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Abstract

The ability to know in advance the trend of running process instances, with
respect to different features, such as the expected completion time, would al-
low business managers to timely counteract to undesired situations, in order to
prevent losses. Therefore, the ability to accurately predict future features of
running business process instances would be a very helpful aid when managing
processes, especially under service level agreement constraints. However, mak-
ing such accurate forecasts is not easy: many factors may influence the predicted
features.

Many approaches have been proposed to cope with this problem but all of
them assume that the underling process is stationary. However, in real cases
this assumption is not always true. In this work we present new methods for
predicting the remaining time of running cases. In particular we propose a
method, assuming process stationarity, which outperforms the state-of-the-art
and two other methods which are able to make predictions even with non-
stationary processes. We also describe an approach able to predict the full
sequence of activities that a running case is going to take. All these methods
are extensively evaluated on two real case studies.

Keywords: process mining, prediction, remaining time, machine learning

1. Introduction

An increasing number of companies are using Process Aware Information
Systems (PAIS) to support their business. All these systems record execution
traces, called event logs, with information regarding the executed activities. In
typical scenarios, these traces do not only contain which activities have been
performed, but also additional attributes.

The extraction of useful information out of large amount of data is the main
challenge of the data mining field. However, recently, a new topic branched
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off data mining: process mining [1, 2]. This latter case expects that the ana-
lyzed data are specifically referring to executions of business processes, and this
assumption is made throughout the analysis phases. Frequently, under the um-
brella of the term “process mining”, three main activities are distinguished: the
discovery of models, such as control-flow, describing the actual process under-
going (namely, process discovery); the assessment of the conformance of a given
event log with respect to a given process model (namely, conformance check-
ing); and the extension of existing process models with additional information
(namely, process enhancement). However, apart from these classical activities,
it is also possible to exploit the event log in order to create predictive models,
i.e., models that are useful to predict future characteristics of incomplete process
instances.

In general, it is useful to distinguish two types of process mining techniques,
according to when the analysis takes place: (i) a-posteriori; and (ii) at runtime.
A-posteriori, or “off-line”, techniques use a finite portion of historical data to ex-
tract knowledge out of it. Runtime, or “on-line”, approaches, on the other hand,
give information as long as the business process is running. It is more difficult
to define approaches belonging to the latter category: the process generating
the data or the frequency of events emission, may be subject to modification
or drifts (which may also be seasonable). To tackle this on-line problems, it is
therefore necessary to use tools able to adapt to new or unobserved scenarios.

One of the most challenging task in process mining is prediction. Obviously,
predictions are useful only if the object of such predictions have not been ob-
served yet. For this reason, prediction per se is, inherently, a task performed on
incomplete traces, at runtime. Moreover, the ability to predict the evolution of
a running case is difficult also due to the peculiarities of each process instance
and, because of the “human factor”, which might introduce strong flexibility.

The literature proposes plenty of works aiming at improving business pro-
cesses and providing support for their execution. One of the first work that
analyzes the execution duration problem is described in [4]. This particular
work concentrates on cross-trained resources, but no detailed prediction algo-
rithm is reported. van Dongen et al., in [5, 6], describe a prediction model which
uses all the data recorded in an event log. This approach uses non-parametric
regression in order to predict the “cycle time” of running process instances.
The recommendation system, described by van der Aalst et al. in [7], is built
using historical information, and is able to predict the most likely activity that
a running case is going to perform. The TIBCO Staffware iProcess Suite [8] is
one of the first commercial tools that predicts the cycle time of running process
instances. This tool simulates the complete process instance without analyzing
historical data. The main building blocks of the prediction are parameters, pro-
vided by the users at “build time”, such as the process routing or the expected
duration of activities.

Recently, more sophisticated methods have been proposed, to mention some
of these: transition system-based models [9, 12, 19, 16], probabilistic models
[13, 20], queue theory based [17, 18] and decision tree based approaches [15, 14].
We will discuss these methods in more details in the next section.

In this work, we focus on predicting the remaining time of running cases.
We decided to ground our approach not only on the control flow, but also
on additional data that we could observe. Moreover, the system we present
is also capable of dealing with unexpected scenarios and evolving conditions.
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With respect to our seminal work [16], here we propose an improved version
of that method and we also propose two novel approaches able to overcome its
limitations. In particular, we are going to define two different scenarios: in the
first one we assume the process has a well defined static workflow, the same
assumption made in [16], while in the latter we remove such assumption and
the process is considered dynamic, e.g., the process has seasonal drift. We will
show that all the proposed approaches improve state-of-the art performances in
the first scenario and one of them are also able to deal with dynamic processes.
We also leverage one of these models to predict the future sequence of activity
of a running case. We assess the prediction accuracy of our methods against
the state-of-the art ones using two real-life case studies concerning a process of
an Italian software company and the management of road-traffic fines by a local
police office of an Italian municipality.

The remainder of this paper is structured as follows: Section 2 reviews re-
cent works concerning prediction tasks in the framework of process mining. Sec-
tion 3 gives some essential background on process mining and machine learning
concepts used throughout the paper, while Section 5 describes the prediction
approaches. Section 6 shows the implementation and the experimental results
and finally Section 8 briefly summarizes the presented content and concludes
the paper.

2. Related Work

The first framework focused on the time perspective have been proposed
by Song et al., in [9]. They describe a prediction approach which extracts a
transition system from the event log and decorates it with time information
extracted from historical cases. The transition system consists in a finite state
machine built with respect to a given abstraction of the events inside the events
log. The time prediction is made using the time information e.g., mean duration
of specific class of cases) inside the state of the transition system corresponding
to the current running instance. The work presented in [10] considers the data
perspective in order to identify SLAs (Service Level Agreement) violations. In
this work, authors try to estimate the amount of unknown data, in order to
improve the quality of the final prediction. The actual forecast is built using a
multilayer perceptron, trained with the Backpropagation algorithm. Two works
by Folino et al. [11, 12] report an extended version of the technique described
in [9]. In particular, they cluster the log traces according to the corresponding
“context features” and then, for each cluster, they create a predictive model
using the method described in [9]. The clustering phase is performed using
predictive clustering trees. In order to propose a forecast, the approach clusters
the new running instance and then uses the model belonging to the specific
cluster. One of the weaknesses of these methods based on [9] is that they assume
a static process, where the event log used for the training phase contains all the
possible process behaviours. Unfortunately, in real life cases this assumption
is usually not valid. [13] reports an approach which uses the Instance-specific
Probabilistic Process Models (PPM) and is able to predict the likelihood of
future activities. Even though the method does not provide a time prediction,
it gives to the business managers useful information regarding the progress of
the process. This work also shows that the PPM built is actually Markovian.
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Ghattas et al., in a recent work [14], exploit Generic Process Model and decision
trees, based on the process context, to provide decision criteria defined according
to the actual process goals. In [15], de Leoni et al. propose a general framework
able to find correlation between business process characteristics. In this work
they manipulate the event log in order to enrich it with derived information and
then generate a decision tree in order to discover correlations. In particular,
one of the correlation problem suggested here is the forecast of the remaining
time of running case. Being based on decision trees, numeric values need to be
discretized and this lower the accuracy of the method. For this reason, they
do not provide any prediction example. Finally, in [16], Polato et al. show an
approach based on [9] in which the additional attributes of the events are taken
into account in order to refine the prediction quality. This method exploits the
idea of annotating a transition system (presented in [9]) adding machine learning
models, such as Näıve Bayes and Support Vector Regressor. The experimental
results show how the additional attributes can influence positively the prediction
results.

In this paper we propose two new approaches based on Support Vector Re-
gression and we discuss their strengths and their weaknesses comparing with
the approaches presented in [9]. In particular we emphasize in which scenario
an approach is better then the others and why.

Approaches coming from different areas can also be used to achieve similar
results. For example, queue theory [17, 18] and queue mining can be seen as a
very specific type of process mining, and recent works are starting to aim for
similar prediction purposes [19]. In this particular case, authors decided to focus
on the delay prediction problem (i.e., providing information to user waiting in
lines, in order to improve customer satisfactions). The method presented here is
based on the construction of an annotated transition system. Such model is then
used to make delay predictions using simple averages or non-linear regression
algorithms. They also show other methods based on queue mining techniques.
Even if this approach concerns making predictions on the time perspective, the
slant is totally different and the goal is more narrow with respect to the aim of
the approach we propose in this work. Another example of prediction-focused
paper has recently been published by Rogge-Solti and Weske [20]. Authors,
in this case, focused on the prediction of the remaining time, in order to avoid
missing deadlines. In this case, however, a Petri net representation of the process
model is needed. In the work we present, we are going to relax this assumption
since we will solely rely on our log (and a transition system, built starting from
it).

3. Background

This section describes the basic notations and definitions necessary to un-
derstand our approach.

