
Toward an Anonymous Process Mining
Andrea Burattin
Member, IEEE

University of Innsbruck

Mauro Conti
Senior Member, IEEE
University of Padua

Daniele Turato
Siav SpA

Abstract— Process mining is a modern family of techniques
applied to datasets generated from business processes run in or-
ganizations, in order to improve and obtain useful insights and
performance measurements on the processes themselves (with
clear societal and economical benefits). While these techniques
are very promising in understanding business processes, their
complete and efficient implementation inside the organizations
is often not possible. Hence, in a way similar to what is done
for most non core activities, and in particular for most ICT
services, companies evaluate the possibility of outsourcing such
task. However, the confidentiality of the dataset related to the
business processes are often key assets for most of modern
companies. Then, in order to avoid threats that might come
from disclosing such information, most companies decide not
to benefit from these process mining techniques.

In this work, we propose a possible approach toward a
complete solution which allows outsourcing of Process Mining
without thwarting the confidentiality of the dataset and pro-
cesses. Furthermore, we provide a prototype implementation
of our proposed approach and run several experiments that
confirmed the feasibility of our approach. We believe the one
highlighted in this paper is an important direction to work on,
in order to remove the obstacles that prevent companies to fully
benefit from outsourcing process mining.

Index Terms— Data extraction, Anonymization, Process min-
ing, Privacy.

I. INTRODUCTION

A business process [1] is defined as a collection of activi-
ties or tasks that have different dependencies each other. Each
of these activity can be identified with an atomic event, which
is executed by a certain person, or may be an automated
task (i.e., it is executed by a system). All business process
instances (also called “cases”) have some associated data
stored in a database, and the execution of a task involves
reading, writing or updating one or more of its entries. When
a task ends, the dependency relationships with other assets
determine the set of additional tasks that can be performed.
When there are no more executable tasks for a given instance,
we can consider it as terminated.

Not all companies adopt a “process oriented working
structure”. However, both for legal and practical reasons,
almost all of them take advantage of information systems to
support production and administration departments. In fact,
these activities are often supported by the use of business
management and information sharing tools. These systems
are based on the recording of a large amount of descriptive
information (e.g., who has performed a certain action) and

A. Burattin (andrea.burattin@uibk.ac.at) is with the University of Inns-
bruck, Austria. M. Conti (conti@math.unipd.it) is with the Department of
Mathematics, University of Padua, Italy. D. Turato (daniele.turato@siav.it)
is with Siav Spa, Italy.

temporal data (e.g., timestamp of the action performed) on
different databases. These information could serve as input
for techniques able to reconstruct the processes actually
taking place within the company.

In more detail, these recordings describe each step of the
instances of a certain process. An instance can be seen as a
single sequence of events, associated with the corresponding
activity of the process: in which the first event is associated
with the initial activity of the process, and the last with the
final one (unless the instance is incomplete). Each log entry
can contain many information such as: the type of recorded
event (event type); the starting and ending time (timestamp)
of the task; the person/machine in charge of executing it
(originator). These logs are then converted into different
formats (usually XML-based) in order to be processed by
means of process mining techniques [2], [3].

Fig. 1 is an effective summarization of the idea behind
process mining [4]: all assets involved in the company
business are supported by information systems, producing a
series of event logs. We can use them by applying discovery
techniques to derive models that describe the company’s
processes. There are many formalisms useful to represent
a process, one of the most widely used is BPMN (Business
Process Modeling Notation) [5]. We can use these models
to apply conformance checking techniques, enabling us to
verify whether a series of logs can be generated from the
analyzed model, and to detect deviations from the model
itself. The results of analysis can trigger alerts, in order to
warn users about abnormal situations, or can be useful to
update the models. Additionally, as new data flow into the
models through traces execution on the model itself, we can
collect and update a series of performance indicators (e.g.,
task execution times, frequencies of certain events or events
series, and associated costs) which can be very useful in order
to enrich the process model itself with additional perspectives
(extension).

