
PLG2: Multiperspective Process Randomization
with Online and Offline Simulations

Andrea Burattin
University of Innsbruck, Austria

Abstract. The evaluation of process mining algorithms requires, as any
other data mining task, the availability of large amount of (real-world)
data. Despite the increasing availability of such datasets, they are af-
fected by many limitations: in primis, the absence of a “gold standard”
(i.e., the reference model). This work extends an approach already avail-
able in the literature for the generation of random processes. Novel-
ties have been introduced throughout the work which, in particular, in-
volve the complete support for multiperspective models and logs (i.e.,
the control-flow perspective is enriched with time and data information)
and for online settings (i.e., generation of multiperspective event streams
and concept drifts). The proposed new framework is able to cover the
spectrum of possible scenarios that can be observed in the real-world.

1 Introduction

Process mining [1] gained a lot of attention and is now considered an important
field of research, bridging data mining and business process modeling/analysis.
Particularly, the aim of process mining is to extract useful information from
business process executions. In data mining, the term gold standard (also re-
ferred to as ground truth) typically indicates the “correct” answer to a mining
task (i.e., the reference model). For example, in data clustering, the gold stan-
dard may represent the right (i.e., the target) assignment of elements to their
corresponding clusters. Many times, referring to a gold standard is fundamental
in order to properly evaluate the quality of mining algorithms. Several concepts,
like precision or recall, are actually grounded on this idea. However in the con-
text of business processes, companies are usually reluctant to publicly share
their data for analysis purposes. Moreover, detailed information on their run-
ning processes (i.e., the reference models) are considered as company assets and,
therefore, are kept even more private. An annual event, called BPI challenge,
releases real world event logs. Despite the importance of this data, the logs are
not accompanied with their corresponding gold standards. Moreover, they do not
provide examples of all possible real world situations: many times, researchers
and practitioners would like to test their algorithms and systems against specific
conditions and, to this purpose, those event logs may not be enough.

In this paper we propose the new version of a tool already available [5]
(PLG). The new tool, Processes and Logs Generator 2 (PLG2), can be used to
randomly generate multiperspective process models and to simulate them, with



the purpose of synthesizing multiperspective event logs. Moreover, the approach
is tailored to the simulation of online settings, since it is possible to generate local
evolutions of processes and event streams. Another feature allows to dynamically
change the model underlying the stream, in order to produce concept drifts.
PLG just allowed the generation of random control-flows and their simulation as
static logs. PLG2 is implemented in a standalone Java application which is also
accompanied by a set of APIs, useful for the programmatic definition of custom
experiments.

Random Process
Generator

Process Evolution
(Concept Drift)

Internal Process
Representation

Process Importer

Process Exporter
Process Simulation and
Event Log Generation

Continuous Process
Simulation (Event Stream)

Noise Generator

Fig. 1: Components of PLG2.

The implemented compo-
nents are reported in Fig. 1.
The central part is responsi-
ble for the representation of
a process model. In order to
create a process, the user can
import a file; randomly gen-
erate a new process; or evolve
an existing process into a dif-
ferent one. Processes can also
be exported to file. Starting from a process model, PLG2 can simulate it in order
to create an event log or an event stream. Both these last components use a noise
generator in order to add more realism to the generated data.

