
IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Online Discovery of Declarative Process Models
from Event Streams

Andrea Burattin, Member, IEEE, Marta Cimitile,
Fabrizio M. Maggi, Alessandro Sperduti, Senior Member, IEEE

Abstract—Today’s business processes are often controlled and supported by information systems. These systems record real-time
information about business processes during their executions. This enables the analysis at runtime of the process behavior. However,
many modern systems produce “big data”, i.e., collections of data sets so large and complex that it becomes impossible to store and
process all of them. Moreover, few processes are in steady-state but, due to changing circumstances, they evolve and systems need
to adapt continuously. In this paper, we present a novel framework for the discovery of LTL-based declarative process models from
streaming event data in settings where it is impossible to store all events over an extended period of time or where processes evolve
while being analyzed. The framework continuously updates a set of valid business constraints based on the events occurred in the
event stream. In addition, our approach is able to provide meaningful information about the most significant concept drifts, i.e., changes
occurring in a process during its execution. We report about experimental results obtained using synthetic logs and a real-life event log
pertaining to the treatment of patients diagnosed with cancer in a large Dutch academic hospital.

Index Terms—Process Discovery, Event Stream Analysis, Big Data, Declarative Process Models, Concept Drifts, Operational Decision
Support.

F

1 INTRODUCTION
Recent years have witnessed an increasing production
in business organizations of large size and complex
datasets that are hard to store and manage and that,
for this reason, are called “big data”. In the literature,
there are several definitions of what is meant by big data,
coming from different and important institutions [1], [2],
[3]. Nevertheless, most of them seem to agree on the
“three vs” characterization: (i) volume; (ii) velocity; and
(iii) variety. The volume refers to the “size” of data, which
is assumed to be beyond the ability of typical database
softwares. The velocity at which data is generated is
assumed to be extremely high. The variety characteri-
zation, finally, refers to the heterogeneity of the data
that cannot be tackled using existing processing tools.
Due to the diffusion of information systems, service-
oriented environments and cloud computing, big data
are nowadays available also in the form of event logs
deriving from the execution of large scale processes and
useful to be analyzed using process mining techniques
[4].

In this work, we focus on a particular branch of
process mining, i.e., process discovery. Process discovery

• A. Burattin is with the University of Innsbruck, Austria. Most of his work
has been done as part of the Eurostars-Eureka project PROMPT (E!6696),
while he was with the University of Padua, Italy.
E-mail: andrea.burattin@uibk.ac.at

• M. Cimitile is with the Unitelma Sapienza University, Italy.
E-mail: marta.cimitile@unitelma.it

• F. M. Maggi is with the University of Tartu, Estonia.
E-mail: f.m.maggi@ut.ee

• A. Sperduti is with University of Padua, Italy.
E-mail: sperduti@math.unipd.it

techniques automatically construct a representation of
complex business processes based on example execu-
tions in an event log, without using any a-priori informa-
tion. In particular, we focus on online process discovery
from event streams as a way to deal with big amounts
of data. We process events on-the-fly, as they occur, by
storing information only about the most relevant ones in
a limited budget of memory. As a result of this analysis,
users can monitor and improve, at runtime, the business
processes that generated those events.

The variability of the behavior recorded in event logs
increases as a consequence of the changeability and
high dynamism of the execution environment of the un-
derlying business processes. For this reason, traditional
process discovery techniques (mainly based on proce-
dural process modeling languages), applied to event
logs coming from unstable environments, often produce
models in which too many execution paths are explicitly
represented. Therefore, they become completely unread-
able for a human business analyst.

To address this issue, recently, several works [5], [6],
[7], [8], [9] have been focused on the discovery of declar-
ative process models, proposing algorithms for the off-
line discovery of declarative process models. Declarative
process models represent a good alternative to proce-
dural process models when the execution environment
of the process is turbulent and changeable. However,
the work proposed in the context of off-line declarative
process discovery cannot be used for dealing with large,
growing amounts of data and for online analysis of
process models. In fact, most of the existing techniques
require several iterations on an event log for discovering
a process model and for this reason they are not suitable

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

for online settings.
In this paper, we propose a set of techniques able

to mine an event stream that is a real-time, continu-
ous, ordered sequence of events [10]. The discovered
process models are represented using Declare [11], a
declarative process modeling language that combines a
formal semantics grounded in Linear Temporal Logic
(LTL) on finite traces,1 with a graphical notation. Declare
is characterized by a set of templates defining parame-
terized classes of LTL rules, each one equipped with its
own graphical representation. Constraints are concrete
instantiations of templates and inherit the graphical rep-
resentation and LTL semantics from the corresponding
templates. A Declare model is a set of constraints that
should hold in conjunction during the process execution.

The output models are visualized in the form of an an-
imated movie showing how the behavior of the business
process that produces the event stream changes over
time. To interact with event streams, these techniques
have been developed considering that i) the complete
event stream cannot be stored; ii) only one pass over
data is allowed and backtracking over the event stream
is not feasible; iii) the discovered model should be
quickly adapted to cope with concept drifts, i.e., with the
situation in which the process is changing while being
analyzed; iv) variable system conditions can be reflected
on the event stream (e.g., fluctuating stream rates).

This work extends the study conducted in [12] that
presents algorithms for the discovery of declarative pro-
cess models from event streams. Differently from our
previous work, in this paper, some improvements have
been made: i) a third approximate frequency counting
algorithm has been added to the other two described in
[12]; ii) the discovery algorithms now cover the entire
Declare language (in our previous work only a subset
of Declare templates could be discovered); iii) all the
discovery algorithms have been adapted to discover
constraints based on two different notions of constraint
support (event-based and trace-based, see Section 4); iv)
to assess the applicability of our approach, we conducted
an experimentation with a larger set of synthetic logs
and with a real-life event log pertaining to the treatment
of patients diagnosed with cancer in a large Dutch
academic hospital [13]; v) we now provide a graphical
visualization of the evolution of the Declare model over
time while the event stream is progressing.

The paper is structured as follows. Section 2 intro-
duces the characteristics of event stream mining as well
as some basic notions about Declare. Next, Section 3
illustrates the three approaches, based on Sliding Win-
dow, Lossy Counting and Lossy Counting with Bud-
get, used in this paper for stream mining. Sections 4
and 5 introduce the algorithms for the online discovery
of Declare models underlying the proposed approach.
Section 6 briefly describes how the evolution of the

1. For compactness, we will use the LTL acronym to denote LTL on
finite traces.

TABLE 1
Example of an event log.

Event # Case Id Activity Name Timestamp

1 Case 1 Act1 31-01-2014 00:01
2 Case 1 Act2 31-01-2014 01:02
3 Case 2 Act1 31-01-2014 02:13
4 Case 2 Act2 31-01-2014 13:14
5 Case 2 Act3 31-01-2014 14:25
6 Case 1 Act4 31-01-2014 15:26
7 Case 2 Act4 31-01-2014 16:37

Declare model over time is visualized in the process
mining tool ProM. In Section 7, the experimentation and
the resulting benchmark analysis are discussed. Related
work is presented in Section 8 and Section 9 reports
conclusions.

2 PRELIMINARIES

This section provides a general introduction to the basic
elements we are going to use throughout the paper. In
particular, we introduce the notion of event log and
event stream and we give a quick overview of the
Declare language.

2.1 From Event Logs to Event Streams

Information systems record information related to busi-
ness processes during their execution in the form of
event logs. Recently, the IEEE Task Force on Process
Mining has proposed XES (eXtensible Event Stream) [14],
a new standard for event logs, defined starting from the
data that most information systems use to store. In an
event log, each process instance constitutes a case. The
sequence of events that belong to the same case is called
a trace (and different cases can refer to the same trace).
In Table 1, we report a simple event log, with 7 events,
referring to 4 activities (Act1, Act2, Act3 and Act4), over
two cases (Case 1 and Case 2).

If A is the set of all activity names, C is the set of all
case identifiers and T is the set of timestamps, then, it
is possible to define:

Definition 1 (Event, Event Universe). An event e is a
triple e = (c, a, t) ∈ C×A×T , which describes the occurrence
of activity a in case c at time t. The set of all possible events is
called event universe and it is indicated as E = C ×A×T .

In order to identify the single components of an event
e = (c, a, t), we define the functions #case(e) = c,
#activity(e) = a and #time(e) = t.

Definition 2 (Sequence). Given a finite set N+
n =

{1, 2, . . . , n} and a target set A, we call sequence σ the
function σ : N+

n → A. It is possible to say that σ maps index
values to the corresponding elements in A. For simplicity,
we consider a sequence through its string interpretation:
σ = 〈s1, . . . , sn〉, where si = σ(i) and si ∈ A.