3.1. Preliminaries

A multiset M (also known as bag or m-set) [21] is a generalization of set
in which the elements may occurs multiple times, but these are not treated as
repeated elements. It is formally defined as a function M : A → N+ such that
for each a ∈ A,M(a) > 0. The set A is called the root set because an element
a is contained into the m-set M , a ∈m M , if a ∈ A.
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The cardinality of a multiset M : A→ N+, denoted by #M , is equal to the
sum of the multiplicity of its elements, #M =

∑
a∈AM(a). We call B(A) : A→

N the set of multiset over a finite set A, i.e., X ∈ B(A) is a m-set.
Given two multisets M ∈ A→ N+,M ′ ∈ B → N+ the notions of intersection

and disjoint union are the following (to ease the readability we assume that
X(c) = 0 if c /∈ Dom(X)):

• Intersection:
M = X CX ′ = {(A ∩ B)→ N+ | ∀ c ∈ A ∩ B, M(c) = min(X(c), X ′(c))}

• Disjoint Union:
M = X ]X ′ = {(A ∪ B)→ N+ | ∀ c ∈ A ∪ B, M(c) = X(c) +X ′(c))}

Let us now define the concept of sequence. Given a set A, a finite sequence
over A of length n is a mapping s ∈ S : ([1, n] ⊂ N)→ A, and it is represented
by a string, i.e., s = 〈s1, s2, . . . , sn〉. Over a sequence s we define the following
functions:

• selection operator (·): s(i) = si, ∀ 1 ≤ i ≤ n;

• hdk(s) = 〈s1, s2, . . . , smin(k,n)〉;

• tlk(s) = 〈sw, sw+1, . . . , sn〉 where w = max(n− k + 1, 1);

• |s| = n;

• s ↑ A, is the projection of s onto some set A, e.g.,
〈a, b, b, c, d, d, d, e〉 ↑ {a, d} = 〈a, d, d, d〉;

• set(s) = {si | si ∈ s}, e.g., set(〈a, b, b, c, d, d, d, e〉) = {a, b, c, d, e}.

3.2. Event Logs

Process mining techniques can extract information from event logs (Table 1).
Usually, these techniques assume that event logs are well structured, in partic-
ular, they assume that each event of a business process is recorded and it refers
to an actual activity of a particular case. Even other additional information
may be required by a process mining algorithm, such as the originator of an ac-
tivity or the timestamp. Nowadays, many companies are using softwares which
keep tracks of the business process execution in the form of event logs (e.g.,
transaction logs, databases, spreadsheets, etc).

In this section we define some useful process mining concepts which we will
use throughout the paper. First of all, we give the basic definition of event,
trace and event log.

Definition 3.1 (Event). An event is a tuple e = (a, c, t, d1, . . . , dm), where
a ∈ A is the process activity associated to the event, c ∈ C is the case id, t ∈ N
is the event timestamp (seconds since 1/1/19701) and d1, . . . , dm is a list of
additional attributes, where ∀ 1 ≤ i ≤ m, di ∈ Di.
We call E = A× C × T × D1 × · · · × Dm the event universe.

1We assume this representation according to the Unix epoch time.
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Case Id Timestamp Resource Activity Category Amount

65923 20-02-2002:11.11 Jack A - 1000
65923 20-02-2002:13.31 Jack B Gold 1000
65923 21-02-2002:08.40 John C Gold 900
65923 22-02-2002:15.51 Joe F Gold 900

65924 19-02-2002:09.10 Jack A - 200
65924 19-02-2002:13.22 John B Standard 200
65924 20-02-2002:17.17 John D Standard 200
65924 21-02-2002:10.38 Joe F Standard 200

65925 25-02-2002:10.50 Jack A - 850
65925 25-02-2002:13.01 John B Gold 850
65925 25-02-2002:16.42 Joe E Gold 500
65925 26-02-2002:09.30 Joe F Gold 500

Table 1: Example of an event log fragment with events sorted using their Timestamp and
grouped by Case Id.

Over an event e we define the following projection functions: πA(e) = a,
πC(e) = c, πT (e) = t and πDi(e) = di,∀ 1 ≤ i ≤ m. If e does not contain the
attribute value di for some i ∈ [1,m] ⊂ N, πDi(e) =⊥. In the remainder of this
paper we will call the number of additional attribute m as |D|.

Definition 3.2 (Trace, Partial Trace). A trace is a finite sequence of events
σc = 〈e1, e2, . . . , e|σc|〉 ∈ E∗ such that ∀ 1 ≤ i ≤ |σc|, πC(ei) = c ∧ ∀ 1 ≤
j ≤ |σc|, πT (σc(j)) ≤ πT (σc(j + 1)). We define a partial trace of length k
as σkc = hdk(σc), for some k ∈ [1, |σc|] ⊂ N. We call Σ the set of all possible
(partial) traces.

While a trace corresponds to a complete process instance, i.e., an instance
which is both started and completed; a partial trace represents a process instance
which is still in execution and hence it has not completed yet. Over a trace
σc = 〈e1, e2, . . . , e|σc|〉 we define the following projection functions: ΠA(σc) =
〈πA(e1), πA(e2), . . . , πA(e|σc|)〉, ΠT (σc) = 〈πT (e1), πT (e2), . . . , πT (e|σc|)〉 and
ΠDi(σc) = 〈πDi(e1), πDi(e2), . . . , πDi(e|σc|)〉 for all 1 ≤ i ≤ |D|.

Let us now define the concept of event log as in [9].

Definition 3.3 (Event log). An event log L is a set of traces, L = {σc | c ∈
C} such that each event appears at most once in the entire log, i.e., ∀σ1, σ2 ∈
L, σ1 6= σ2 : set(σ1) ∩ set(σ1) = ∅.

3.3. Transition System

With the definitions given in the previous subsections we can now charac-
terize the concept of transition system and how to construct it starting from an
event log.

A transition system is one of the simplest process modeling notations, it
consists of states and transitions where each transition connect two states (not
necessarily different). A transition system is also referred as a Finite-State
Machine (FSM). From a mathematical point of view, it can be seen as a directed
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graph in which every possible path from the initial state to the accepting ones
represents a possible behavior of the underlying process.

Formally, it is defined as follows:

Definition 3.4 (Transition System (TS)). A transition system is a triplet
TS = (S,A, T ), where S is the set of states, A ⊆ A is the set of activities and
T ⊆ S × A× S is the set of transitions. Sstart ⊆ S is the set of initial states,
and Send ⊆ S is the set of final (accepting) states.

A walk, in a transition system, is a sequence of transitions 〈t1, t2, . . . , tn〉
such that t1 = (s1 ∈ Sstart, e, s′1), tn = (sn, e, s

′
n ∈ Send) and ∀ 1 < h < n, th =

(sh, e, sh+1). Given a state s ∈ S, it is possible to define the set of reachable
states from s as: s• = {s′ ∈ S | ∃t ∈ T, ∃e ∈ E s.t. t = (s, e, s′)}.

According to van der Aalst et al. [9], to construct a transition system which
maps each partial trace in the log to a state, we need the so called state and
event representation functions.

Definition 3.5 (State representation function). Let Rs be the set of pos-
sible state representations, a state representation function f state ∈ Σ→ Rs is a
function that, given a (partial) trace σ returns some representation of it (e.g.,
sequences, sets, multiset over some event properties).

Definition 3.6 (Event representation function). Let Re be the set of pos-
sible event representations, an event representation function fevent ∈ E → Re
is a function that, given an event e produces some representation of it (e.g.,
projection functions over e ∈ E: πA(e), πT (e)).

Choosing the right functions f state and fevent, also referred to as abstrac-
tions, is not a trivial task [22, 9]. A conservative choice (e.g., no abstrac-
tion: f state(σc) = σc, f

event(e) = e) can lead to a transition system which does
overfit the log L, because the state space becomes too large and specific. An
aggressive choice (e.g., f state(σc) = {σc(|σc|)}), instead, can lead to a transi-
tion system that overgeneralizes the log L, allowing too much behaviors. In
this latter case the transition system is underfitting L. Some possible good
choices for f state and fevent are described and discussed in [22] and [9]. A
common event abstraction is fevent(e) = πA(e), which maps an event onto
the name of the activity, while commons state abstractions are: the set ab-
straction, i.e., f state(σc) = {πA(e) | e ∈ σc}, the multiset abstraction, i.e.,
f state(σc) = {(a,m) | a = πA(e)∧m = |ΠA(σc) ↑ {a}|} and the list abstraction,
i.e., f state(σc) = 〈πA(σc(1)), . . . , πA(σc(|σc|))〉.

Using these two functions fevent and f state, it is possible to define a (la-
beled) transition system where states correspond to prefixes of traces in the
log mapped to some representations using f state, and transitions correspond to
representation of events through fevent.

Definition 3.7 (Labeled Transition System (LTS)). Given a state repre-
sentation function f state, an event representation function fevent and an event
log L, we define a Transition System as LTS = (S,E, T ), where:

• S = {f state(hdk(σ)) | σ ∈ L ∧ 0 ≤ k ≤ |σ|} is the state space;

• E = {fevent(σ(k)) | σ ∈ L ∧ 1 ≤ k ≤ |σ|} is the set of event labels;
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• T (⊆ S × E × S) = {f state(hdk(σ)), fevent(σ(k + 1)), f state(hdk+1(σ))) |
σ ∈ L ∧ 0 ≤ k < |σ|} is the transition relation.