Despite the size of a company, a process oriented organi-
zation can help increasing the productivity and minimizing
wastes, therefore the development of tools and methods that
can be exploited in a real enterprise environment becomes
crucial. For years, process mining has been relegated to
a purely academic setting, but more recently this trend is
changing (see, for example, [7], [8]), thanks to the growth
and the strengthening of interest on efficiency and how
a process oriented organization can enable a company to
achieve it.

a) Problem Statement: By definition, process mining
operates on business processes, the “heart of the company”,



Imagination

Process Mining

Incarnation / Environment

Observation

Operational
Model

Analytical
Model Event Logs

Information
System

Operational
Incarnation

support

protocol
/ audit

Discovery

Conformance

Extension

control

augment

compare
compare

analyze

mine

basis

create

(re-)design

implement

describe

Fig. 1: The process mining “ecosystem” [6].

and, for this reason, it involves the most sensitive data
stored in its information systems. During the procedure
that goes from data extraction and transformation, through
log analysis, to the visualization of results by analysts and
managers, the process mining method involves all kinds of
people inside a company, with very different responsibilities
and data access levels. Since all data connected to process
models represent real business assets, the leakage of such
information may result in important losses or costs (for
example, due to lost competitive advantage) [9], [10]. It is
therefore important to protect the data during the analysis
phase, in order to conform them to security policies, espe-
cially if the process improvement mission is carried on by
external consultants.

b) Contribution: The aim of this paper is twofold. On
one hand, we aim to rise awareness, on the process analysts
community, with respect to the fundamental importance for
some kind of data protection policies. On the other hand
we present an approach capable of providing some very
basic data hiding, without invalidating all process mining
approaches already available. An evaluation of this approach,
implemented in ProM and tested in real-world scenarios, is
proposed as well.

The rest of this paper is structured as follows: Section II
reports the fundamental data required for process mining
purposes. Section III describes the data encryption approach
that we used. Section IV contains the description of our data
extraction and encryption architecture. Finally, Section V
concludes the paper and draws some possible future work.

II. PURPOSES OF DATA FOR PROCESS MINING

A key point underpinning all process mining techniques
is that most of the work is performed with the support of
information systems. In fact, these systems keep traces of
all the performed activities (together with additional with
information) in the so called “event log files”. These files
are the basic input for most process mining techniques, since
they represent a snapshot of the actual performed activities.
For example, process mining algorithms use this information
to reconstruct the actual control-flow of the work [11], [12],
[13], [14], or the social network with interactions among

Case Id Activity Originator Time Cost (e)

C1 A U1 2015-01-01 160
C2 A U1 2015-01-02 160
C1 B U1 2015-01-02 100
C2 B U1 2015-01-03 100
C1 C U2 2015-01-03 150
C1 E U2 2015-01-04 200
C2 D U3 2015-01-04 175
C2 E U3 2015-01-05 300

(a) Standard event log table. Events are sorted according to their time.

Activity Originator Time Cost (e)

Case Id: C1

A U1 2015-01-01 160
B U1 2015-01-02 100
C U2 2015-01-03 150
E U2 2015-01-04 200

Case Id: C2

A U1 2015-01-02 160
B U1 2015-01-03 100
D U3 2015-01-04 175
E U3 2015-01-05 300

(b) Event log table, with events grouped according to their case id.

TABLE I: Small event log fragment with eight events.
Table (a) reports the raw event table. Please note that, in this
case, different process instances may interleave. Table (b)
groups events according to their case id.

different employees [15]. Although it is not possible to fix a
priori the minimum set of required information to perform
process mining analysis (e.g., control-flow analysis tasks
do not require information on event originators) there is
one mandatory information that is required for all types of
analysis: the case id. This field is necessary to group together
all events that belong to the same process instance.

However, the case id field is not enough to do any specific
analysis. So, let us assume to focus on control-flow discovery,
social network analysis and performance analysis. Then, the
fields that our log might store are: (i) the name of the activity
that the events is referring to; (ii) the time when the activity
has been performed, and its possible duration (if the event is
referring to a non-instantaneous activity registration); (iii) the
originator, which is the identifier of the person (or system)
that performed the work.