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

A B

A

C

B

A B

C

C

D E

D

D

A B A C B A B C C D E D Dσ

Time

Case: C1

Case: C2

Case: C3

Fig. 1. Visual example of a short portion of an event
stream. Square boxes represent events. Color-codes are
used for case ids (i.e., different background colors repre-
sent different case ids) and labels are used to indicate
activity names. The top line reports the entire stream
portion, the remaining lines show the single cases con-
tributing to the stream.

In our context, we use timestamps to sort events.
Therefore, we can consider a trace as a sequence (Defini-
tion 2). For example, the event log of Table 1 contains two
traces, i.e., 〈Act1,Act2,Act4〉 and 〈Act1,Act2,Act3,Act4〉.

Several works in the data mining literature, such as
[10], [15], [16], agree in defining a data stream as a fast
sequence of data items. It is common to assume that:
(i) data has a small, typically predefined, number of
attributes; (ii) mining algorithms are able to analyze an
infinite number of data items, handling problems related
to memory bounds; (iii) the amount of memory that
the learner can use is finite and much smaller than
the memory required to store the data observed in a
reasonable span of time; (iv) each item is processed
within a certain small amount of time (algorithms have
to linearly scale with respect to the number of processed
items): typically the algorithms work with one pass on
the data; (v) data models associated to a stream (i.e.,
the “underlying concepts”) can either be stationary or
evolving [17].

It is possible to adapt the definition of data streams to
streams of events:

Definition 3 (Event Stream). Given the event universe E ,
a sequence of events S : N+ → E is called an event stream.

An event stream is a potentially infinite sequence of
events. It is possible to assume that sequence indexes
comply with the time order of events (i.e., given the
sequence S, for all indexes i ∈ N+, #time(S(i)) ≤
#time(S(i + 1))). In Figure 1, we show a small portion
of an event stream. This example clarifies that two
subsequent events may belong to different cases.

Starting from a general data stream (not necessarily
a stream of events), it is possible to perform differ-
ent analysis. The most common are clustering, classi-
fication, frequency counting, time series analysis and
change diagnosis (concept drift detection) [18], [17], [15].
More generally, it is possible to distinguish between two
types of stream mining approaches: data- and task-based.
Data-based mining algorithms aim at identifying finite
datasets in a stream. The main requirement of these

datasets is to be representative of the entire stream.
The second type of algorithms, the task-based ones, are
specifically devised for event streams and are able to
minimize time and space complexity for the analysis of
infinite sequences of events. All approaches that we are
presenting in this paper belong to the latter category.

João Gama, in [19], proposes a characterization of data
streams consisting of three different processing models:

1) insert only model: once an item is seen, it cannot be
changed;

2) insert-delete model: items can be seen, deleted or
updated;

3) additive model: each seen item refers to a numerical
variable which is incremented.

All event streams that we are dealing with in this paper
belong to the first category (i.e., insert only model),
since we observe activity executions after they have been
performed and, therefore, it does not make sense to
update or delete events.

2.2 Declare: Some Basic Notions
In this paper, the process behavior as recorded in an
event stream is described using Declare rules. Declare
is a declarative process modeling language originally
introduced by Pesic and van der Aalst in [20]. Instead of
explicitly specifying the flow of the interactions among
process events, Declare describes a set of constraints
that must be satisfied throughout the process execution.
The possible orderings of events are implicitly specified
by constraints and anything that does not violate them
is possible during execution. In comparison with pro-
cedural approaches that produce “closed” models, i.e.,
all what is not explicitly specified is forbidden, Declare
models are “open” and tend to offer more flexibility for
the execution.

A Declare model consists of a set of constraints applied
to events. Constraints, in turn, are based on templates.
Templates are patterns that define parameterized classes
of properties and constraints are their concrete instan-
tiations. Templates have a user-friendly graphical repre-
sentation understandable to the user and their semantics
can be formalized using different logics [21], the main
one being LTL, making them verifiable and executable.
Each constraint inherits the graphical representation and
semantics from its templates. The major benefit of using
templates is that analysts do not have to be aware of
the underlying logic-based formalization to understand
the models. They work with the graphical representa-
tion of templates, while the underlying formulas remain
hidden. TABLE 2 summarizes the Declare templates (we
indicate template parameters with capital letters and
concrete activities in their instantiations with lower case
letters).

We informally introduce here the temporal operators
we use to describe the semantics of the Declare templates
in TABLE 2. We indicate by ϕ and ψ LTL formulas.
◦ϕ means that ϕ has to hold in the next position in

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

TABLE 2
Graphical notation and LTL formalization of the Declare

templates.

Template Formalization Notation

Init(A) A
init

A

Existence(A) ♦A
1..∗

A

Existence2(A) ♦(A ∧◦(♦A)) 2..∗

A

Existence3(A) ♦(A ∧◦(♦(A ∧◦(♦A)))) 3..∗

A

Absence(A) ¬♦A
0

A

Absence2(A) ¬♦(A ∧◦(♦A)) 0..1

A

Absence3(A) ¬♦(A ∧◦(♦(A ∧◦(♦A)))) 0..2

A

Exactly1(A) ♦A ∧ ¬♦(A ∧◦(♦A)) 1

A

Exactly2(A) ♦(A ∧◦(♦A))∧ 2

A

¬♦(A ∧◦(♦(A ∧◦(♦A))))
Choice(A,B) ♦A ∨ ♦B A −− ♦−− B

Exclusive Choice(A,B) (♦A ∨ ♦B) ∧ ¬(♦A ∧ ♦B) A −− �−− B

Responded Existence(A,B) ♦A→ ♦B A •−−−− B

Co-Existence(A,B) ♦A↔ ♦B A •−−−• B

Response(A,B) �(A→ ♦B) A •−−−I B

Precedence(A,B) ¬BW A A −−−I• B

Succession(A,B) �(A→ ♦B) ∧ (¬BW A) A •−−I• B

Alternate Response(A,B) �(A→◦(¬AU B)) A •===I B

Alternate Precedence(A,B) (¬BW A) ∧ �(B →◦(¬BW A)) A ===I• B

Alternate Succession(A,B) (¬BW A) ∧ �(B →◦(¬BW A)) A •==I• B

∧ �(A→◦(¬AU B))

Chain Response(A,B) �(A→◦B) A •=−=−=−I B

Chain Precedence(A,B) �(◦B → A) A =−=−=−I• B

Chain Succession(A,B) �(A→◦B) ∧ �(◦B → A) A •=−=−I• B

Not Co-Existence(A,B) ♦A→ ¬♦B A •−−−•‖ B

Not Succession(A,B) �(A→ ¬♦B) A •−−I•‖ B

Not Chain Succession(A,B) �(A→ ¬◦B) A •=−=−I•‖ B

a trace. �ϕ indicates that ϕ has to hold always in
the subsequent positions in a trace. ♦ϕ means that ϕ
has to hold eventually (somewhere) in the subsequent
positions. ϕU ψ requires that ϕ has to hold in a trace
at least until ψ holds. ψ must hold in the current or in
a future position. Finally, ϕW ψ indicates that ϕ has to
hold in the subsequent positions at least until ψ holds.
If ψ never holds, ϕ must hold everywhere.

Consider, for example, the response constraint �(a →
♦b). This constraint indicates that if a occurs, b must
eventually follow. Therefore, this constraint is satisfied
for traces such as t1 = 〈a, a, b, c〉, t2 = 〈b, b, c, d〉 and
t3 = 〈a, b, c, b〉, but not for t4 = 〈a, b, a, c〉 because, in
this case, the second instance of a is not followed by a
b. Note that, in t2, the considered response constraint is
satisfied in a trivial way because a never occurs. In this
case, we say that the constraint is vacuously satisfied [22].
In [23], the authors introduce the notion of behavioral
vacuity detection according to which a constraint is non-
vacuously satisfied in a trace when it is activated in that
trace. An activation of a constraint in a trace is an event
whose occurrence imposes, because of that constraint,
some obligations on other events in the same trace. For

example, a is an activation for the response constraint
�(a → ♦b), because the execution of a forces b to be
executed eventually.