2 PLG2: Technical Details

Process Models. In PLG2, the internal structure of a process model is in-
tuitively derived from the definition of a BPMN process model. A process is
essentially an aggregation of components. Each component can be either a flow
object, a sequence or a data object. Flow objects are: events (start or end); gate-
ways (exclusive or parallel); and tasks. Sequences connect two flow objects. Data
objects are associated with activities and can be plain or dynamic. A plain data
object is a name-value pair. A dynamic data object has a value that can change
every time it is required (i.e., it is dynamically generated by a script). Data
objects can be generated or required by activities. This internal structure allows
more flexibility. For example, it is now possible to load BPMN models generated
with external tools, as long as the modeled components are available also in
PLG2. Also, since we are restricting to non-ambiguous components, we can con-
vert our processes into Petri nets. The generation of random processes is based
on some workflow control-flow patters [2]: (a) WCP-1: direct succession of two
activities;(b) WCP-2: parallel execution; (c) WCP-3: synchronization of parallel
branches; (d) WCP-4: mutual execution; (e) WCP-5: convergence of branches;
(f) WCP-21: ability to execute sub-processes repeatedly. By progressively com-
bining these patterns we build a complete process model. The combination of
these patterns is performed according to a predefined set of probabilistic rules.
Detailed description of the generation rules is reported in the technical report [3].
Random data objects are generated and randomly connected to activities as well.



Process Simulation. The procedure for the generation of logs starting from
business processes, basically, consists of a simulation engine running the “play-
out game”: the algorithm keeps a set of “enabled activities” and randomly picks
one for the simulation (different probabilities are not supported yet). After that,
it checks for new enabled activities, puts them into the enabled activities set,
and repeats itself. To determine activities times and durations, the system checks
for any of these parameters. If these are not reported, the activity is assumed
to be instantaneous and to execute just after the previous. However, the user
can specify these parameters as Python functions: time after(caseId) and
time lasted(caseId). Both functions are called by the simulator with the
caseId parameter valued with the actual case id: this allows the functions to
be case-dependent. time after(caseId) returns the number of seconds to wait
before the following activity starts. time lasted(caseId) returns the number
of seconds that the activity lasts. This approach is extremely flexible: it is pos-
sible to define, for example, different durations for the same activity depending
on which flow the current trace has followed. Regarding data objects, generated
data objects are stored as attribute of the current activity, required are writ-
ten as attributes for the preceding activity. Plain data objects are treated as
fixed values (i.e., the simulation generates always the same value); dynamic data
objects are actually Python scripts whose values are determined by the execu-
tion of the script itself. These scripts implement a generate(caseId) function
which returns an integer or a string value. Please note that, also in this case, the
function is called with the caseId parameter valued with the actual instance
case id, providing the user with an in-depth, and case dependent, control over
the generated values. There is no particular limit on the number of plain and
dynamic data objects that a task can have, both required and generated. It is
also possible to introduce simulated noise. Noise can be at different “levels”:
(i) at the trace level (involving trace organization); (ii) at the event level (in-
volving events on the control-flow); (iii) at the data object level (involving the
data perspective). The actual noise generation is driven by the parameters set
by the user. The noise details for the trace and the event level have already been
discussed in the literature and reported in details in [7]. The remaining technical
details are described in [3].

PLG2 is explicitly design for the simulation of online event streams [6]: the
play-out game should continue infinitely and the underlying process model is
allow to change. The stream definitions used are reported in [4, 6]. An event
stream is just a sequence of events, each of them potentially belonging to different
traces. From an implementation point of view, the idea is to create a socket,
which is accepting connections from external clients. PLG2, then, “emits” (i.e.,
writes on the socket) the generated events. In order to generate a continuous
stream, the user has to set two parameters: the maximum number of parallel
instances running at the same time and the “time scale”. The first parameter is
used to populate the data structures required for the generation of the stream.
Then, since the event emission is performed in “the actual time” (opposed to
the “simulated time”), it might be necessary to scale the simulation time in



Start
Activity A

End
×

Activity G

× Activity BActivity C Activity D

variable_b = rffvkviaqb31v variable_a = 7tt82me7l613d

Activity E Activity F

(a) Starting process model.

Start
Activity A

End
× Activity B

Activity C Activity D

variable_b = rffvkviaqb31v variable_a = 7tt82me7l613d

×Activity E Activity F

Activity H Activity I Activity J

(b) First evolution.

Start
Activity A

End
× Activity B

Activity C

×

Activity E Activity F

Activity H Activity I Activity J

variable_b = rffvkviaqb31v

(c) Second evolution.