For example, let us consider the small event log fragment
reported in Table I. This log is made of eight events and, as
table (a) presents, it contains two distinct case ids (i.e., C1

and C2) and five different activities (i.e., A, B, C, D and
E). All these activities are performed by three distinct users
(i.e., U1, U2 and U3). This case also reports an additional
data field (i.e., cost) which contains some cost information
associated to each event execution that might be useful for
some cost analyses and Service Level Agreements (SLAs)
monitoring.

Event logs, as the one reported in the previous example,
can now be saved into XML files using the XES Standard



[16] (the OpenXES libraries1 are Java libraries that allows
an easy handling of this type of files). The files generated
using OpenXES are standard XML files where all events
belonging to the same process instance are grouped into the
same trace element. Each event is allowed to contain
several other children: one for each attribute. Each child
attribute contains also information on the attribute type.

XES is actually an extensible language and allows for new
extensions capturing different perspectives. In this work, we
will assume the “standard” set of extensions [16], the most
frequently used for process mining purposes.

III. BUILDING BLOCKS

In this section we introduce two cryptographic building
blocks used in our proposal: AES and Paillier. AES cryp-
tosystem [17], [18], the de facto encryption standard for
commercial transactions, has been chosen for enciphering
string attributes of event logs. Widespread use and efficiency,
along with an optimal degree of security were the main
reasons behind this choice. Concerning the encryption of
numerical attributes we have opted for the use of Paillier
[19], [20], which is an additive homomorphic cryptosys-
tem. Homomorphic encryption allows to compute operations
on encrypted operands and generate a result that, once
decrypted, is equal to what we would have obtained by
executing the same operation on decrypted operands. In other
words, given two numbers E(A) and E(B) (encrypted with
the same homomorphic algorithm starting from two plain
numbers A and B, respectively) it is possible to calculate the
encryption of the sum of A and B by adding E(A) and E(B)
directly: the decryption of the obtained result is the sum of
A and B. Executing the computations directly on encrypted
data permits to execute analysis on data while keeping its
security and save time and computational resources involved
in encryption/decryption phases.

This section provides a brief description of the two en-
cryption approaches that we adopted on our approach.

A. Advanced Encryption Standard (AES)

The first encryption procedure we are going to use is the
Advanced Encryption Standard (AES) [17]. AES is a block-
based algorithm which has been adopted as standard by the
USA government. It is based on the cryptosystem Rijndael,
proposed by Daemen and Rijmen in 1999.

Rijndael is a substitutions and permutation based cryp-
tosystem which implements the Shannon’s cryptographic
principle “confusion and diffusion”. One of the peculiarities
of AES is its speed: it is particularly fast both in software and
hardware implementations; moreover, it is easy to implement,
not eager in memory; and guarantees a good security level.
All these reasons allow Rijndael to be preferred with respect
to other competitors.

AES uses four different functions:
1) SubBytes: non linear replacement of all bytes with

values coming from a specific table;

1See http://www.xes-standard.org/openxes/.

2) ShiftRows: bytes shifting of a certain number of
positions, depending on each byte row;

3) MixColumns: bytes linear combination, one column
per time;

4) AddRoundKey: each table byte is combined with the
session key (which is computed inside this function).

Algorithm 1: AES encryption.
Input: M input message
Output: The encrypted message

1 state ←M
2 state ← AddRoundKey(state)

3 for round ← 0 to NumberOfRounds do
4 state ← SubBytes(state)
5 state ← ShiftRows(state)
6 if round < NumberOfRounds then
7 state ← MixColumns(state)
8 end
9 state ← AddRoundKey(state)

10 end

11 return state

Algorithm 1 describes the AES encryption procedure.
Specifically, the input, which is required to be a 4×4 matrix,
is immediately assigned to the state variable. This variable
is going to be modified several times and, at the end of
the procedure, it will contain the encrypted message. AES
consists of 10 cycles (i.e., the NumberOfRounds variable)
which repeat the application of the abovementioned func-
tions. All cycles are equal, except for the last one, in which
the MixColumns function is not executed. The value of the
NumberOfRounds variable depends on the key length: it is
10 if the key is 128 bits long, 12 if 192 bits, and 14 if the
key is 256 bits long.