An activation of a constraint can be a fulfillment or
a violation for that constraint. When a trace is perfectly
compliant with respect to a constraint, every activation
of the constraint in the trace leads to a fulfillment.
Consider, again, the response constraint �(a → ♦b). In
trace t1, the constraint is activated and fulfilled twice,
whereas, in trace t3, the same constraint is activated and
fulfilled only once. On the other hand, when a trace is
not compliant with respect to a constraint, an activation
of the constraint in the trace can lead to a fulfillment
but also to a violation (at least one activation leads
to a violation). In trace t4, for example, the response
constraint �(a → ♦b) is activated twice, but the first
activation leads to a fulfillment (eventually b occurs)
and the second activation leads to a violation (b does
not occur subsequently). An algorithm to discriminate
between fulfillments and violations for a constraint in a
trace is presented in [23].

3 APPROXIMATE FREQUENCY COUNTING AL-
GORITHMS

The approaches we present in the rest of the paper
are based on three algorithms, already available in the
literature. The first algorithm is called Sliding Window
[19]. The basic idea of this algorithm is to collect events
for a certain span of time and then apply a standard “off-
line” analysis approach. The other two approaches are
called Lossy Counting [24] and Lossy Counting with Budget
[25]. The basic idea of these approaches is to consider
aggregated representations of the latest observations, i.e.,
instead of storing repetitions of the same event, to save
space, they store a counter keeping trace of the number
of instances of the same observation.

For the sake of clarity, in the following subsections, we
present the lossy counting algorithms in their original
formulation defined to solve the “frequency counting
problem” (i.e., to count the number of times an event is
observed in a portion of a stream). We will then explain
how these two algorithms can be used for the discovery
of declarative process models.

3.1 Lossy Counting

In this section, we describe the Lossy Counting al-
gorithm, first presented in [24]. We have chosen this
algorithm instead of the Sticky Sampling algorithm (de-
scribed in the same paper), since, as the authors state,
in practice, the Lossy Counting approach has better
performances.

Lossy Counting (LC) is an approximate frequency
counting algorithm. The pseudocode of this approach is
reported in Algorithm 1. The idea behind this approach
is to conceptually divide the stream into buckets of width
w =

⌈
1
ε

⌉
, where ε ∈ (0, 1) is an error parameter. The

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

Algorithm 1: Frequency Mining with Lossy Counting
Input: S: data stream; ε: maximal approximation error

1 T ← ∅ /* Initially empty set */
2 N ← 1 /* Number of observed events */
3 w ←

⌈
1
ε

⌉
/* Bucket width */

4 forever do
5 e← observe(S)
6 if analyze(e) then
7 bcurr ←

⌈
N
ε

⌉
8 if e is already in T then
9 Increment the frequency of e in T

10 else
11 Insert (e, 1, bcurr − 1) in T
12 end

13 if N mod w = 0 then
14 foreach (a, f,∆) ∈ T s.t. f + ∆ ≤ bcurr do
15 Remove (a, f,∆) from T
16 end
17 end
18 N ← N + 1
19 end
20 end

current bucket (i.e., the bucket of the latest seen event)
is identified as bcurr =

⌈
N
w

⌉
, where N is a progressive

event counter.
The basic data structure that LC requires is a set T of

entries of the form (e, f,∆) where:
• e is an event of the stream;
• f is the estimated frequency of event e; and
• ∆ is the maximum number of times e can occur.

Every time a new event e is observed, if this event
must be processed (line 6), the algorithm verifies if the
data structure already contains an entry for it. If such
an entry exists, then its frequency is incremented by
one, otherwise a new tuple (e, 1, bcurr − 1) is added. In
this latter case, the new tuple has a frequency value set
to 1. Every time N mod w = 0 (i.e., every w events),
the algorithm cleans up the data structure by removing
entries with maximal approximate frequency (i.e., sum
of frequency and maximum number of occurrences) less
than the current bucket id, i.e., the algorithm removes
the entries that satisfy the inequality f + ∆ ≤ bcurr .

Note that the size of the data structure T depends
on the stream S. For example, if the stream contains
many instances of the same event, the algorithm only
updates the f component of the corresponding event in
T and, therefore, the space needed to store T is not that
large. Moreover, it is worthwhile noting that the only
way to control the size of T is indirectly via ε and it is
not possible to directly control the size of the memory
dedicated to store this structure.

3.2 Lossy Counting with Budget

In a recent work by Da San Martino et al. [25], a Lossy
Counting with Budget (LCB) algorithm is proposed. Al-
gorithm 2 reports the pseudocode of this procedure. LCB
uses the same data structure as LC (T). The fundamental
difference between this approach and LC is that, in this
new algorithm, we can control the maximum space used
to store it.

Algorithm 2: Frequency Mining with Lossy Counting
with Budget

Input: S: data stream; B: available budget

1 T ← ∅ /* Initially empty set */
2 bcurr ← 0 /* Initial bucket id */
3 forever do
4 e← observe(S)
5 if analyze(e) then
6 if e is already in T then
7 Increment the frequency of e in T
8 else

9 if |T | = B then
10 bcurr ← bcurr + 1
11 repeat
12 foreach (a, f,∆) ∈ T s.t. f + ∆ ≤ bcurr do
13 Remove (a, f,∆) from T
14 end
15 if no element has been removed then
16 bcurr ← min

(a,f,∆)∈T
f + ∆

17 end
18 until |T | < B
19 end

20 Insert (e, 1, bcurr) in T
21 end
22 end
23 end

Differently from LC, LCB dynamically changes the
value of ε in order to keep the size of T within the
available budget B. In LCB, after observing a new event
e, if it is already contained in T , then its frequency value
is updated as in LC. However, in this case, if e is not in
T and T has reached the maximum allowed size, it is
necessary to remove old observations from T in order to
make space for the new event to be inserted (line 9).

The deletion condition is the same as in LC (i.e.,
f + ∆ ≤ bcurr) but, in this case, if no event satisfies it
(and there is no space for the new observation), bcurr is
increased until at least one event is removed (line 16).
Note that increasing bcurr means that the maximal ap-
proximation error also increases. Once there is space
available for the new event, it is added to the data
structure T .

4 ONLINE DISCOVERY OF DECLARE MODELS

In this section, we describe how to discover, at runtime,
a Declare model from a stream of events. We use the
algorithms for memory management presented in the
previous sections in combination with algorithms for
the online discovery of Declare constraints referring to
different templates.

Algorithm 3 presents a general overview of our online
discovery approach. Here, we keep a set R of replayers,
one for each template we want to discover (line 3).
Note that replayers for different templates implement
different discovery algorithms. We will discuss in detail
two examples of discovery algorithms in Section 5. Then,
when a new event e is observed from the stream S, if it
is necessary to analyze it, the algorithm replays e on all
the template replayers of R (line 9).

Periodically (the period may depend either on the
number of events observed, or on the actual elapsed

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

Algorithm 3: Online discovery scheme
Input: S: event stream, conf: approximate algorithm configuration (either

LC or LCB, with the corresponding configuration: ε or B), update
model condition

1 R← ∅ /* Set of template replayers */
2 foreach Declare template t do
3 Add a replayer for t (according to conf) to R
4 end

5 forever do
6 e← observe(S)
7 if analyze(e) then
8 foreach r ∈ R do
9 r(e, conf) /* Replay e on replayer r */

10 end
11 end

12 if update model condition then
13 model← initially empty Declare model
14 foreach r ∈ R do
15 Update model with constraints in r
16 end
17 Use model /* For example, update a graphical

representation */
18 end
19 end

time), it is possible to update the discovered Declare
model, by querying each replayer for the set of satisfied
constraints (line 15). The Declare model can be used,
for example, to update a user interface, or to perform
periodical analysis.

In the current implementation of our approach, it is
possible to choose the Declare templates to be discov-
ered. In particular, all the standard Declare templates
(listed in Table 2) can be discovered. Nevertheless, it is
possible to make the approach working with additional
user-defined templates by implementing the correspond-
ing replayers and by adding them to R (line 3).

It is worthwhile noting that our approach can eas-
ily be distributed over different computational nodes. In
particular, each replayer is independent of the others
and, therefore, all the replay operations (line 9) can be
parallelized. The same property holds also for the model
update (line 15). This property makes our approach
particularly suitable for dealing with high data volumes.

In our previous work [12], we proposed three basic
approaches for the discovery of the following six Declare
templates: (i) Response and Not Response; (ii) Prece-
dence and Not Precedence; and (iii) Responded Exis-
tence and Not Responded Existence. In this work, we
extend the number of possible Declare templates to
cover the whole Declare language. In particular, our
approach is able to discover the following templates:
Absence, Absence2 and Absence3; Alternate Precedence;
Alternate Response; Alternate Succession; Chain Prece-
dence; Chain Response; Chain Succession and Not Chain
Succession; Choice; Co-Existence and Not Co-Existence;
Exactly1 and Exactly2; Exclusive Choice; Existence, Ex-
istence2 and Existence3; Init; Precedence and Not Prece-
dence; Response and Not Response; Responded Exis-
tence and Not Responded Existence; Succession and Not
Succession.

