutch finan-
cial institute (3TU Data Center, 2012). The event log pertains to an application
process for personal loans or overdrafts.7 It contains 262 200 events distributed
across 36 event classes and includes 13 087 traces. The amount requested by

7See (Bautista et al., 2012) for the English translation and a detailed description of the
event names.
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the customer is indicated in the case attribute AMOUNT REQ. In addition, the log
contains the standard XES attributes for events (e.g., activity name, timestamp,
resource).

We have evaluated the conformance of this log with respect to the constraints
shown in Table 4. These constraints have not been provided by the financial
institute, but they are realistic and derived by the analysis reports submitted

Table 4: Reference constraints used to analyze the log from the BPI challenge 2012.

Id Constraint 1st param. 2nd param.
Activation
condition

Correlation
condition

Time
condition

1 Response A SUBMITTED A ACCEPTED - - -

2 Response A SUBMITTED A ACCEPTED - - 0,24,h

3 Response A SUBMITTED A ACCEPTED A.AMOUNT REQ

>= 10 000

- -

4 Response A SUBMITTED A ACCEPTED A.AMOUNT REQ

< 10 000

- -

5 Response W Valideren

aanvraag-SCHEDULE

W Valideren

aanvraag-START

- - -

6 Response W Valideren

aanvraag-SCHEDULE

W Valideren

aanvraag-START

- A.org:resource

!=

T.org:resource

-

7 Response W Valideren

aanvraag-SCHEDULE

W Valideren

aanvraag-START

- A.org:resource

!=

T.org:resource

0,7,d

8 Response W Valideren

aanvraag-SCHEDULE

W Valideren

aanvraag-START

- A.org:resource

!=

T.org:resource

0,24,h

9 Response W Valideren

aanvraag-START

W Valideren

aanvraag-COMPLETE

- - -

10 Response W Valideren

aanvraag-START

W Valideren

aanvraag-COMPLETE

- A.org:resource

==

T.org:resource

-

11 Response W Valideren

aanvraag-START

W Valideren

aanvraag-COMPLETE

- A.org:resource

==

T.org:resource

0,1,h

12 Response W Valideren

aanvraag-START

W Valideren

aanvraag-COMPLETE

- A.org:resource

==

T.org:resource

0,15,m

Table 5: Conformance checking results using the log from the BPI challenge 2012.

Id Act.no. Viol.no. Fulfill.no. Avg.act.sparsity Avg.viol.ratio Avg.fulfill.ratio

1 13 087 7 974 5 113 0.8596 0.6093 0.3907
2 13 087 9 036 4 051 0.8596 0.6905 0.3095
3 6 847 3 601 3 246 0.9585 0.5259 0.4741
4 6 240 4 373 1 867 0.9211 0.7008 0.2992
5 5 023 51 4 972 0.9909 0.0102 0.9898
6 5 023 236 4 787 0.9909 0.047 0.953
7 5 023 263 4 760 0.9909 0.0524 0.9476
8 5 023 2 897 2 126 0.9909 0.5767 0.4233
9 7 891 2 7 889 0.9863 0.0003 0.9997
10 7 891 6 7 885 0.9863 0.0008 0.9992
11 7 891 228 7 663 0.9863 0.0289 0.9711
12 7 891 3 355 4 536 0.9863 0.4252 0.5748
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Table 6: Execution times using the log from the BPI challenge 2012.

Id Avg.execution time (milliseconds)

1 2 772
2 3 220
3 3 261
4 3 205
5 3 196
6 3 100
7 3 212
8 3 146
9 2 176
10 3 210
11 3 241
12 3 258

to the BPI challenge. Some of the considered constraints involve some spe-
cific transactional states (a.k.a. event types) of an activity. For example, the
parameters specified for constraint 5-8 are W Valideren aanvraag-SCHEDULE

and W Valideren aanvraag-START. When an event type is not specified, like in
the case of constraint 1-4, the event type considered by default is “complete”.
These examples show that constraints can not only be used to identify improper
process executions, but also to highlight (positive or negative) deviances with
respect to some properties of interest.

For example, with constraint 1, we want to understand how many submitted
applications are eventually accepted. As shown in Table 5, there are 13 087
submissions of which only 5 113 are eventually accepted (around 39%). Using

(a) Example of fulfillment W Valideren

aanvraag-START at position 35.
(b) A correlated target W Valideren

aanvraag-COMPLETE at position 36 executed
by the same resource.

Figure 8: Example of fulfillment for constraint 11.
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(a) Example of violation W Valideren

aanvraag-START at position 37.
(b) A possible target W Valideren

aanvraag-COMPLETE occurs more than 1
hours after.