Sstart = {f state(〈〉)} is the set with the unique initial state, and Send = {f state(σ) |
σ ∈ L} is the set of final (accepting) states.

We say that a trace is compliant with the transition system if it corresponds
to a walk from si ∈ Sstart to se ∈ Send. We also call a trace σ non-fitting with
respect to a transition system if f state(σ) /∈ S.

A straightforward method for constructing a transition system, given a log L,
is the following: for each trace σ ∈ L, and for each 1 ≤ k ≤ |σ|, we create, if does
not exist yet, a new state f state(hdk(σ)). Then, through a second iteration over
k, 1 ≤ k < |σ|, we create, if does not exist yet, a new transition fevent(σ(k+1)) |

f state(hdk(σ))
fevent(σ(k+1))−−−−−−−−−→ f state(hdk+1(σ)). Algorithm 1 shows a pseudocode

of the method just described, while Figure 1 depicts an example of a transition
system extracted from the log fragment reported in Table 1.

Algorithm 1: Construction of a Transition System

Input: L: event log; f state: state representation function; fevent: event
representation function

Output: TS: transition system

1 E, T ← ∅
2 S ← {f state(〈〉)} . initialize with the start state

3 foreach σ ∈ L do
4 for k ← 1 to |σ| do
5 if s = f state(hdk(σ)) /∈ S then
6 S ← S ∪ {s} . add a new state if necessary

7 end

8 end

9 end

10 foreach σ ∈ L do
11 for k ← 0 to |σ| − 1 do

12 s← f state(hdk(σ))
13 e← fevent(σ(k + 1))

14 s′ ← f state(hdk+1(σ)))

15 if e /∈ E then
16 E ← E ∪ {e}
17 end

18 if t = (s, e, s′) /∈ T then
19 T ← T ∪ {t} . add a new transition if necessary

20 end

21 end

22 end
23 TS← (S,E, T )
24 return TS
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s0{} s1{A} s2{B} s3{D}

s4{C}

s5{E}

s6{F}
A B

C

D

E

F

F

F

Figure 1: Example of a transition system extracted from a log containing three trace
types 〈A,B,C, F 〉, 〈A,B,D, F 〉 and 〈A,B,E, F 〉, with fevent(e) = πA(e) and f state(σ) =
{fevent(σ(|σ|))}. The state s0 is the initial state, while s6 is the accepting (i.e., final) state.
The notation s1{A} means that the state s1 has a state representation equals to {A}. Each
transition is labeled by the corresponding event representation value.

4. Machine Learning Background

This section provides the fundamental machine learning concepts required
throughout the paper.

4.1. Näıve Bayes Classifier

Classification is a machine learning task that consists in predicting category
membership of data instances. More formally, given a “concept” F : X → Y
which maps elements of the domainX into a range Y = {y1, y2, . . . , ym} (i.e., the
possible categorizations), the classification task consists in learning a function
F̃ which constitutes a good approximation of F .

Näıve Bayes (NB) [23] is a probabilistic classifier which is based on the ap-
plication of Bayes’ theorem. This classifier belongs to the family of the so called
supervised algorithms. These algorithms need a set of pre-classified instances in
order to learn how to classify new, unseen, instances.

Let ~x = (x1, x2, . . . , xn) ∈ X be an n-dimensional vector. From a proba-
bilistic point of view, the probability that ~x belongs to a category yi ∈ Y is
given by the Bayes’ theorem: P (yi | ~x) = P (yi)P (~x | yi)/P (~x), where P (yi) is
the a-priori probability of yi and P (~x) is the a-priori probability of ~x. The
estimation of the conditional probability P (~x | yi) can be very hard to compute,
because of the number of possible ~x may be very large. In order to simplify
this problem, we can assume that the components xi of the vector ~x (viewed
as random variables) are conditionally independent each other given the target
information yi. With this assumption, P (~x | yi) can be easily computed by this
product

∏n
k=1 P (xk |yi). However, the independence assumption is quite strong

and in many cases it does not hold. This is why this method is usually named
näıve.
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To get the classification of the vector ~x, we have to find out the maximum a
posteriori (MAP) class yMAP :

yMAP = arg max
y∈Y

P (y | x1, x2, . . . , xn) (1)

= arg max
y∈Y

P (y)

n∏
k=1

P (xk | y). (2)

It is worth to notice that in (2), if one (or more) probability P (xk | y) is zero
the whole product is equal to zero. This undesirable situation can be avoid
applying the Laplacian (or additive) smoothing [23] to the conditional proba-
bilities P (xk | y). Sometimes, it is necessary to get not only the MAP class,
but the probability distribution of the whole category. This can be compute by
P (y)

∏n
k=1 P (xk | y)/P (x1, . . . , xn) for all y ∈ Y .

The training phase of this method consists in the collection of the statistics,
from the training set, necessary to calculate yMAP. The classification is simply
the application of yMAP (or the class distribution) over the input vectors.

4.2. Support Vector Regression

Regression analysis is a statistical process for estimating the relationships
among variables. This approach is widely used for prediction and forecasting.
One of the most recently proposed approaches is the Support Vector Regression
(SVR) [24, 25, 26], which is, as the name suggests, based on Support Vector
Machines (SVM).

Let Tr = {(~x1, y1), (~x2, y2), . . . , (~xl, yl)} ∈ X×R be the training data, where
X ≡ Rn, for some n ∈ N+, denotes the space of the input vectors. In ε-SVR
[25], the goal is to find a function f(~x) that deviates from the target yi by at
most ε, for all the training instances. In addition to that, the function f has to
be as “flat” as possible. Let’s start considering the linear case, in which f has
the following form:

f(~x) = 〈~w, ~x〉+ b with ~w ∈ X, b ∈ R (3)

where 〈~w, ~x〉 is the dot product between ~w and ~x in X. In Eq. 3, flatness means
that the norm of ~w has to be as small as possible. A possible way to cope with
this problem is to minimize the Euclidean norm, i.e., ‖~w‖2. Formally, this can
be written as a quadratic constrained optimization problem:

minimize
1

2
‖~w‖2 + C

l∑
i=1

(ξi + ξ∗i )

subject to

 yi − 〈~w, ~xi〉 − b ≤ ε+ ξi
〈~w, ~xi〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

where ξi, ξ
∗
i are slack variables which allow the violation of some constraints

and the constant C > 0 represents a trade-off between the amount of allowed
deviations, greater than ε, and the flatness of f . The dual formulation of this
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convex optimization problem [25, 24, 26] provides the key for extending SVR to
nonlinear functions:

L =
1

2
‖~w‖+ C

l∑
i=1

(ξi + ξ∗i )−
l∑
i=1

αi(ε+ ξi − yi + 〈~w, ~xi〉+ b)+

−
l∑
i=1

α∗i (ε+ ξi − yi + 〈~w, ~xi〉+ b)−
l∑
i=1

(ηiξi + η∗i ξ
∗
i )

(4)

where the dual variables have to satisfy positivity constraints (αi, α
∗
i , ηi, η

∗
i ≥ 0).

The optimal solution of this problem is guaranteed to be in the saddle point,
hence the solution can be found setting the partial derivatives of L, with respect
to the primal variables ~w, b, ξi, ξ

∗
i , to zero, and then substituting back on Eq. 4

obtaining:

maximize

l∑
i,j=1

(αi − α∗i )(αj − α∗j )〈~xi, ~xj〉 − ε
l∑
i=1

(αi + α∗i ) +

l∑
i=1

yi(αi − α∗i )

subject to

{ ∑l
i=1(αi + α∗i ) = 0

αi, α
∗
i ∈ [0, C].

(5)

The resulting hyperplane equation is ~w =
∑l
i=1(α∗i−αi)~xi, and consequently

we can rewrite Eq. 3 as f(~x) =
∑l
i=1(αi−α∗i )〈~xi, ~x〉+ b, which is called support

vector expansion, because ~w is described as a linear combination of the training
data ~xi. Exploiting the Karush-Kuhn-Tucker (KKT) conditions [26], which
states that at the optimum the product between constraints and dual variables
is zero, we can compute b and we can also notice that only for |f(~xi − yi)| = ε
the coefficients αi, α

∗
i are non-zero. This particular set of training examples are

called support vectors.
The nonlinearity of this model can be achieved mapping (Φ : X → S) the

input vector ~x to a highly dimensional space S (i.e. feature space) and then
applying the standard SVR method. Cover’s Theorem [27] proves that given a
set of training data that is not linearly separable in the input space, it is possible
to transform the data into a training set that is linearly separable, with high
probability, by projecting it into a higher-dimensional space (feature space) via
some non-linear transformation.

Unfortunately a direct approach is, in most cases, infeasible from a compu-
tational point of view. Anyhow, it is worthwhile to note that the dual form
depends only on the dot product between the input vectors. Hence, to get the
nonlinearity, it is sufficient to know the dot product of the input vectors in the
feature space k(~x, ~x′) = 〈Φ(~x),Φ(~x′)〉. Then, it is easy to rewrite the dual form
with k(~x, ~x′) instead of 〈~xi, ~xj〉. Exploiting the Mercer’s Theorem [26] it is pos-
sible to characterize these type of functions k, called kernel functions. Using
Φ and the kernel function k we can rewrite the optimization problem and the
support vector expansion substituting the products 〈·, ·〉 with k(·, ·) and ~xi with
Φ(~xi). Solving this new optimization problem, which coincides with the algo-
rithm’s training phase, means finding the flattest function in the feature space.
Once defined a suitable kernel function k, the standard SVR function which
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solve the approximation problem has this form:

f∗(~x) =

l∑
i=1

(α∗i − αi)k(~xi, ~x) + b (6)

where αi and α∗i are Lagrange multipliers obtained by solving Eq. 5.