Some of these algorithms are very straightforward.

For example, the existence templates and the absence
templates verify that, in each case in the event stream,
an event occurs at least and at most a certain number
of times. It is also easy to verify that a case starts with
a certain event (Init template). However, as explained in
Section 4.1, these algorithms can only be defined if in the
event stream there is information about the start and the
end event of each case.

All algorithms start from a stream and build a set
of candidate constraints, by considering all the possible
combinations of activity names (only the ones referring
to events detected so far in the event stream). Each
algorithm receives as input an event e = (c, a, t) and
updates an internal data-structure in order to keep track
of the new observed event and of how it affects the
satisfaction of the candidates.

The candidate constraints to be included in the discov-
ered Declare model can be selected based on the percent-
age of activations that leads to a fulfillment (event-based
constraint support) or based on the percentage of cases
in which the constraint is satisfied (trace-based support).
In [12], we implemented our approach using the notion
of event-based support. In this paper, we also consider
the case in which the satisfaction of a constraint is
evaluated in terms of trace-based support. Of course, in
this latter case, the event stream should provide not only
information about the case to which each event belongs
but also an indication on the exact point in which each
trace starts and ends. In the following subsections, we
explain how our approach can be adapted based on these
two notions of constraint support.

4.1 Discovery with Event-Based Support

In [12], we assume that every event in a stream only
contains information on the corresponding case id, an
activity name and a timestamp. We call this approach
“event-based online discovery” because, since we do not
have information about the points in the stream in which
each case starts and ends, we can only measure the
satisfaction of a constraint using the event-based notion
of support.

However, the inability to identify start and end events
of a case causes two main drawbacks. The first one is
connected to the space usage, i.e., it is not possible to
clean up the memory from events related to a completed
case. The second drawback is related to the semantics of
the Declare constraints. Since it is not possible to have
a complete view of an entire trace, for some constraints,
it is never possible to determine whether they are per-
manently satisfied or violated. For example, the response
constraint �(a → ♦b) is always temporarily violated, if
there is an a not (yet) followed by a b, or temporarily
satisfied, if each a is (currently) followed by a b. In
addition, the satisfaction of some constraints cannot be
evaluated using the event-based notion of support. It
is not natural, for example, to evaluate the percentage
of fulfillments for an absence constraint, since such a

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

Trace start

A B A C A B B C C E Dσ

Trace end

D

Fig. 2. An example of a stream σ with start and end
events of a case tagged.

constraint is only satisfied when the constrained event
never occurs. Similarly, it is difficult to count the number
of fulfillments for an existence constraint. For example,
it is not possible to count the number of fulfillment of
a constraint forcing an event to occur “at least three
times” or “exactly twice”. Without information about the
positions in which each case starts and ends, it is also
impossible to evaluate constraints like Init, forcing an
event to be the first one in a case. Although event-based
approaches suffer from these problems, they are more
easily applicable, since they require less information to
be provided in an event stream.

4.2 Discovery with Trace-Based Support
As mentioned in the previous section, if events of a
stream contain no information about the start and the
end events of a case, it is not straightforward or even
impossible to check the validity of some Declare con-
straints. On the other hand, we believe that tagging the
first and the last event of each case is not particularly
costly (the assumption, here, is to have knowledge about
the entry and exit points of each case).

Therefore, in the so-called “trace-based” approaches,
it is necessary to identify start and end events of each
case with tags. Fig. 2 shows a graphical representation
of this tagging for the black case (with white labels).
In particular, we assume that the first and last event
of the case (first and last occurrence of black events)
are identifiable. This can be done in different ways. For
example, it is possible to include this information in
an event attribute, or to specify a list of activity names
corresponding to start and end events.

If the start and the end events are identifiable, it
is possible to use a modified version of the template
replayers for the online discovery using the trace-based
notion of constraint support. To this aim, it is necessary
to keep track of all the running cases and to evaluate the
satisfaction of a constraint only for those cases that are
completed. An additional data structure is then needed,
which stores information about completed cases.

Trace-based approaches can improve their perfor-
mance by implementing the analyze(e) function (line 7
of Algorithm 3) to check whether a new observed event
belongs to a case that is currently running. In particular,
it is possible to immediately discard a new event if:

1) it is not the start event of a new case and it belongs
to a case that is not yet started or already completed;

2) it is the start event of a case that is already running;
3) it is the end event of a case that is not running.

In all these cases, it is possible to report the invalid
behavior to the user for further analysis.

5 EXAMPLES OF DISCOVERY ALGORITHMS

For space limitations, we cannot describe all the im-
plemented discovery algorithms that cover the entire
Declare language. As an example, we show here two
of the new algorithms implemented for the discovery
of alternate response and chain response templates. Both of
them are defined for the event-based scenario.

In these algorithms, we use the notion of map. Given a
set of keys K and a set of values V , a map is a set M ⊆
K × V . We use the following operators: (i) M.put(k, v),
to add value v with key k to M ; (ii) M.get(x) ∈ V , with
k ∈ K, to retrieve from M the value associated with
key k; (iii) M.keys ⊆ K to obtain the set of keys in M ;
(iv) M.vals ⊆ V to obtain the set of values in M . The
keys of these maps are handled as elements in the data
structure T when using LC and LCB. Therefore, some
keys in the maps can be discarded at a certain point in
time during the stream execution. In this case, also the
values associated to the key that has been discarded are
removed from the memory.

Algorithm 4 can be used for the discovery of alternate
response constraints, whereas Algorithm 5 is able to
discover chain response constraints. Based on the template
semantics given in TABLE 2, the alternate response tem-
plate indicates that every A has to be eventually followed
by a B without another occurrence of A in between. The
chain response template requires that every A has to be
immediately followed by a B. In these algorithms, L is
the set of all the activity names observed in the event
stream (in all the cases). activationsCounterc is a map
defined for each case c and containing, for each activity
name, the number of its occurrences in c. This map can
be used to count the number of activations for each
constraint (the number of activations can be obtained
by counting how many times the corresponding activity
name has occurred in each case of the event stream).
pendingActivationsc, fulfilledActivationsc and violatedActi-
vationsc are maps defined for each case c and contain-
ing, respectively, the number of pending activations, the
number of fulfillments and the number of violations in
c for each constraint activated in c (the keys in the map
are pairs of activity names representing the constraint
parameters).

The algorithms receive as input an event e = (c, a, t),
where c is the case id, a is the activity name and t is the
timestamp. This event is processed by updating maps ac-
tivationsCounterc, pendingActivationsc, fulfilledActivationsc
and violatedActivationsc. Using these maps, it is possible
to count the number of activations for every candidate
constraint, the number of fulfillments and the number of
violations.

The computational complexity of Algorithm 4 is linear
in the number of activity names (lines 15-25) and in the
number of pending activations (lines 28-39). Similarly,

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

Algorithm 4: Discovery algorithm for alternate re-
sponse constraints

Input: e = (c, a, t) the event to be processed (c is the case id, a is the
activity name, t is the timestamp)

conf: approximate algorithm configuration (either LC or LCB, with the
corresponding configuration: ε or B)

1 if L is not defined then
2 Define the empty map L
3 end
4 if activationsCounterc is not defined then
5 Define the map activationsCounterc
6 end
7 if pendingActivationsc is not defined then
8 Define the map pendingActivationsc
9 end

10 if violatedActivationsc is not defined then
11 Define the map violatedActivationsc
12 end

13 if a /∈ activationsCounterc.keys then
14 activationsCounterc.put(a, 1)
15 foreach l ∈ L.vals do
16 acts← activationsCounterc.get(l)
17 if acts > 1 then
18 violatedActivationsc.put((l, a), acts− 1)
19 else
20 violatedActivationsc.put((l, a), 0)
21 end
22 pendingActivationsc.put((l, a), 0)
23 pendingActivationsc.put((a, l), 1)
24 violatedActivationsc.put((a, l), 0)
25 end
26 else
27 activationsCounterc.put(a, activationsCounterc.get(a) + 1)
28 foreach (k1, k2) ∈ pendingActivationsc.keys do
29 if k2 = a then /* a equals to the second activity

name */
30 pendingActivationsc.put((k1, a), 0)
31 else if k1 = a then /* a equals to the first activity

name */
32 pends← pendingActivationsc.get((a, k2))
33 pendingActivationsc.put((a, k2), pends + 1)
34 if pends > 0 then
35 viols← violatedActivationsc.get((a, k2))
36 violatedActivationsc.put((a, k2), viols + 1)
37 end
38 end
39 end
40 end

41 if (c, a) /∈ L then L.put((c, a))

the complexity of Algorithm 5 is linear in the number of
activity names (lines 16-22) and in the number of fulfilled
activations (lines 26-31). Therefore, the algorithms are
scalable, since the number of activity names is typically
finite and rather small and the same assumption also
holds for the number of pending and fulfilled activa-
tions. In addition, as demonstrated in our experimenta-
tion, reported in Section 7, the computational complexity
of the discovery algorithms is suitable to guarantee their
applicability in real-world scenarios.