Since all the functions involved in the encryption phase
are invertible, in order to decrypt a text, it is possible to
execute the operations described above in reverse order,
changing each of them with the corresponding inverse. It
is also necessary to reverse the session keys order.

B. Paillier Cryptosystem

The Paillier cryptosystem is a public key cryptosystem,
based on the assumption that the problem of computing
n-th residue classes is computationally difficult (decisional
composite residuosity assumption or DCRA). In other words,
given a composite n and an integer y ∈ Z∗

n2 , it is hard
to decide whether z is a n-residue modulo n2 or not, i.e.,
whether there exists y such that: z ≡ yn (mod n2).

The public/private key generation procedure, necessary to
encrypt any value, is reported in Algorithm 2. It can be
summarized by randomly choosing two large prime numbers
p and q, independent of each other such that gcd(pq, (p −
1)(q − 1)) = 1 (for practical adoption, a 160 bit size is rec-
ommended , in order to avoid Baby-step giant-step attacks).
After that, it is computed n = pq and λ = lcm(p− 1, q− 1)



Algorithm 2: Paillier keys generation.

1 repeat
2 Generate p and q be large prime numbers s.t.

gcd(pq, (p− 1)(q − 1)) = 1
3 n← pq
4 λ← lcm(p− 1, q − 1)
5 Randomly select g with g ∈ Z∗

n2

6 until gcd (L(gλ mod n2), n) 6= 1 /* Where
L(u) = u−1

n */

7 publicKey ← (n, g)
8 privateKey ← (λ, µ)

9 return publicKey , privateKey

(required for the fast decryption variant of the algorithm)
and a random integer g is selected. This procedure must
be repeated until it is ensured that n divides the order of
g. This is done by checking the existence of the following
modular multiplicative inverse: µ = (L(gλ mod n2))−1

mod n, where the function L is defined as L(u) = u−1
n .

The public key is the pair (n, g) while the private key is the
pair (λ, µ).

Let m ∈ Zn be a plaintext message, it is possible to
encrypt it by selecting a random number r ∈ Z∗

n, and then
computing the ciphertext c as: E(m) = gm · rn mod n2. A
ciphertext c ∈ Z∗

n2 can be decrypted, to get the plaintext m,
by computing: D(c) = L(cλ mod n2) · µ mod n.

We have chosen the Paillier cryptosystem for our work
because of its homomorphic properties, which allow to
execute calculations on event log data without decrypting
them in advance, while at the same time it keeps the results
semantically meaningful. This is an additively homomorphic
cryptosystem, so we can only execute the addition of two
ciphertexts without the decryption phase. These are the main
properties guaranteed:

c) Property: Homomorphic addition of plaintexts: The
product of two ciphertexts will decrypt to the sum of their
corresponding plaintexts:

D
(
E(m1, r1) · E(m2, r2) mod n2

)
= m1 +m2 mod n.

d) Property: Homomorphic multiplication of plaintexts:
An encrypted plaintext raised to the power of another plain-
text will decrypt to the product of the two plaintexts,

D
(
E(m1, r1)

m2 mod n2
)
= m1m2 mod n

and

D(E(m2, r2)
m1 mod n2) = m1m2 mod n.

We can see that given two Paillier encrypted ciphertexts
we cannot compute an encryption of the product of these
messages without first decrypt both.

IV. OUR PROPOSAL: AN ANONYMOUS DATA
EXTRACTION ARCHITECTURE

Many companies, in order to prepare logs for the process
mining analyses, need to extract the data from existing

Privacy Provider

Encrypted
Logs

Encrypted2Models

ProM2Mining
AlgorithmsImport2Module

ProM2Framework

Plain-text
Models

Source21

Source22

Source2n

...

Fig. 2: Architecture diagram of the main components in-
volved in our import framework.

information systems. Our anonymization framework proposal
sits in this extraction component. The same goal is also
shared with the PROMPT Project2.

The main components of our extraction architecture are
“data connectors”. All these different connectors require to
adapt the data in order to convert them, from the format used
by a particular information system, into an event log. The
importer, responsible for the execution of all the connectors,
is quite straightforward and does not imply any peculiar
property. However, in order to produce anonymised data,
we introduced a new layer, called Privacy Provider. Each
import module is required to pass all the data through such
component. Fig. 2 proposes a graphical representation of
the architecture of our solution. Pragmatically, a user of
our module, before starting the actual importing phase, must
specify whether he or she wants to anonymise the data and,
if this is the case, random keys are generated. The user has
the ability to save such keys on a file which will be required
for the decryption.