5. Remaining Time Prediction

In this section we are going to show a spectrum of different approaches able
to predict the remaining time of running business process instances. In partic-
ular, we will emphasize the pros and cons of each approach and which are the
situations in which an approach should be preferred among the others.

The problem of predicting the remaining time of running process instances
can be summarized as follows: given an event log, containing historical traces
about the execution of a business process, we want to predict, for an ongoing
process instance, how much time remains until its completion.

All the approaches described in this work are based on the idea of making
prediction using a model constructed (i.e., learned) using the information col-
lected so far (i.e., the event log). The obtained model takes the partial trace,
which represents the running process instance, as input and returns the remain-
ing time forecast.

The remaining time of a case consists of the time that will be spent from
now up to the end of the execution of the last activity of the process. This
amount of time, given a complete trace σc, is easily computable for each event
ei ∈ σc. We define the function rem : Σ× N→ N as follow:

rem(σc, i) = πT (σc(|σc|))− πT (σc(i))

where i is an event index. If σc = 〈〉 or i /∈ {1, 2, . . . , |σc|} then rem(σc, i) = 0.
This function calculates the time difference between the last event in the trace
and the i-th event.

In the reminder of this section we are going to present our new time predic-
tion approaches based on the application of machine learning models. Moreover,
we discuss how to exploit one of the proposed model to predict also the future
sequence of activities.

5.1. Approach 1: Simple Regression

This prediction task has all the characteristics to be faced as a regression
problem. (Partial) Traces in the event log are the input vectors and the remain-
ing time at each event are the target values. In this section we are going to
present a direct application of ε-SVR algorithm. Despite the simplicity of this
method, there are some aspects which need particular attention. First of all we
describe how to switch from the event log to a representation suitable for the
ε-SVR algorithm.

12



5.1.1. Features Representation

In our setting, the input consists of traces and, in particular, the attributes
of the corresponding events. Whereas SVR takes as input vectors ~x ∈ Rl, for
some l ∈ N+, we have to convert sequences of events into some representation
in Rl.

Let us consider a (partial) trace σc = 〈e1, e2, . . . , en〉 of length n ∈ N+,
for each event ei = (ai, c, ti, di1, . . . , d

i
m) ∈ σkc , the attributes di1, . . . , d

i
m may

have different values, because they can change as the process instance evolves.
We consider as additional attributes values (i.e., di1, . . . , d

i
m) the last values

chronologically observed. Formally, we define the function last : Σ×N→ D∪{⊥}
as:

last(σc, i) =

{
πDi(ej) | j = arg max

1≤h≤|σc|
πDi(eh) 6=⊥

}
.

where i is the index of the attribute. If there is no index j such that πDi(σc(j)) 6=⊥
then last(σc, i) =⊥. What we need to do next is to transform the domains Di
into a numerical representation that can be given as input to the SVR. In order
to do that, we use the one-hot encoding. This encoding converts the nominal
data value di into a binary vector v ∈ {0, 1}|Di|, with |Di| components and with
all values set to 0 except for the component referring to di, which is set to 1.
All the other attributes values di such that Di ⊆ R are simply put in a single
component vector, e.g., let Di ≡ N ⊂ R and πD(e) = 17, the output vector
is ~u = [17] ∈ R. In the remainder of this paper we will call 1 : A → Rj , for
some j ∈ N+, the function which maps an attribute value to its one-hot encoded
vector.

After the conversion just described, all the vectors are concatenated (keep-
ing the same fixed order) together, e.g., recalling v ∈ R4 and u ∈ R from the
previous examples, their concatenation is equal to ~z = ~v || ~u = [0, 1, 0, 0]||[17] =
[0, 1, 0, 0, 17] ∈ R5. Note that if πDi(e) =⊥ and Di is nominal, then ⊥ is pro-
jected to a vector (∈ {0, 1}|Di|) with all components set to zero. Otherwise, if
Di ⊆ R the value ⊥ is simply interpreted as a zero. Eventually, the concatena-
tion of all vectors constitutes an input vector ~x ∈ Rl for the ε-SVR.

We summarize all of these steps with the function γ∗ : Σ → Rl, i.e.,
∀i, γ∗(σic) = ~xi, such that γ∗(σ) =

f
j 1(last(σ, j)).

With respect to the target value, it is calculated using the function rem,
e.g., y = rem(σc, i) for some 1 ≤ i ≤ |σc|. Hence, starting from a trace
σc = 〈e1, e2, . . . , en〉, the corresponding set of n training examples (~x, y) will
be (γ∗(σic), rem(σc, i)),∀i ∈ {1, . . . , n}.

5.1.2. Training

As discussed in Section 4.2, a training data set for a ε-SVR algorithm is
defined as Tr = {(~x1, y1), (~x2, y2), . . . , (~xl, yl)} ∈ Rn × R, for some n ∈ N+. In
order to map the data contained in an event log L, we exploit the transforma-
tions described in the previous section. In particular, the training set is created
by the Algorithm 2.

The value returned by the function rem depends on the time granularity
(e.g., hours, minutes, seconds). It is important to keep the same granularity
for all the instances. Once constructed the training set Tr, the training phase
consists in solving the optimization problem (Eq. 5) with input Tr.
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Algorithm 2: Training set construction

Input: L: event log
Output: Tr: training set

1 Tr← ∅
2 foreach σ ∈ L do
3 for k ← 1 to |σ| do
4 ~x← 1(πA(σ(k)))
5 for i← 1 to |D| do . for each attribute in L
6 v = last(σk, i)
7 ~x← ~x || 1(v)

8 end
9 y = rem(σ, k)

10 Tr← Tr ∪ (~x, y)

11 end

12 end
13 return TS

5.1.3. Prediction

After the training phase, the ε-SVR model is created (i.e., function f∗, Eq. 6)
and can be directly used to predict the remaining time of partial traces. First
of all the trace is converted to a vector ~x suitable for the SVR, applying the
same approach illustrated in Algorithm 2, in particular from line 4 to line 8.
Then this vector ~x is given as input to f∗ which produces the time prediction.
This prediction value has to be interpreted with the same granularity used in
the training instances creation. Algorithm 3 shows the prediction algorithm.

Algorithm 3: Prediction

Input: σp: (partial) trace, f∗: ε-SVR model
Output: P: time prediction

1 ~x← 1(πA(σp(|σp|)))
2 for i← 1 to |D| do
3 v = last(σkp , i)

4 ~x← ~x || 1(v)

5 end

6 P ← f∗(~x)
7 return P

5.2. Approach 2: Regression with Contextual Information

This approach differs from the previous one since it makes use of control-flow
information in order to add contextual knowledge. The basic idea consists of
adding a limited set of features able to encapsulate the control-flow path followed
by a partial trace. We chose as control-flow model a transition system because
it generally represents a good trade-off between expressivity and compactness.
In Section 3.3, we showed how to construct a labeled transition system TS =
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(S,E, T ) starting from an event log L. Now, we have to transform the TS into
a series of features and encoding it into a proper form applicable to the ε-SVR
algorithm. As for the literal attributes, we use the one-hot encoding: the set
S \Sstart is treated as a literal domain, where the possible values are the states
s ∈ S excluding the initial state because a non-empty trace always maps onto
a state not included in Sstart. So, we enumerate the states, s1, s2, . . . , sn ∈
S \ Sstart, and we map a state si into a vector ~v ∈ {0, 1}n by setting to 1
the i-th component in the n-dimensional vector, and to 0 all the others. For
example, given the states set S \ Sstart = {s1, s2, s3, s4} we encode the state s3
onto ~v ∈ {0, 1}4 such that ~v = [0, 0, 1, 0].

5.2.1. Non-fitting Traces

As for the previous approach, even this one is able to handle non-fitting
traces. However, without any adjustment, the prediction is calculated overlook-
ing the control-flow. Indeed, using the encoding described above, if f state(σ) /∈ S
then the corresponding vector would be null (i.e., ~v = [0, 0, . . . , 0]). We cope
this problem by mapping the non-compliant state s = f state(σ) /∈ S, onto a
set of lawful states si ∈ S. The idea is to associate the non-fitting trace with
states that are, within some degree, similar. Then the vector ~v will contain
for each state the normalized similarity value. It is very important to define
a thoughtful similarity function: we assume that two states are similar if their
representations are similar. In particular, since we are focusing on control-flow,
we use as event representation function something like fevent(e) = πA(e). This
implies that abstractions are aggregate representations of a set of activities.