6 IMPLEMENTATION

The complete approach has been implemented as a plug-
in of the process mining tool ProM,2 called StreamDeclare-
Discovery.3 This plug-in is able to connect to a stream
source that emits events (via a TCP connection) and to
mine them, in order to keep an updated version of a

2. See http://www.processmining.org for information about ProM.
3. The source code of the plug-in is publicly available at https://svn.

win.tue.nl/repos/prom/Packages/StreamDeclareDiscovery/Trunk.

Algorithm 5: Discovery algorithm for chain response
constraints

Input: e = (c, a, t) the event to be processed (c is the case id of the event,
a is the activity name, t is the timestamp)

conf: approximate algorithm configuration (either LC or LCB, with the
corresponding configuration: ε or B)

1 if L is not defined then
2 Define the empty map L
3 end
4 if activationsCounterc is not defined then
5 Define the map activationsCounterc
6 end
7 if lastActivityInCasec is not defined then
8 Define the variable lastActivityInCasec
9 end

10 if fulfilledActivationsc is not defined then
11 Define the map fulfilledActivationsc
12 end

13 if a /∈ activationsCounterc.keys then
14 activationsCounterc.put(a, 1)
15 if not lastActivityInCasec.isEmpty then
16 foreach l ∈ L.vals do
17 if l = lastActivityInCasec then /* l equals to the

last activity in the case */
18 fulfilledActivationsc.put((l, a), 1)
19 else
20 fulfilledActivationsc.put((l, a), 0)
21 end
22 end
23 end
24 else
25 activationsCounterc.put(a, activationsCounterc.get(a) + 1)
26 foreach (k1, k2) ∈ fulfilledActivationsc.keys do
27 if (k1 = lastActivityInCasec) ∧ (k2 = a) then
28 fulfils← fulfilledActivationsc.get((k1, a))
29 fulfilledActivationsc.put((k1, a), fulfils + 1)
30 end
31 end
32 end

33 lastActivityInCasec ← a

34 if (c, a) /∈ L then L.put((c, a))

discovered Declare model. The implemented software
is able to show both a graphical representation of the
top ten constraints (with the highest support) and a list
of all discovered constrains (above a minimum support
threshold specified by the user). All the elements in the
graphical visualization evolve over time, according to
the events observed into the stream. A detailed descrip-
tion of the implementation of this visualizer is reported
in [26]. See http://youtu.be/9gbrhkSfRTc for a video
demonstration of the visualizer.

7 EXPERIMENTATION

For our experimental phase, we tested three case studies,
two with synthetic data, dealing with the sudden drift
case and the gradual drift case respectively and one with
real data. The entire experimentation was conducted on a
machine with an 8-core Intel i7 processor equipped with
32GB of RAM, Linux 3.10 and Java 7. Each execution
was bound to a single core limiting to 16GB the memory
available to the Java Virtual Machine.

7.1 Periodical Sudden Drifts
In this section, we discuss the results of a set of exper-
iments carried out using a stream containing periodical
sudden drifts [27]. For this case study, we have generated

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

two synthetic logs (L1 and L2) by modeling two variants
of the insurance claim process described in [28] in CPN
Tools4 and by simulating the models. L1 contains 14,840
events and L2 contains 16,438 events. We merged the
logs (eight alternations of L1 and L2) using the Stream
Package in ProM.5 The same package has been used to
transform the resulting log into an event stream. The
event stream contains 250,224 events and has several
sudden concept drifts (one for every switch from L1 to
L2).

Using the generated event stream, we have compared
the effectiveness and the efficiency of the online dis-
covery using the SW approach with respect to LC and
LCB. In addition, we have also separately evaluated the
event-based LC approach (LCe) and the traces-based LC
approach (LCt) and, also, the event-based LCB approach
(LCBe) and the traces-based LCB approach (LCBt). We
discovered a Declare model (using all the standard De-
clare templates) every 10,000 processed events, i.e., we
fixed an evaluation point every 10,000 events.

For evaluating the effectiveness of the approaches,
we have used the precision and recall metrics [29]. To
compute precision and recall, we assumed that the dis-
covered Declare constraints could be classified into one
of four categories, i.e., i) true-positive (TP : correctly dis-
covered); ii) false-positive (FP : incorrectly discovered);
iii) true-negative (TN : correctly missed); iv) false-negative
(FN : incorrectly missed). Precision and recall are defined
as

Precision =
TP

TP + FP
Recall =

TP
TP + FN

. (1)

The gold standard used as reference is the set of all true
positive instances. In our experiments, we have used
as gold standards two Declare models (M1 and M2)
discovered from L1 and L2 using the Declare Miner
(available in ProM) and containing constraints satisfied
in all the cases. Precision and recall have been evaluated
at every evaluation point. To compute them, we have
used either M1 or M2 as gold standard based on
whether the evaluation point corresponds to an event
belonging to L1 or L2, respectively. At every evaluation
point, we selected the constraints with fulfillment ratio
equal to 1 among the candidate constraints generated
by the LC and LCB approaches and discovered (with
the Declare Miner) the constraints with support 100%
in the SW approach. Then, we compared these sets
of constraints with the gold standards. A discovered
constraint is classified as a true-positive or as a false-
positive depending on whether it belongs to the gold
standard or not. A constraint that belongs to the gold
standard but that has not been discovered is a false-

4. See http://cpntools.org for information about CPN Tools.
5. The source code of the package is publicly available at https://

svn.win.tue.nl/repos/prom/Packages/Stream/Trunk.

0.4

0.5

0.6

0.7

0.8

0.9

1

25000 50000 75000 100000 125000 150000 175000 200000 225000 250000

F1

ObservedMevents

SlidingMWindow

maxM=M50000
maxM=M100000

maxM=M200000
maxM=M400000

maxM=M600000
maxM=M800000

Fig. 3. Trend of F1 for SW computed for different eval-
uation points with different configuration of the maximum
available memory (maxM). Vertical dotted lines indicate
concept drifts.

negative. 6

We have evaluated the efficiency of the proposed
approaches in terms of events processed per second and
amount of required memory. For LC and LCB, the space
used is the number of tuples stored by all the template
replayers in the corresponding data structures (maps).
For the LCB approaches, the available budget has been
partitioned among all the template replayers.

Effectiveness and efficiency have been evaluated for
different values of the maximum available memory
(maxM) for SW, the available budget (B) for LCBe, LCBt
and for different values of the maximal approximation
error (ε) for LCe, LCt.

7.1.1 Results for Precision and Recall
In Fig. 3, we show the trend of the harmonic mean of
precision and recall

F1 = 2 · Precision · Recall
Precision + Recall

(2)

for the SW approach for different evaluation points and
for different configurations of maxM (50,000; 100,000;
200,000; 400,000; 600,000; 800,000).

The plot shows that the F1 value lies between 0.41
and 0.82. The lowest values are obtained with the lowest
maxM (50,000; 100,000; 200,000). On the other hand,
when there is more space available (i.e., maxM equals to
400,000; 600,000 and 800,000) the F1 values are higher (in
particular, the lines referring to the three highest values
of maxM are overlapped). This can be explained consid-
ering that the log contains 250,000 events and, therefore,
when maxM is lower than 250,000, some observations

6. As described in [30], it is possible to divide the metrics for the
evaluation of the quality of the mined process models in model-to-log
(through the “four competing dimensions”) and model-to-model met-
rics. In our experimentation, since we have a gold standard available,
we decided to use the model-to-model approach, i.e., we compare the
mined model with the gold standard. This type of metrics provides
more reliable results than a comparison based on model-to-log metrics
(which are fundamental in case the gold standard is not available). In
particular, we are not just stating that the mined model has a good
quality according to some general standards, but we are measuring to
what extent the mined model is exactly the same as the target one.