Figure 9: Example of violation for constraint 11; W Valideren aanvraag-COMPLETE occurs
outside the required time interval (too late).

(a) Example of fulfillment W Valideren

aanvraag-START at position 39.
(b) Corresponding target executed by the
same resource.

Figure 10: Example of fulfillment for constraint 11; W Valideren aanvraag-START at position
39 is followed by W Valideren aanvraag-COMPLETE within the required time interval.

constraint 2, we can understand that the majority of these accepted applications
(around 79%) are accepted in less than 24 hours from the submission. Using

31



constraints 3 and 4, we can understand how the requested amount affects the
application. In particular, when the requested amount is lower than 10 000 the
acceptance rate is almost 30%. The acceptance rate is higher if the requested
amount is greater or equal to 10 000 (almost half of the applications is accepted
in this case).

With constraints 5-12, we analyze the validation of the applications. With
constraint 5, we can see that almost 99% of the scheduled validations are even-
tually started. In 95% of the cases, the resource that schedules the validation is
not the same resource that starts this activity (see constraint 6). In addition,
in around 94% of the cases, a scheduled validation is started within 7 days from
the scheduling (constraint 7) and in almost half of the cases the validation is
started only 24 hours after the scheduling (constraint 8). Constraint 9 indicates
that almost 100% of the validations that have been started are also completed,
and almost in all the cases the resource that starts the validation is the same
resource that completes this activity (see constraint 10). In 97% of the cases,
the validation is done in at most 1 hour (constraint 11), and in more than half
of the cases it is completed in less than 15 minutes (constraint 12).

In Figure 8 and 10, we show two fulfillments for constraint 11 (the activa-
tions with the correlated targets). Figure 10 shows a violation for the same
constraint. This type of violations could not be identified by control flow-based
conformance checking approaches. The above remarks provide an answer to
research questions RQ1.1 and RQ1.2.

In Table 6, we show the execution times (averaged over 5 runs) needed for
checking the constraints.8 For each of them, the execution time is low (between
2 and 3 seconds on average). This confirms the applicability of our tool to
real-life logs.

8. Conclusion and Future Work

In this work, we propose an approach for checking the conformance of event
logs with respect to MP-Declare models. MP-Declare is an extension of the
declarative process modeling language Declare that allows the modeler to spec-
ify constraints over the data associated to the control flow and over the “time
dimension” of a business process. In particular, we describe and discuss in de-
tail an algorithmic framework for conformance checking based on MP-Declare.
Our proposal has been implemented in the process mining tool ProM. The im-
plemented software covers the entire set of MP-Declare templates. In addition,
the conformance checker can also be used with standard Declare. An evaluation
of the tool has been carried out using both real-life and synthetic logs. The
evaluation shows the applicability of our implementation to real-life settings. In

8All the experiments described in this section have been performed on a machine with an
Intel(R) Core(TM) i7-2670QM CPU @ 2.20GHz (limiting the execution to just one core), 8
GB of RAM and the Oracle Java virtual machine installed on a GNU/Linux Ubuntu operating
system.
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particular, it shows that the tool provides more fine-grained feedback than con-
trol flow-based conformance checking approaches and allows the user to identify
violations that cannot be identified by taking into consideration only the control
flow perspective. In addition, the provided benchmarks show the applicability
of the tool to large logs and models.

The current graphical syntax for MP-Declare is similar to the one used in
(Maggi et al., 2013a). However, an evaluation of the usability and effectiveness
of the graphical notation would require a cognitive dimensions-based experi-
mentation, which is out of the scope of this paper and is an avenue for future
work. In addition, although it is extremely important to recognize deviances
a-posteriori, in some particular contexts, it would be also useful to detect viola-
tions on-the-fly as they occur. To this aim, in the near future, we are planning
to make the proposed approach suitable to be used in online settings. For this
type of analysis, it becomes useful to identify violations deriving from the in-
terplay of two or more constraints for early detection of violations. To this aim,
the constraints cannot only be checked independently of one another, but also
as a conjunction of formulas. Also, we plan to improve both the algorithmic
implementation and the visual representation of the results. For example, the
current execution time can be improved by identifying implicit dependencies be-
tween constraints, thus providing, in those situations, answers in less time (e.g.,
if we recognize that a constraint does not hold, we could immediately state that
stronger constraints cannot hold as well). The usability and effectiveness of the
visual representation of the results needs to be validated with users. Indeed,
it represents a critical and fundamental issue for the real-world deployment of
our proposed approach. Such a representation should guide the final users to-
wards an easy and as-informative-as-possible identification of problems in the
execution of a business process.
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