Let us define a similarity function for each abstraction considered in Section 3
(i.e., set, bag and sequence):

Definition 5.1 (Set Similarity Function). Given two sets x1, x2 ⊆ X , with
X the set of all possible values, we define the similarity function
f simset ∈ 2X × 2X → [0, 1] as the Jaccard similarity [28]. Formally:

f simset (x1, x2) =
|x1 ∩ x2|
|x1 ∪ x2|

Definition 5.2 (Bag Similarity Function). Given two multi-sets over a root
set X , x1, x2 ∈ B(X ), we define the similarity function f simbag ∈ B(X )× B(X )→
[0, 1] as the Jaccard similarity [28]. Formally:

f simbag (x1, x2) =
# (x1 C x2)

# (x1 ∪ x2)

Definition 5.3 (List Similarity Function). Given two finite sequences over
X , x1, x2 ∈ S(X ), we define the similarity function f simlist ∈ S(X ) × S(X ) →
[0, 1] ⊂ R as the Damerau-Levenhstein similarity [29]. Formally:

f simlist (x1, x2) = 1− fdistD-L(x1, x2)

max(|x1|, |x2|)

The Damerau-Levenshtein distance (fdistD-L) is a distance between two string. It
is calculated by counting the minimum number of edit operations needed to
transform a string into the other. The set of possible edit operations takes into
account by this metric are:
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• insertion of one character, e.g., ac becomes abc with the insertion of b;

• deletion of one character, e.g., abc becomes ac with the deletion of b;

• substitution of a character, e.g., ab becomes ac with the substitution of
b with c;

• transposition of two characters, e.g., abc becomes acb with the transpo-
sition of b and c.

Since this metric works over strings, we need to convert a sequence of event rep-
resentations into a string. To do this, we simply map each event onto a character.

On the basis of the abstraction used for constructing the transition system,
the corresponding similarity function is chosen. Every time a non-fitting trace
comes into play, its representation is compared with all the state representations
of the TS (excluding the initial state). So, given a transition system TS =
(S,E, T ) (created using fevent and f state), a similarity function f sim and a
trace σ (such that s′ = f state(σ) /∈ S) f sim(s, s′) is computed for each state
s ∈ S \Sstart. After that each similarity value is normalized and finally put into
the vector ~v. We will call this kind of TS similarity-based transition system.

Formally, given s′ /∈ S and a si ∈ S\Sstart the corresponding i-th component
of the resulting vector ~v will contain the following value:

f sim(s′, si)∑
s∈S\Sstart

f sim(s′, s)
.

Let us show a non-fitting trace management example: consider the transition
system (i.e., TS = (S,E, T )) in Fig. 2 constructed using as state representation
function the set abstraction (i.e., f state(σ) = {fevent(e) | e ∈ σ}). In this
example the state representation functions are: s0 = {}, s1 = {A}, s2 = {A,B},
s3 = {A,B,C}, s4 = {A,B,D}, s5 = {A,B,E}, s6 = {A,B,C, F}, s7 =
{A,B,D, F} and s8 = {A,B,E, F}. Given the non-fitting trace σ′ = 〈A,D〉
we calculate the similarity of s′ = f state(σ′) = {A,D} with every s ∈ S \ {s0}
using f simset :

f simset (s′, s1) =
1

2
= 0.5, f simset (s′, s2) =

1

3
= 0.3̄,

f simset (s′, s3) =
1

4
= 0.25, f simset (s′, s4) =

2

3
= 0.6̄,

f simset (s′, s5) =
1

4
= 0.25, f simset (s′, s6) =

1

5
= 0.2,

f simset (s′, s7) =
2

4
= 0.5, f simset (s′, s8) =

1

5
= 0.2.

Then we normalize each value with the summation:∑
si∈S\{s0}

f simset (s′, si) = 2.4

obtaining the final vector:

~v =

[
0.5

2.4
,

0.3̄

2.4
,

0.25

2.4
,

0.6̄

2.4
,

0.25

2.4
,

0.2

2.4
,

0.5

2.4
,

0.2

2.4

]
= [0.2083̄, 0.138̄, 0.10416̄, 0.27̄, 0.10416̄, 0.083̄, 0.2083̄, 0.083̄]
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Figure 2: Example of a transition system extracted from a log containing three trace types
〈A,B,C, F 〉, 〈A,B,D, F 〉 and 〈A,B,E, F 〉, with fevent(e) = πA(e) and f state(σ) = {fevent(e) |
e ∈ σ}. The state s0 is the initial state, while s6, s7, s8 are the accepting (i.e., final) states.
Each transition is labeled by the corresponding event representation value.

5.2.2. Training

The training phase of this method is almost the same of the preceding one.
The main difference lays on the introduction of a new derived feature to the
training set. This can be done by making some minor changes to the Algo-
rithm 2. Since we assume the construction of TS, we need it as input along
with the state representation function f state and the similarity function f sim.
We calculate the state associated to each partial traces and we encode it into a
one-hot vector or into the normalized similarity vector if it is a non-fitting trace.
Finally, we construct the rest of the training instances as in Alg. 2. Algorithm 4
show the non-fitting trace management routine.

Algorithm 4: Non-fitting trace encoder

Input: σ: non-fitting trace, S: states set, f state: state representation
function, f sim: similarity function

Output: Tr: training set

1 s← f state(σ)
2 ~v ← []
3 den← 0
4 for si ∈ S do . calculate the normalization factor

5 den← den + f sim(si, s)

6 end
7 for si ∈ S do . append the normalized vector

8 c← f sim(si,s)
den

9 ~v ← ~v || [c]
10 end
11 return ~v

First loop (line 4) calculates the normalization factor, while the second loop
(line 7) creates the vector.
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5.2.3. Prediction

In this phase, as for the Simple Regression approach, the ε-SVR model cre-
ated in the previous step is used to forecast the remaining time of running
process instances. The novelty of the method just described consists of the re-
sulting model, which is obtained from the training phase. The introduction of
contextual information, generally, leads to a different optimization problem and
consequently to a different final model. The only changes to make in Alg. 3 are
adding f state as input, and substitute the right side of line 1 with the one-hot
(or the non-fitting) encoding of f state(σp).

5.3. Approach 3: Data-aware Transition System (DATS)

The approach presented in this section is a refinement of [16] which exploits
the same idea described in [9]. Let us recall the main characteristics of the
latter method. In their work van der Aalst et al. introduced the concept of
annotated transition system: each state of the transition system is “decorated”
with predictive information, called measurements. Since we want to predict the
remaining time, a possible set of measurements collected in a state might be the
remaining time starting from the state itself. Formally, in [9] a measurement is
defined as:

Definition 5.4 (Measurement). A measurement function fmeasure is a func-
tion that, given a trace σ and en event index i ∈ [1, 2, . . . , |σ|] produces some
measurement. Formally, fmeasure ∈ Σ×N→M, where M is the set of possible
measurement values (e.g., remaining time).

In [9] different kinds of measurements are proposed. Once the suitable mea-
surement is chosen, an annotated transition system is created according to the
event log:

Definition 5.5 (Annotated transition system). Let L be an event log and
TS = (S,E, T ) a labeled transition system constructed over L using the repre-
sentation functions fevent and f state. Given a particular measurement function
fmeasure : Σ × N → M, we define an annotation A ∈ S → B(M), such that
∀s ∈ S:

A(s) =
⊎
σ∈L

⊎
1≤k≤|σ|

s=f state(σk)

fmeasure(σ, k)

An annotated transition system is the tuple (S,E, T,A).

Since we are facing the remaining time prediction problem, our fmeasure func-
tion coincides with the function rem defined in Section 5. The last step consists
of the definition of a prediction function ∈ B(M) → M, such that given a
multiset of measurements produces some prediction, e.g., the average or the
median value. So, in the operative setting we have an annotated transition sys-
tem (S,E, T,A) constructed over L and a prediction function P : B(M)→M.
Using these tools a prediction is made in a straightforward way: given a par-
tial trace σp observed so far, such that f state(σp) = s, the prediction value is
P(A(s)). It is worth to notice that the prediction is calculated using merely
control-flow (i.e., transition system) and temporal (i.e., remaining time) infor-
mation.
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Figure 3: A state annotated with a Näıve Bayes classifier. The probability of going from state
s2 to any of its exiting states is reported next to the corresponding edge. These probabilities
are the result of the Näıve Bayes classifier, which takes as input the data attributes of the
running case.

The main difference introduced by our approach is the addition of classifiers
and regressors, which take advantage of additional attributes, as annotations.
Let us give a brief overview of this approach. As in [9], we start with the
transition system construction and then we enrich each state with a Näıve Bayes
classifier (see Section 4.1) and each transitions with a Support Vector Regressor
(see Section 4.2) trained with historical data considering all attributes. The
introduction of these two machine learning models is based on the intuition
that in a state s Näıve Bayes estimates the probability of transition from s to
s′ ∈ s•, while SVR predicts the remaining time if the next state will be s′.

Figure 3 proposes an example of state (s2) annotated with a Näıve Bayes
classifier. In this state, the Näıve Bayes classifier gets the probabilities to reach
each exiting state: probabilities to reach states s3, s4 and s5 are respectively 0.6,
0.1 and 0.3. Such values are used to weigh the remaining time values obtained
from the support vector regressors. In Figure 3 the state s2 corresponds to the
current partial trace σ′. From each outgoing state (i.e., s3, s4, s5) the remaining
time is estimated using the SVR associated to the incoming transition (i.e.,
s2 → s3, s2 → s4 and s2 → s5).