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

0.4

0.5

0.6

0.7

0.8

0.9

1

25000 50000 75000 100000 125000 150000 175000 200000 225000 250000

F1

Observed events

LC event-based

ε = 0.01 ε = 0.005 ε = 0.001

0.4

0.5

0.6

0.7

0.8

0.9

1

25000 50000 75000 100000 125000 150000 175000 200000 225000 250000

F1

Observed events

LC trace-based

ε = 0.01 ε = 0.005 ε = 0.001

Fig. 4. Trend of F1 for LC, computed for different evaluation points, with different configuration of the maximal
approximation error (ε). The left-hand side plot reports the event-based approach; the right-hand side plot reports
the trace-based approach. Vertical dotted lines indicate concept drifts.

0.4

0.5

0.6

0.7

0.8

0.9

1

25000 50000 75000 100000 125000 150000 175000 200000 225000 250000

F1

Observed events

LCB event-based

B = 50000
B = 100000

B = 200000
B = 400000

B = 600000
B = 800000

0.4

0.5

0.6

0.7

0.8

0.9

1

25000 50000 75000 100000 125000 150000 175000 200000 225000 250000

F1

Observed events

LCB trace-based

B = 50000
B = 100000

B = 200000
B = 400000

B = 600000
B = 800000

Fig. 5. Trend of F1 for LCB, computed for different evaluation points, with different configuration of the maximum
available memory (B). The left-hand side plot reports the event-based approach; the right-hand side plot reports the
trace-based approach. Vertical dotted lines indicate concept drifts.

have to be discarded. Note that, when the evaluation
point corresponding to the maximum available memory
is reached and old events must be discarded, the F1

measure decreases.

Fig. 4 reports the trend of the F1 measure, for the
LC approach (both event- and trace-based) for different
maximal approximation errors ε (0.01, 0.005 and 0.001).
As expected, for the trace-based approach, the overall
quality of the discovered model is better. This is due
to the fact that, in this case, the discovery is performed
only on cases that are completed and there is no noise
deriving from the analysis of incomplete information.
In particular, the F1 measure of all configurations of
the event-based approach lies between 0.5 and 0.7. The
trace-based approach has, in general, very high values
for F1 (close to 1). Note that, for ε = 0.01, the F1 values
corresponding to concept drifts decrease down to 0. This
is due to the fact that, for high values of ε, the LC
approach becomes more imprecise (this is the reason
why F1 is so unstable after every concept drift). Since
for the trace-based approach we take into consideration
only finished traces, it is very likely that, after a concept
drift, there are only few or even no traces available for
the evaluation of the candidate constraints.

Fig. 5 reports the trend of F1 for LCBe and LCBt,
for different values of the budget B. For the LCBe

approach, for higher values of the available budget, the
F1 trend goes below the threshold of 0.7 later. For LCBt,
it is evident that lower values of the budget allow the
approach to adapt more quickly after a concept drift (old
behavior is “forgotten” more quickly). As in the LC case,
also in this case, the trace-based approach reaches better
F1 values. Note that, differently from the SW approach,
in this case, B does not represent the number of stored
events. Instead, it refers to the number of tuples stored in
memory for all the template replayers. For this reason, as
shown on the left-hand side plot of Fig. 5, results may
change even when the budget is higher than the total
number of observed events.

In Fig. 6, we show a comparison of the F1 trends
for all the approaches (with the corresponding optimal
configurations, maxM = B = 800, 000 and ε = 0.001).
LCBe is more accurate than LCe and SW. LCt and LCBt
clearly outperform all the other approaches. LCt recovers
more quickly than LCBt after a concept drift.

7.1.2 Performance Issues

The efficiency of the described approaches has been first
evaluated comparing them in terms of number of events
processed per second (Fig. 7). The values reported in the
figure have been evaluated as the average over three
runs.

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

0.4

0.5

0.6

0.7

0.8

0.9

1

25000 50000 75000 100000 125000 150000 175000 200000 225000 250000

F1

ObservedCevents

SWC(maxM=C800000)
LCC/CEventsC(εC=C0.001)
LCC/CTracesC(εC=C0.001)

LCBC/CEventsC(BC=C800000)
LCBC/CTracesC(BC=C800000)

Fig. 6. Trend of F1 for SW, LCe, LCt, LCBe, LCBt, for
different evaluation points, with maxM = B = 800, 000
and ε = 0.001. Vertical dotted lines indicate concept drifts.

As shown on the left-hand side of Fig. 7, the process-
ing time required by the budget-parametric approaches
(i.e., SW and LCB) increases with the budget and, there-
fore, the efficiency decreases. This phenomenon is due to
the higher number of operations that must be performed
when handling larger data structures. For higher values
of the budget (more than 400,000) the processing time
starts to be less sensible to the budget variations. Also
note that the LCBt approach is more efficient than the
SW approach for low values of the budget but it is less
efficient for budget values higher than 200,000. In gen-
eral, the performances of the LCB approaches decrease
more quickly than the ones of the SW approach when
the available budget increases.

For the LCe and LCt approaches, reported on the
right-hand side of Fig. 7, we evaluated the number of
events processed per second for different values of the
maximal approximation error. The processing time for
LCt is, in general, lower than the one for LCe and,
also, the F1 values for LCt are higher. In general, in
terms of efficiency, the LC approaches are the best ones,
since they do not impose any limitation on the memory
consumption and the memory-related operations (such
as iterating through the data structure to remove old
items) are very time consuming. The plot in Fig. 8 reports
the space usage for the LC approaches (both event- and
trace-based). As one may predict, the required memory
is higher for lower maximal approximation errors, since,
in this case, it is necessary to keep more observations
in memory. The traces-based approaches require more
memory with respect to the events-based ones for the
same ε values. This phenomenon is due to the necessity
to store the entire set of events referring to the same case.

7.2 Gradual Drifts

The first case study tested only sudden drifts. How-
ever, sometimes, it may happen that drifts are gradual
and a process moves from one behavior to another
through intermediate steps. To test this scenario, we have
considered two variants of the insurance claim process
described in [28] and designed 6 additional models

to represent the intermediate steps between the two
models. We have simulated these models generating 8
logs (L′1,La, . . . ,Lf ,L′2) [27]. L′1 contains 139,938 events,
L′2 contains 128,696 events and La, . . . ,Lf contain 77,231
events (altogether). Using the Stream Package, we have
generated an event stream containing 345,865 events. We
have used as gold standards the Declare models M′1
and M′2 discovered from L′1 and L′2 and Ma, . . . ,Mf

discovered from La, . . . ,Lf . Ma, . . . ,Mf represent the
intermediate steps to go fromM′1 toM′2. Therefore,M′1
and Ma are very similar and the same happens for Ma

compared to Mb, for Mb compared to Mc and so on.
For the evaluation, we used the F1 measure as de-

scribed for the sudden drift case. The results are reported
in Fig. 9. In this plot, the gray area indicates the gradual
drift. In general, the observations made for the previous
case study still hold. In particular, the trace-based ap-
proaches (both for LC and LCB) reach the highest values
for F1. The event-based approaches, instead, correspond
to lower values for F1 but perform, in general, better
than the SW approach. Note that the drift causes a drop
down of the F1 measure for all the approaches but the
event-based approaches are much slower than the trace-
based approaches in recovering after the drift.

7.3 Applicability to Real Data
In order to assess the applicability of our approaches to
real data, we verified their scalability when the number
of activities in the process is extremely high and, there-
fore, the number of candidate constraints grows. Table 3
and 4 report the time efficiency (i.e., number of processed
events per seconds) of LCe, LCt and LCBe and LCBt
applied to the BPI Challenge (BPIC) 2011 log [13]. This
log, pertaining to the treatment of patients diagnosed
with cancer in a large Dutch academic hospital, contains
623 different activities and 150,291 events, distributed
over 1,143 cases. This log can be considered as an
extreme case, due to the very high number of different
activity names and the number of different candidate
constraints that can emerge.

The data reported in the two tables shows that the
approaches can still be applied, although the overall
performance decreases. To improve this aspects, several
solutions may be adopted. For example, due to the
structure of the online discovery scheme, it is possible
to employ several processing units (e.g., one CPU core
for each template replayer), or it might be possible
to restrict the set of candidate constraints to the most
interesting ones. This can be easily done by integrating
this approach with approaches to discover frequent item
sets like the one proposed in [9].

The analysis of a real-life event log at runtime provides
the user with two types of diagnostics. First, the user
can “query” the miner about the validity, at a certain
point in time during the process execution, of a specific
constraint of interest. In addition, the provided list of
valid constraints is sorted based on interestingness met-
rics (see, [9] for more information about these metrics).