Fig. 2: A process model randomly generated with two sequential evolutions.

order to have the desired events emission rate. To this end we need a time
multiplier, which is expected to be defined in (0,∞]. This time multiplier is used
to transform the duration of a trace (and the time position of all the contained
events), from the simulation time to the real time.

One typical aspect of online settings is the presence of concept drifts. The
tool is able to dynamically switch the source generating the events but to change
the stream source, a second model is required. To create another model, two
options are available: one is to load or generate from scratch a model; the other
is to “evolve” an existing one: this is an important feature of PLG2. To evolve an
existing model, PLG2 replaces an activity with a subprocess generated using the
random procedure already used for the process randomization. The new process
could be very similar to the originating one or very different, and this basically
depends on the probability configured by the user. For example, Fig. 2 reports
two evolutions of the process model, which has been randomly generated. Please
note that evolutions can involve the creation or the deletion of data objects as
well.

Implementation The tool is implemented as a Java application. It is available
as open source project and also binary files are provided.1 The project APIs
can also be easily used to randomly generate processes or logs. The current
implementation is able to load BPMN files generated with Signavio or PLG2.
Model can be exported as PNML or PLG2 file, or as graphical representation
(as BPMN and Petri net) using the Graphviz file format. The simulation of log
files generates a XES-compliant objects, which can be exported both as XES or
MXML (for compatibility with ProM 5). From Fig. 3 it is possible to see the
main structure of the GUI: there is a list of generated processes on the left. The
selected process is shown on the main area. Right clicking on activities allows
the user to set up activity-specific properties (such as times, or data objects).
On the bottom part of the main application it is possible to see the PLG2
console. Here the application reports all log information, useful for debugging
purposes. The application dialog in the foreground is used for the configuration
of the Python script which will be used to determine the time properties. As
shown, specific syntax highlighting and other typing hints (such as automatic
indentation) helps the user in writing Python code. The stream dialog is also
displayed in foreground: it is possible to dynamically change the streamed process
(using the “Process streamed” combo box) and the time multiplier. The right

1 See http://plg.processmining.it and https://github.com/delas/plg.

http://plg.processmining.it
https://github.com/delas/plg


Fig. 3: Screenshot of PLG2 with several models in the workspace; the time setting
dialog for “Activity C”, and the log console. The stream dialog is also displayed.

hand side of such dialog (in the rectangle with black background) reports “a
preview” of the stream: 30 seconds of the stream are reported and each filled
circle represents, in this case, up to 3 events.

3 Conclusion

This paper describes PLG2, which is the evolution of an already available tool.
While that tool was able to randomly generate process models and simulate
them, PLG2 extends the support to multiperspective models (by adding detailed
control of time perspective and introducing data objects) and has full support
for the simulation of offline and online settings (generating drifting models and
simulating event streams). A screencast showing PLG2 features is available at
http://youtu.be/t-GMV4hU vs.

References

1. van der Aalst, W.M.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer Berlin / Heidelberg (2011)

2. van der Aalst, W.M., ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow
Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

3. Burattin, A.: PLG2: multiperspective processes randomization and simulation for
online and offline settings. CoRR abs/1506.08415 (2015)

4. Burattin, A.: Process Mining Techniques in Business Environments. Springer (2015)
5. Burattin, A., Sperduti, A.: PLG: a Framework for the Generation of Business Pro-

cess Models and their Execution Logs. In: Proceedings of BPI. Springer (2010)
6. Burattin, A., Sperduti, A., van der Aalst, W.M.: Control-flow Discovery from Event

Streams. In: Proceedings of the IEEE CEC (2014)
7. Günther, C.W.: Process mining in Flexible Environments. TU Eindhoven (2009)

http://youtu.be/t-GMV4hU_vs

	PLG2: Multiperspective Process Randomization with Online and Offline Simulations