These estimations are multiplied by the probability values obtained from
the NB classifiers, and finally summed together in order to compute a weighted
average over all the possible continuation from s. Figure 4 presents an example
of remaining time estimation for each outgoing state. In this example the esti-
mated remaining time, starting from the state s3, is 2 hours, while the average
duration of the transition s2 → s3 is 20 minutes.

Formally, let p̂s′ be the Näıve Bayes estimated probability to reach state
s′ ∈ s• from state s, and τ̂s→s′ the estimated remaining time returned by
the SVR associated to transition s→ s′. Then, given the state s reached after
observing a (partial) trace σ, the prediction returned by the annotated transition
system is

∑
s′∈s•(p̂s′ · τ̂s→s′).

Let us now define the annotations used to decorate the transition system.

Definition 5.6 (Näıve Bayes Annotation). Let TS be a labeled transition
system, obtained from an event log L, based on an event representation function
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Remaining: 3 h
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Figure 4: Example of a Support vector regressor application. The estimated remaining times
are suggest by the label Remaining.

fevent and a state representation function f state. Let’s call k the size of the γ∗(σ)
vector calculated for traces σ ∈ L. A Näıve Bayes Annotation is a function
NB : S × Rk × S → [0, 1] ⊂ R, which, given two states si, sj ∈ S and a data
attribute vector ~x ∈ Rk, returns the probability to reach the state sj starting
from si through a single transition.

Definition 5.7 (SVR Annotation). Let TS be a labeled transition system,
obtained from an event log L, based on an event representation function fevent

and a state representation function f state. An SVR Annotation is a function
R : T ×Rk → R, such that, given a transition t ∈ T and a data attribute vector
~x ∈ Rk, it applies Support Vector Regression to produce an estimation of the
remaining time.

Using these annotations, we define a predictor transition system as follows:

Definition 5.8 (Predictor TS). Let TS = (S,E, T ) be a labeled transition sys-
tem, obtained from an event log L, based on an event representation function
fevent and a state representation function f state. A predictor transition system
is a tuple PTS = (S,E, T,NB, R) where NB, R are respectively a Näıve Bayes
and a SVR annotation, based on the event log L and the transition system TS.
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5.3.1. Training

In this section, we are going to describe how to construct a predictor tran-
sition system. Algorithm 5 shows the construction procedure.

Algorithm 5: Construction of a Predictor Transition System

Input: L: event log; TS = (S,E, T ): labeled transition system
Output: T ′: predictor transition system

1 foreach t ∈ T do
2 svr[t] = ∅ . training set for t

3 end

4 foreach σc ∈ L do
5 for i← 1 to |σc| − 1 do
6 s← f state(σic)
7 s′ ← f state(σi+1

c )
8 e← fevent(σc(i+ 1))
9 t← (s, e, s′)

10 ~x← γ∗(σic)
11 y ← rem(σc, i)
12 svr[t]← svr[t] ∪ (~x, y)

13 if |s • | ≥ 2 then
14 Update NB for state s with instance (~x, s′)

15 end

16 end

17 end

18 foreach t ∈ T do
19 Train SVR (R) for transition t with training set svr[t]

20 end

21 T ′ ← (S,E, T,NB , R)
22 return T ′

The first loop (line 1) initializes all the training sets for the ε-SVR model
to the empty set, while the second loop (lines 4-17) creates the training sets
and updates the NB classifiers. In particular, lines 6-12 construct the training
instances by extracting the additional data from the partial traces and calcu-
lating the remaining time. Being possible to build a NB model incrementally,
this is done in line 14. Last loop (lines 18-20) trains the ε-SVR models using
the training sets built previously.

5.3.2. Prediction

In this section, we describe how to predict the remaining time for a running
case using a predictor transition system constructed with Alg. 5. Algorithm 6
shows the prediction procedure.

The algorithm simply applies the formula, seen at the beginning of this
section,

∑
s′∈s•(p̂s′ · τ̂s→s′). Each p̂s′ is a value produced by the application

of the NB classifiers and τ̂s→s′ by the ε-SVRs. Specifically, let s = f state(σp),
then p̂s′ = NB(s, γ∗(σ), s′) and τ̂s→s′ = R(s→ s′, γ∗(σ)), for all s ∈ s•. A core
difference w.r.t. [16] is the absence of the expected sojourn time (on the current
state): in this revised version this information is implicitly embedded inside the
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Algorithm 6: Remaining time prediction for a running case

Input: σp: (partial) trace; PTS = (S,E, T,NB, R): predictor transition
system

Output: P : remaining time prediction

1 P ← 0
2 s← f state(σp)
3 ~x← γ∗(σp)

4 if |Ts| ≥ 2 then
5 foreach t = (s, e, s′) ∈ Ts do
6 P ← P + NB(s, ~x, s′) ·R(t, ~x)
7 end

8 else

9 s′ ← f state(σ
|σp|−1
p )

10 t′ ← (s′, e, s) ∈ Ts′
11 P ← R(t′, ~x)

12 end
13 return P

ε-SVR and hence can be removed from the formulation.

s2{B}

P (s2) = 1.8

s4{D}s3{C} s5{E}

p̂s3 = 0.6
τ̂s2→s3 = 2

p̂s3 = 0.1
τ̂s2→s3 = 3

p̂s3 = 0.3
τ̂s2→s3 = 1

Figure 5: Example of a prediction calculated by a predictor transition system:
P (s2) = 0.6 · 2 + 0.1 · 3 + 0.3 · 1 = 1.8.

Figure 5 puts together the two representations depicted in Section 5.3: it
shows an example of NB and SVR application for a partial trace σ = 〈A,B〉
(see event log in Table 1). The remaining time prediction, in hours, for this
example is:

P (s2) =
∑

s′∈{s3,s4,s5}

(p̂s′ · τ̂s2→s′) = 0.6 · 2 + 0.1 · 3 + 0.3 · 1 = 1.8.

Please note that, given a predictor transition system (result of the learning
procedure), the computation of the prediction requires constant number of op-
erations which, in the worst case corresponds to the size of the largest set s•
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of the transition system. This property allows the application of the approach
in on-line settings [30], where each event is allowed to trigger only a constant
number of operations.

5.3.3. Future Path Prediction

The model we use in this last approach can also be exploit in order to predict,
for a running case, which is the most likely sequence of activities until the end
of the case. Let us take for example the situation depicted in Fig. 3 which is a
fragment of the TS in Fig. 1: the most likely sequence of states starting from
s2{B} is s2{B} → s3{C} → s6{F}, s6{F} is an accepting node and so the process
instance is complete, with a probability equals to 0.6 ∗ 1 = 0.6. Note that the
transition between s3{C} and s6{F} has a probability equals to 1 because is the
only way the process can proceed. In general, the sequence can go through
many split states in which the transition probabilities are < 1 and find the full
sequence with the higher probability is not a trivial task.

We face this problem as a shortest path problem in which the goal is to
find a path between to vertices of a graph such that the sum of weights of
its constituent edges is minimized. Specifically, let us consider the transition
system as a directed graph: we would like to find the shortest path between the
current node and an accepting node. In order to leverage this idea, we need to
define a suitable distance measure (i.e., cost) between nodes.

Given a possible sequence of activities (in a Predictor TS) between the node
s1 to sn, i.e., s1, s2, . . . , sn, with the corresponding transition probabilities (ob-
tained using the NB annotations), i.e., pi∀si → si+1, 1 ≤ i < n, then the
likelihood of such sequence is defined by

∏
1≤i<n pi. Since probabilities have to

be multiplied to get the likelihood of a sequence we cannot use it directly as
edge cost because we need to follow the definition of the shortest path prob-
lem (i.e., edge cost have to be summed). However, we can exploit properties
of the logarithm function to transform probabilities into distance like values, in
particular:

log(pq) = log(p) + log(q),

and since p are probabilities:

∀0 ≤ p ≤ 1 ∈ R, log(p) ≤ 0,

where low values of log(p) mean that the transition probability is low, or, from
a graph view point, the distance between the nodes is high. Using this idea, we
can use as edge cost the opposite of the logarithm of the transition probability.
Note that this logarithm transformation works as we desire: probabilities close
to 0 (i.e., rare occurrences) correspond to high costs while probabilities close to
1 (i.e., very likely) correspond to costs almost null. Using the just mentioned
transformation we can construct a graph corresponding to the TS where the
shortest path problem can be solved applying a best first search. So, from a
computational point of view the prediction of the activity sequence has a cost
which is quadratic in the number of nodes (i.e., states of the TS).

6. Implementation

These techniques have been implemented for the ProM framework [31]. To
mine the transition systems, we rely on the miner’s implementation available
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inside the framework. Näıve Bayes Classification and the Support Vector Re-
gression are performed using the implementation in the Weka framework [32].
In particular, for SVR we used the SMO (Sequential Minimal Optimization)
implementation provided by the framework.