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

1

10

100

1000

10000

50000 100000 200000 400000 600000 800000
0

0.2

0.4

0.6

0.8

1
Ev

en
ts

bp
er

bs
ec

o
n

d

F1

Budgetb/bmaximumbmemorybavailable

EfficiencybforbSW
EfficiencybforbLCBb/bevents
EfficiencybforbLCBb/btraces

F1bforbSW
F1bforbLCBb/bevents
F1bforbLCBb/btraces

1

10

100

1000

10000

ε/=/0.01 ε/=/0.005 ε/=/0.001
0

0.2

0.4

0.6

0.8

1

Ev
en

ts
/p

er
/s

ec
o

n
d

F1

Approximation/error

Efficiency/for/LC///events
Efficiency/for/LC///traces

F1/for/LC///events
F1/for/LC///traces

Fig. 7. Efficiency evaluation of all the presented approaches. Both plots report the efficiency in terms of number of
events that the miner is able to process per second (logarithmic scale). The secondary y-axis on the right-hand side
of each plot reports the F1 measure of each approach for the given configuration.

0

10000

20000

30000

40000

50000

60000

70000

25000 50000 75000 100000 125000 150000 175000 200000 225000 250000

St
o

re
d

Ed
at

aE
(n

o
.Eo

fE
tu

p
le

s)

ObservedEevents

LCE/EEventsE(εE=E0.01)
LCE/EEventsE(εE=E0.005)
LCE/EEventsE(εE=E0.001)

LCE/ETracesE(εE=E0.01)
LCE/ETracesE(εE=E0.005)
LCE/ETracesE(εE=E0.001)

Fig. 8. Space requirements (in terms of Lossy Counting
tuples) for LC approaches (both event- and trace-based)
with different configuration of maximal approximation er-
ror (ε). Vertical dotted lines indicate concept drifts.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50000 100000 150000 200000 250000 300000 350000

F1

ObservedWevents

LCW/WEventsW(εW=W0.0001)
LCBW/WEventsW(BW=W800000)

SWW(maxM=W100000)

LCW/WTracesW(εW=W0.0001)
LCBW/WTracesW(BW=W800000)

Fig. 9. Trend of F1 for SW, LCe, LCt, LCBe, LCBt, for
different evaluation points, with B = 800, 000, ε = 0.0001
and maxM = 100, 000. The gray area indicates where the
gradual drift occurs.

Therefore, in practice, only the top-scored constraints
according to these metrics are shown to the user so
that the discovered models can be quickly read and

TABLE 3
Efficiency (i.e., the number of processed events per

second) evaluation of LCe and LCt for the BPIC 2011.

Approximation error (ε) LC / Events LC / Traces

0.01 240.47 568.00
0.005 147.81 316.25
0.001 59.23 91.47

TABLE 4
Efficiency (i.e., the number of processed events per

second) evaluation of LCBe and LCBt for the BPIC 2011.

Budget B LCB / Events LCB / Traces

50,000 28.45 69.95
100,000 22.91 27.08
200,000 23.35 20.16
400,000 22.86 16.47
600,000 22.84 18.77
800,000 23.25 19.20

understood.

8 RELATED WORK

Process mining consists of a set of techniques allowing
for the extraction of structured process descriptions from
a set of recorded process executions. Starting from [31],
several techniques have been proposed in this field.
They can be classified as pure algorithmic, heuristic and
genetic [4]. More recently, several works have been pub-
lished starting from the awareness that techniques based
on declarative languages are suitable for the discovery of
unpredictable, variable processes working in turbulent
environments [6], [7], [8], [9], [32].

Process stream mining consists in the extraction of
process structures from continuous and rapid process
data records. Even if, in the last years, dozens of pro-
cess discovery techniques have been proposed [4], these
techniques all work on static event logs and not on

IEEE TRANSACTIONS ON SERVICES COMPUTING 13

streaming data. Only few works in process mining aim
at mining event streams. In [33], [34], the authors focus
on incremental workflow mining and task mining. The
basic idea is to mine cases as soon as they are observed;
each new model is then merged with the previous one
to refine the global process representation. The approach
described is thought to deal with the incremental process
refinement based on logs generated from version man-
agement systems.

Another interesting contribution to the analysis of
evolving processes is given in [28]. The approach, based
on statistical hypothesis tests, aims at detecting concept
drifts and identifying the regions of change in a process.
In [35], [36], the authors propose an adaptation of the
Heuristics Miner (a well known control-flow discovery
algorithm) to data streams. The final aim of these works
is to extract a procedural control-flow from an event
stream. In [37], an incremental approach for translating
transition systems into Petri nets is described. The work
reported in this paper inspired our previous work in [32].

In this paper, we use algorithms for data stream
mining. As already mentioned, they are divided into
two categories, i.e., data- and task-based [18]. The first
ones use only a fragment of the entire dataset and
mainly consist in sampling [38], load shedding [39],
sketching and aggregation techniques [40]. Some of these
techniques are based on the idea of randomly selecting
items or stream portions. However, since the dataset size
is unknown, it becomes hard to define the number of
items to collect. Moreover, it may be possible that some
of the items that are ignored were actually meaningful.
Other approaches, like aggregation, are based on sum-
marization techniques and consider measures such as
mean and variance. In these approaches, problems arise
when the data distribution contains many fluctuations.

The task-based techniques try to achieve time and
space efficient solutions. The most common are approx-
imation algorithms [38], sliding window and algorithm
output granularity [18]. The first ones aim at extracting
an approximate solution and support for defining error
bounds on the procedure to obtain an accuracy measure.
Sliding window is based on the idea that users are more
interested in most recent data than in the old ones. The
algorithm output granularity controls, via three factors
that depend on the available memory, the input/output
rate of mining taking into account the data stream rate
and the computational resource availability.

None of the above works provides a comprehensive
online approach for the discovery of declarative process
models as proposed in this paper.

9 CONCLUSION

This paper proposes a framework for the online dis-
covery of declarative process models from streaming
event data producing (i) a runtime updated picture of
the process behavior in terms of LTL-based business
constraints; (ii) meaningful information about the most

significant concept drifts occurring during the process
execution. This approach consists of the combination of
algorithms for stream mining and algorithms for the
online discovery of Declare models.

Different stream mining approaches (SW, LCe, LCt,
LCBe and LCBt) have been implemented and experi-
mented. In our experimentation, we have evaluated the
effectiveness and the efficiency of the online discovery
(using the different approaches) applied to large and
complex streams containing drifts of different types. The
experiments show that LCBe is more accurate than LCe
and SW and that the overall quality of the discovered
model is higher for trace-based approaches.

In order to assess the applicability of the proposed
approaches to real data, we verified their scalability
on the event log provided for the BPI Challenge 2011
pertaining to an application process within a Dutch
academic hospital. The results confirm the applicability
of LC and LCB approaches also in the extreme case of an
event stream including several different activity names
in which a large number of candidate constraints must
be taken into consideration.

As future work, we will conduct a wider experimen-
tation on several case studies also in real-life scenarios
in order to provide a better assessment of the proposed
approaches. In addition, it may be useful to take into
consideration other information, like data and time in
the discovery task to enrich the outcome provided to
the user. Finally, more sophisticated mechanisms for the
concept drift detection could also be integrated in our
framework like those presented in [41], [42].

Acknowledgements
Andrea Burattin and Alessandro Sperduti are supported
by the Eurostars-Eureka project PROMPT (E!6696). The
research of Fabrizio M. Maggi has received funding from
the Estonian Research Council and by ERDF via the
Estonian Centre of Excellence in Computer Science. The
authors would like to thank Francesca Rossi and Paolo
Baldan for their advice.

REFERENCES

[1] S. Madden, “From Databases to Big Data,” IEEE Internet Comput-
ing, vol. 16, no. 3, pp. 4–6, May 2012.

[2] P. Russom, “Big Data Analytics,” October, vol. 19, p. 40, 2011.
[Online]. Available: http://faculty.ucmerced.edu/frusu/Papers/
Conference/2012-sigmod-glade-demo.pdf

[3] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh,
and A. Hung Byers, “Big Data: The Next Frontier for Innovation,
Competition, and Productivity,” McKinsey Global Institute, Tech.
Rep. June, 2011.

[4] W. van der Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Springer, 2011.

[5] E. Lamma, P. Mello, F. Riguzzi, and S. Storari, “Applying in-
ductive logic programming to process mining,” in Inductive Logic
Programming, 2008, vol. 4894, pp. 132–146.