The main ProM plugin we developed is capable of building a prediction
model according to the methods described earlier on this paper. Once the pre-
diction model has been created, another ProM plugin exposes an on-line service
which can be queried for predictions. This online querying layer uses JSON2

as communication languages and, therefore, in principle, any information sys-
tem, implementing the query protocol, can embed the prediction features that
we provide. Moreover, apart from these prediction functionalities, we also built
another plugin which can be used to manually query the model. A screenshot of
this plugin is reported in Figure 6. The plugin allows users to ask for prediction
on a specific running instance, and the user can also specify a possible deadline
for it. In case the prediction does not fulfill the deadline, an alarm is raised.

The figure shows how a prediction is visualized to the client-side plugin. On
the left, there are all the information regarding the remaining time prediction
(upper left corner) and also the activity sequence prediction (bottom left). The
predicted time is highlighted in green when the provided deadline seems to be
fulfilled in red otherwise. On the right side, there is the history of the queries,
while the middle section shows two historical traces which have been the best
performances. Specifically, these traces have all the same initial activities as
the running case (shown as the first trace), but they are the ones which have
the shortest remaining time. What differ is that one represent the fastest trace
in the entire log regardless of the sequence of activities, while the second one
(third in figure) is the fastest one which follows the predicted sequence of future
activities. All these aim to support as much as possible the user in her decision
making process.

Due to the simplicity of the prediction procedures, the time for computing
the forecast is negligible, thus paving the way to the adoption of our approach
into intensive and on-line scenarios.

7. Results

The experiments reported in this section aim to assess how the techniques
leveraging on the similarity-based transition system give more accurate pre-
dictions for variants of process executions that have not been observed in the
training set. The comparison is made with respect to the specialization of the
technique reported in van der Aalst et al. [9] that has been discussed in Sec-
tion 2. We also aimed to compare our approach versus the techniques proposed
in [11, 12]. Unfortunately, up to this date, neither an implementation of these
approaches nor the event logs used in the papers are publicly available. Of
course, it is not possible to compare results obtained through different event
logs, as the quality of a prediction heavily depends on the information available
in the event log. Work [16] shows that no much difference can be appreciated

2JSON stands for “JavaScript Object Notation”. More information can be retrieved from
http://www.json.org/.
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Figure 6: Screenshot of the ProM plugin that has been developed, and that can be used to
manually query the prediction model.

when polynomial or RBF is used as kernel type. Therefore, the experiments
only makes use of the latter.

The comparison is made using two real-life case studies: the first concerns
with a ticketing management process of the help desk of an Italian software
company, and the second with the execution of process instances in an informa-
tion system for the management of road-traffic fines by a local police office of
an Italian municipality.

To measure and compare the accuracy, we used two indicators: the Mean
Absolute Percentage Error (MAPE) and the Root Mean Square Percentage Er-
ror (RMSPE). Let n be the number of samples and let Ai and Fi be respectively
the actual value and the predicted value for the i-th sample. MAPE usually
expresses the accuracy as a percentage:

MAPE =
100%

n

n∑
i=1

∣∣∣∣Ai − FiAi

∣∣∣∣ ,
RMSPE is also defined as a percentage:

RMSPE = 100%

√∑n
i=1(Ai−FiAi

)2

n
.

7.1. Case Study 1: Road Fines Log

The first case study log concerns the execution of process instances in an in-
formation system for the management of road-traffic fines by a local police office
of an Italian municipality. The management of road-traffic fines has to comply
with Italian laws, which detail the precise work-flow. Usually, when a driver
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commits a violation, a policeman opens a new fine management and leaves a
ticket on the car glass. The actual fine amount depends on the violation per-
formed. Within 180 days, the fine notification must be sent to the offender. The
payment can occur in any moment, i.e. before or after that the fine notification
is sent by post. If the offender does not pay within 60 days since the reception
of the fine notification, the fine doubles. If the offender never pays, eventually
the fine is sent to a special agency for credit collection. In a number of cir-
cumstances, the fine can be dismissed. For instance, the policeman could make
a typo when the fine form is filled in (e.g., the license plate number does not
match the type of car/truck/motorbike). More importantly, the offender may
think to have come under injustice and, hence, can appeal to a judge and/or the
local prefecture. If the appeal is in favour to the offender, the fine is dismissed.
Otherwise, the management is carried on as if he/she had never appealed.

We extracted from the information systems an event log that refers to ex-
ecutions that end with sending for credit collection, i.e. the offenders have not
paid the fine in full. These event logs refer to non-overlapping periods in time
and contains about 7300 log traces. With this set of experiments we want to
show that all the methods presented here perform well under the assumption
that in the training set there are all the possible behaviours of the process (the
same assumption is done by van der Aalst et al. in [9]). The experiments were
performed using 5-fold cross validation. The SVR hyper-parameters have been
tuned automatically using a grid search strategy. In particular we sought for the
best combination of C, as penalty in the optimization problem, and γ for the
RBF kernel. The transition system has been mined using different abstractions,
namely set, multi-set and sequence with no limit. Since, in the event log, for
99% of traces, every activity was performed at most once, and the process is
almost linear, the multi-set and the sequence abstraction was not considered to
perform experiments.

Table 2 reports the results of the experiments. The acronym used in the
tables mean: VDA is the approach presented in [9], DATS is the data-aware
transition system, SVR is the approach which use a simple support vector re-
gression machine, and SVR+TS is the method which incorporates contextual
information (via TS) in the training instances.

MAPE RMSPE

VDA* 5.89±0.14% 8.80±0.91%
DATS 2.82±0.10% 6.06±1.01%

SVR 2.83±0.07% 6.72±1.40%
SVR+TS 2.77±0.09% 6.58±1.41%

Table 2: Road Fines log experiment results using 5-fold cross validation: (*) means that the
approach is the baseline.

Results show that every proposed approach outperform the baseline with
similar results. However, it is worth to notice that the approaches based on
the transition system, i.e., DATS and SVR+TS, achieve best performances on
RMSPE and MAPE respectively. Readers can observe that VDA achieves better
performance than in [16], this is due to the fact that the log used in these
experiments is much bigger and hence the statistics of the methods have a
stronger support.
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From these results, we can argue that the improvements with respect to the
baseline are due to the introduction of the additional data in our models. In
this log, we can also notice that the effect of considering the workflow (i.e., the
transition system) is cramped in comparison to the data perspective.

7.2. Case Study 2: Help Desk Log

The second case study log concerns the ticketing management process of the
help desk of an Italian software company. In particular, this process consists of
14 activities: it starts with the insertion of a new ticket and then a seriousness
level is applied. Then the ticket is managed by a resource and it is processed.
When the problem is resolved it is closed and the process instance ends. This log
has almost 4 500 instances with over 21 000 events. In this case the process is not
linear, but it is well structured. As in the previous case study, the experiments
were performed using 5-fold cross validation and the SVR’s hyper-parameters
have been tuned automatically using a grid search strategy. Since the process
it is more complex, we performed two kinds of experiments:

• we compared the performance of our approaches against the baseline as-
suming that in the training phase all the possible behaviours of the process
are present at least once;

• we removed some variants from the training set in order to have completely
new activity sequences in the test set, so the assumption is not valid
anymore.

The second type of experiments aim to show that the approaches based on single
SVR performed well even with noisy instances or with new events.

Tables 3, 4 and 5 show the results using the entire log with 5-fold cross
validation. We performed tests using all the three abstractions (i.e., set, multi-
set and sequence). With this dataset the usage of different set abstractions
did not provide any remarkable difference. As for the previous case study, the
best performing methods are DATS and SVR+TS, however the lowest MAPE
and RMSPE are achieved by DATS using the set abstraction. Since the SVR
approach had not good results (it is in line with VDA), the transition system
information used by SVR+TS played a decisive role. The improvements with
respect to the baseline are in average 14% for the MAPE and 4% for RMSPE.

Sequence
MAPE RMSPE

VDA* 29.94±0.59% 45.10±1.3%
DATS 26.96±0.7% 43.76±0.91%

SVR 28.82±0.57% 47.78±0.83%
SVR+TS 25.80±0.51% 41.90±0.98%

Table 3: Help Desk log experiment results using 5-fold cross validation with the sequence
abstraction: (*) means that the approach is the baseline.

From a workflow point of view, this case study has a more complex struc-
ture and we can see how the workflow information, via the TS, had different
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Multi-set
MAPE RMSPE

VDA* 29.58±0.35% 43.32±0.25%
DATS 26.54±0.51% 42.16±0.61%

SVR 28.03±1.1% 42.39±1.61%
SVR+TS 25.84±0.55% 42.70±1.01%

Table 4: Help Desk log experiment results using 5-fold cross validation with the multi-set
abstraction: (*) means that the approach is the baseline.

Set
MAPE RMSPE

VDA* 29.94±0.36% 43.44±0.43%
DATS 25.66±0.34% 41.16±0.16%

SVR 29.12±0.29% 47.46±3.1%
SVR+TS 25.96±0.26% 42.76±1.41%

Table 5: Help Desk log experiment results using 5-fold cross validation with the set abstraction:
(*) means that the approach is the baseline. The underline results are the overall best.

impact on the results. In this experiment the simple SVR failed in compari-
son with SVR+TS and the DATS methods, emphasizing the importance of the
information brought by the TS.