[6] F. Chesani, E. Lamma, P. Mello, M. Montali, F. Riguzzi, and
S. Storari, “Exploiting Inductive Logic Programming Techniques
for Declarative Process Mining,” ToPNoC, vol. 5460, pp. 278–295,
2009.

[7] C. Di Ciccio and M. Mecella, “Mining constraints for artful
processes,” in Proc. of BIS, ser. LNBIP. Springer, 2012, pp. 11–23.

IEEE TRANSACTIONS ON SERVICES COMPUTING 14

[8] F. Maggi, A. Mooij, and W. van der Aalst, “User-guided discovery
of declarative process models,” in Proc. of CIDM. IEEE, 2011, pp.
192–199.

[9] F. Maggi, J. Bose, and W. van der Aalst, “Efficient discovery of
understandable declarative models from event logs,” in CAiSE,
2012, pp. 270–285.

[10] L. Golab and M. T. Özsu, “Issues in Data Stream Management,”
ACM SIGMOD Record, vol. 32, no. 2, pp. 5–14, Jun. 2003.

[11] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst, “Declare:
Full support for loosely-structured processes,” in EDOC, 2007, pp.
287–300.

[12] F. M. Maggi, A. Burattin, M. Cimitile, and A. Sperduti, “Online
process discovery to detect concept drifts in ltl-based declarative
process models,” in CoopIS, 2013, pp. 94–111.

[13] 3TU Data Center, “BPI Challenge 2011 Event Log,” 2011,
doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54.

[14] C. W. Günther, “XES Standard Definition,” www.xes-
standard.org, 2009.

[15] C. Aggarwal, Data Streams: Models and Algorithms, ser. Advances
in Database Systems. Boston, MA: Springer US, 2007, vol. 31.

[16] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive
Online Analysis Learning Examples,” Journal of Machine Learning
Research, vol. 11, pp. 1601–1604, 2010.

[17] G. Widmer and M. Kubat, “Learning in the Presence of Concept
Drift and Hidden Contexts,” Machine Learning, vol. 23, no. 1, pp.
69–101, 1996.

[18] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Mining Data
Streams: a Review,” ACM Sigmod Record, vol. 34, no. 2, pp. 18–26,
Jun. 2005.

[19] J. a. Gama, Knowledge Discovery from Data Streams, ser. Chapman
& Hall/CRC Data Mining and Knowledge Discovery Series.
Chapman and Hall/CRC, May 2010, vol. 20103856.

[20] W. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative
Workflows: Balancing Between Flexibility and Support,” Computer
Science - R&D, pp. 99–113, 2009.

[21] M. Montali, M. Pesic, W. M. P. van der Aalst, F. Chesani, P. Mello,
and S. Storari, “Declarative Specification and Verification of Ser-
vice Choreographies,” ACM Transactions on the Web, vol. 4, no. 1,
2010.

[22] O. Kupferman and M. Vardi, “Vacuity Detection in Temporal
Model Checking,” Int. Journal on Software Tools for Technology
Transfer, pp. 224–233, 2003.

[23] A. Burattin, F. Maggi, W. van der Aalst, and A. Sperduti, “Tech-
niques for a Posteriori Analysis of Declarative Processes,” in
EDOC, 2012, pp. 41–50.

[24] G. S. Manku and R. Motwani, “Approximate Frequency Counts
over Data Streams,” in VLDB, 2002, pp. 346–357.

[25] G. Da San Martino, N. Navarin, and A. Sperduti, “A Lossy
Counting Based Approach for Learning on Streams of Graphs
on a Budget,” in IJCAI. AAAI Press, 2012, pp. 1294–1301.

[26] A. Burattin, F. Maggi, and M. Cimitile, “Lights, Camera, Ac-
tion! Business Process Movies for Online Process Discovery,” in
TAProViz, 2014.

[27] A. Burattin, “Artificial datasets for online Declare discovery.”
[Online]. Available: http://dx.doi.org/10.5281/zenodo.19187

[28] R. J. C. Bose, “Process Mining in the Large: Preprocessing, Discov-
ery, and Diagnostics,” Ph.D. dissertation, Eindhoven University of
Technology, 2012.

[29] A. Rozinat, A. K. A. De Medeiros, C. W. Günther, A. J. M. M.
Weijters, and W. M. P. Van Der Aalst, “The need for a process
mining evaluation framework in research and practice: position
paper,” ser. BPM 2007, pp. 84–89.

[30] A. Burattin, Process Mining Techniques in Business Environments.
Springer International Publishing, 2015.

[31] R. Agrawal, D. Gunopulos, and F. Leymann, “Mining Process
Models from Workflow Logs,” in EDBT1, ser. LNCS, vol. 1377.
Springer, 1998, pp. 469–483.

[32] F. Maggi, R. Bose, and W. van der Aalst, “A knowledge-based
integrated approach for discovering and repairing declare maps,”
in CAiSE, 2013.

[33] E. Kindler, V. Rubin, and W. Schäfer, “Incremental Workflow
Mining Based on Document Versioning Information,” in ISPW.
Springer Verlag, 2005, pp. 287–301.

[34] E. Kindler, V. Rubin, and W. Schafer, “Incremental Workflow
Mining for Process Flexibility,” in BPMDS, 2006, pp. 178–187.

[35] A. Burattin, A. Sperduti, and W. M. P. van der Aalst, “Heuristics
Miners for Streaming Event Data,” ArXiv CoRR, Dec. 2012.

[36] A. Burattin, A. Sperduti, and W. van der Aalst, “Control-flow
discovery from event streams,” in CEC, July 2014, pp. 2420–2427.

[37] A. Sharp and P. McDermott, Workflow Modeling: Tools for Process
Improvement and Application Development, 2nd ed. Artech House
Publishers, 2008.

[38] W. Hu and B. Zhang, “Study of sampling techniques and algo-
rithms in data stream environments,” in FSKD, 2012, pp. 1028–
1034.

[39] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stone-
braker, “Load shedding in a data stream manager,” in VLDB.
VLDB Endowment, 2003, pp. 309–320.

[40] J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate ag-
gregation techniques for sensor databases,” in ICDE, 2004, pp.
449–460.

[41] R. Bose, W. van der Aalst, I. Zliobaite, and M. Pechenizkiy, “Deal-
ing With Concept Drifts in Process Mining,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 25, no. 1, pp. 154–171,
Jan 2014.

[42] J. Carmona and R. Gavald, “Online techniques for dealing with
concept drift in process mining,” in Advances in Intelligent Data
Analysis XI. Springer Berlin Heidelberg, 2012, pp. 90–102.

Andrea Burattin is working as a post-doc at the
University of Innsbruck, Austria. Previously, he
has been working as a post-doc at the Univer-
sity of Padua. In 2013, he received his Ph.D.
degree in Computer Science from the University
of Bologna and the University of Padua. The
IEEE Task Force on Process Mining awarded
the “Best Process Mining Dissertation Award” for
2012-2013 to his Ph.D. thesis. The thesis has
then been published as a Springer monograph
entitled “Process Mining Techniques in Business

Environments”. During his Ph.D., he spent several months at the Tech-
nical University of Eindhoven.

Marta Cimitile is an Assistant Professor at the
Unitelma Sapienza University in Rome (Italy).
She received her Ph.D. degree in Computer
Science in 2008 from the University of Bari. She
has collaborated with the University of Bari from
April to October 2004. Her main research topic
is in the field of data and process mining. In the
last years, she was involved in several industrial
and research projects and was author of several
publications about these topics. She serves as
a program committee member of several confer-

ences and workshops in the business process management field.

Fabrizio M. Maggi received his Ph.D. degree in
Computer Science from the University of Bari
in 2010 and after a period at the Architecture
of Information Systems (AIS) research group -
Department of Mathematics and Computer Sci-
ence - Eindhoven University of Technology, he
is currently a Senior Researcher at the Software
Engineering Group - Institute of Computer Sci-
ence - University of Tartu. His Ph.D. dissertation
was entitled “Process Modelling, Implementation
and Improvement” and his areas of interest have

included in the last years business process management, service-
oriented computing and software engineering.

Alessandro Sperduti received his Ph.D. de-
gree in Computer Science from the University of
Pisa and since 2002 he is a Full Professor at
the University of Padua. He has been chair of
the Data Mining and Neural Networks Technical
Committees of IEEE CIS and Associate Editor
of IEEE TNNLS. He is currently Action Edi-
tor for the journals AI Communications, Neural
Networks, Theoretical Computer Science (Sec-
tion C). His research interests include machine
learning, neural networks, learning in structured

domains, data and process mining.