Variants Activity
MAPE RMSPE MAPE RMSPE

VDA* 41.26±1.11% 67.96±2.56% 41.28±0.27% 69.02±0.64%
DATS 40.74±1.4% 67.50±2.21% 40.74±0.27% 69.02±0.42%
SVR 41.48±1.2% 69.08±2.12% 41.00±0.25% 69.50±0.68%

SVR+TS 33.72±0.9% 54.44±2.6% 33.92±0.39% 55.84±0.77%

Table 6: Help Desk log experiment (without some process variants) results using 5-fold cross
validation: (*) means that the approach is the baseline.

Table 6 shows the results with 5-fold cross validation on the log without
some variants. In particular, column “Variants” shows results using training
instances without half of the variants present in the starting event log. Column
“Activity” instead, shows results removing from the training set all the traces
with a specific activity, i.e., “Waiting”, which were present in almost 25% of
the instances. Then the test phase uses the remaining part of the log, so inside
the test there are completely new process behaviours which cause problems to
VDA and DATS approaches.

Results show that in both cases, SVR+TS outperforms all the other ap-
proaches with a MAPE around 34% and a RMSPE of 55%. The introduction
of the similarity mechanism in SVR+TS makes this approach less sensible to
the noise or change in the workflow, because it is able to mitigate the lack of
the correct state using information from correlated ones.

It is worth highlighting, that both VDA and DATS would not return any
prediction in case of unseen activity’ sequences. However, in order to be able to
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compare the approaches, we implemented a safety mechanism: if a trace does
not map into a valid state of the transition system, the last event is removed
and the mapping is redone. This process is repeated (see Alg. 7) until obtaining
a prefix that can be mapped or, viceversa, is empty (and is discarded), and in
this case the average remaining time of the entire training is returned. This
explains why SVR has not better performance than VDA and DATS.

These experiments show the effectiveness of the SVR+TS approach and the
importance of the similarity-based transition system.

Algorithm 7: Safety mechanism

Input: σp: (partial) trace; TS = (S,E, T ): transition system
Output: s: a valid state

1 i← |σp|
2 s← f state(σip)

3 while (s /∈ S) ∧ (i > 0) do
4 i← i− 1
5 s← f state(σip)

6 end

7 return s

7.2.1. Future Sequence of Activities Prediction

Using this event log we also test the future path prediction (FPP) method
described in Section 5.3.3. A similar task is accomplished in [13] using Markov
chain, however they predict the likelihood of executing a specific activity in
the future regardless the sequence of steps taken to get there. For this reason
we decide to evaluates our method against a random predictor which chooses
randomly the next activity according to the possible continuation seen in the
event log. If an activity is also a possible termination the method randomly
decides whether to stop or not. As for the previous experiments, we used 5-fold
cross validation. To evaluate the methods, which means assessing how much
the predicted path respect the actual one, we used two metrics: the Damerau-
Levenshtein similarity (DAM) and the common prefix (PRE). Tables 7, 8 and
9 shows the results regarding the plots from Fig. 7 to Fig. 12.

FPP RANDOM
# DAM PRE DAM PRE

1 0.9629±0.006 0.9456±0.007 0.5030±0.025 0.2375±0.023
2 0.8621±0.031 0.7096±0.059 0.6288±0.008 0.3359±0.008
3 0.8211±0.014 0.5691±0.023 0.5758±0.003 0.1001±0.009
4 0.6641±0.027 0.2141±0.032 0.5182±0.016 0.0555±0.009
5 0.5543±0.011 0.1495±0.005 0.4664±0.010 0.0566±0.006
E# 0.8205±0.017 0.6265±0.032 0.4382±0.004 0.1415±0.005

Table 7: Activity sequence prediction results: the transition system is created using the
sequence abstraction.
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Figure 7: Activity sequence prediction results plot using the Damerau-Levenshtein similarity:
the transition system is created using the sequence abstraction
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Figure 8: Activity sequence prediction results plot using the prefix similarity: the transition
system is created using the sequence abstraction

Each row in the tables represents the similarity considering sequences of
exactly n activities where n is indicated in the # column. Rows with the E#

symbol are the average similarities considering every sequence length. Readers
can notice that with every abstraction the proposed method outperforms the
random one. In particular, FPP it is able to identify the next activity almost
94% of the times and the similarity of the next two is almost 0.86 in average
with an hit rate of 71% in average. We achieve good results, with respect to
Damerau-Levenshtein similarity, even with 3, 4 and 5 activity sequences.

The trend of the plots look similar and we can notice how the difference in
the prediction accuracy are evident starting on the left side (few activities in
the future) and narrow on the right side. This fact is due to the stockpile of the
uncertainty of each step in the future, which makes the prediction of the FPP
closer to the random one.
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FPP RANDOM
# DAM PRE DAM PRE

1 0.9553±0.006 0.9306±0.009 0.5992±0.005 0.4328±0.016
2 0.8577±0.039 0.7003±0.071 0.5742±0.011 0.3010±0.012
3 0.8161±0.025 0.5632±0.031 0.5334±0.007 0.0831±0.008
4 0.6628±0.029 0.2251±0.038 0.4809±0.012 0.0532±0.005
5 0.5523±0.019 0.1752±0.056 0.4296±0.014 0.0485±0.006
E# 0.8140±0.027 0.6118±0.045 0.4143±0.003 0.1477±0.003

Table 8: Activity sequence prediction results: the transition system is created using the
multi-set abstraction.
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Figure 9: Activity sequence prediction results plot using the Damerau-Levenshtein similarity:
the transition system is created using the multi-set abstraction
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Figure 10: Activity sequence prediction results plot using the prefix similarity: the transition
system is created using the multi-set abstraction
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FPP RANDOM
# DAM PRE DAM PRE

1 0.9463±0.012 0.9489±0.005 0.2896±0.017 0.2492±0.024
2 0.8527±0.007 0.7380±0.012 0.4074±0.006 0.2361±0.012
3 0.8084±0.008 0.6024±0.014 0.3892±0.006 0.0790±0.006
4 0.6390±0.004 0.2131±0.011 0.3747±0.007 0.0479±0.004
5 0.5181±0.008 0.1463±0.006 0.3379±0.015 0.0445±0.010
E# 0.8088±0.005 0.6484±0.004 0.2548±0.001 0.0936±0.002

Table 9: Activity sequence prediction results: the transition system is created using the set
abstraction.
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Figure 11: activity sequence prediction results plot using the Damerau-Levenshtein similarity:
the transition system is created using the set abstraction
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Figure 12: Activity sequence prediction results plot using the prefix similarity: the transition
system is created using the set abstraction
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However, in average, our approach obtained for DAM and PRE 0.81 and
0.63 respectively, which are far better than the 0.36 and 0.09 obtained by the
random method.

8. Conclusions

In this work we presented some new methods that can be employed to tackle
the problem of predicting the time-to-completion of running business process
instances. The contributions we presented in this work can be summarized as
the following:

• we proposed three new prediction methods, which take advantage not only
of the control-flow information but also of the additional data presented
in the event log;

• we leveraged on solid and well-studied machine learning techniques in
order to build models able to manage the additional information;

• we constructed our approach in order to deal with unexpected behaviours
or noisy data, by looking at the closeness between the new trace and the
most similar process flows already observed;

• we have extensively evaluated our algorithms on real life data and show
that our methods outperform state-of-the-art.

The proposed set of methods aims to face different scenarios and to overcome
the limitations of the state-of-the-art approaches. Moreover, we distinguished
the application of the prediction problem into two main scenarios:

1. the process is stable and consequently the event log used to train the
model contains all the possible process behaviours;

2. the process is dynamic (i.e., might contain drifts) and, consequently, the
event log used for training does not contain all the possible process be-
haviours, e.g., seasonability of the process.

Experiments in [16] and those reported in Section 6 have shown how the DATS
approach overcome the state-of-the-art in the first scenario. Assuming that the
training event log contains all the possible process’ behaviours, it is possible to
take advantage from the static nature of the process and rely on the transition
system structure. A central role in this method is played by the Näıve Bayes
classifiers, which are also involved in the prediction of future sequence of activ-
ities in Section 5.3.3. These two tools together can be very useful for business
managers because, in addition to the remaining time estimation, they have also
some hints about the sequence of activities that the instance is going to take.
Using these information business managers can act preventively and they can
try to avoid uncomfortable situations. However, we also obtained good result
with the single SVR-based methods which are well suited for the second scenario
in which not all the process’ behaviours are present in the training phase. Here,
the SVR+TS method is not affected by the lack of information in the training
set because is able to generalize the workflow thanks to the similarity-based
transition system and the nature itself of the single-SVR approach. Experi-
mental results point out that methods which are strongly dependent on the TS
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structure have problem with new process’ variants, while SVR method with the
similarity-based TS, outperforms all the other approaches.

As future work, we plan to improve the parameters calibration of our ap-
proaches, in order to improve the overall results of our approach. We would like
to investigate whether taking into account only work-hours in the prediction is
valuable or not. Moreover, we would like to deploy our approach on real sce-
nario, in order to stress the whole approach under production-level constraints.
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