A. Privacy Provider Usage

Let us consider the small log fragment reported on Ta-
ble IIa. If we need to extract an anonymised version of the
same data we will obtain something similar to Table IIb.
Although the fundamental structure of the data is preserved,
the data contained into the encrypted log are anonymised
and, therefore, it is not possible to easily understand the main
content.

The two most important properties of our approach are
that the encryption preserves the possibility to group events
into traces. Therefore, it is possible to identify which events
belong to the same process instance. The second important
characteristic is that we apply a numerical encoding to the
timestamp of each events (i.e., the number of seconds since
the Unix Epoch Time). The consequence of such character-
istic is that it is still possible to sort events according to their
execution time. The two properties just described allow us
to perform several process mining algorithms. It is possible,
for example, to execute most of the control-flow discovery

2PROMPT stands for “Process Mining for Business Process Improve-
ment”. It is a European project belonging to the Eureka Eurostars Program.



Case Id Time Activity Originator Cost

C42 2015-01-01 Register Request Mike 50
C42 2015-01-02 Examine Casually Ellen 400
C42 2015-01-03 Check Ticket Mike 100
C42 2015-01-04 Decide Sara 200
C42 2015-01-05 Pay Compensation Mike 200

(a) Plain event log.

Case Id Time Activity Originator Cost

2sbl29 21985910 wi93q4 6m4zfq 22939470
2sbl29 37482940 9zykl2 sfydpc 93251889
2sbl29 47456240 vrvk3j 6m4zfq 30399776
2sbl29 59493636 gpude9 x5usw4 69082740
2sbl29 64937336 487an2 6m4zfq 69082740

(b) Enciphered event log.

TABLE II: Example of two log fragments: plain and enci-
phered.

(a) (b)

(c) (d)

Fig. 3: Models (a) and (c) are the result, expressed as BPMN
models, of a control-flow discovery algorithm. Models (b)
and (d) are the social networks, extracted using the “working
together” measure. Models (a) and (b) have been extracted
from the anonymized version of the event log (Table IIb).
Models (c) and (d) are the decrypted version of (a) and (b).

algorithms, and the social network analysis tools already
available. The resulting models will be structurally correct
from a control flow perspective but will contain activity
names, or originator names, with no correlation to real events.
Decryption procedures can be applied on such model in order
to obtain the correct labels of each activity/originator nodes.

The two models, on the top row of Fig. 3, provide a
control-flow model and a social network model extracted
from the data of Table IIb. Although the graph structure is
available, it is not possible to understand the content of each
node. The two models at the bottom, instead, are the models
obtained after the decryption of the mined models.

We are aware that this kind of anonymization could be
prone to advanced de-anonymization techniques, like the
ones presented in [21], [22], [23], [24]. However, we consider
this as preliminary work, and our aim is to rise privacy
anonymity problems as “first class” citizens in the business

0.01

1.02

1.39

1.09 1.11 1.09

0.00

3.02 3.03 3.02 3.04 3.02

String Boolean Long Integer Double Date

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ill

is
ec

o
n

d
s

AverageEEncryptionETime AverageEDecryptionETime

Fig. 4: Average time required to encrypt and decrypt vari-
ables with different types.

process mining community.

B. Implementation and Performance

In order to retrieve event logs from different sources we
wrote a ProM [25] plugin (released as open source3) as part
of the PROMPT project, which is able to connect to the
following information systems: (i) SAP ERP, in order to re-
trieve the Purchase to Pay process; (ii) Microsoft Dynamics,
in order to retrieve the customer management process; (iii)
Siav Archiflow, in order to extract document management
and document workflows processes; (iv) Microsoft Exchange
and MIME email files, in order to extract the communication
process.

In order to implement our procedures as ProM plugins, we
needed to use Java as implementation language. Concerning
the Privacy Provider, we used the AES implementation
already available in the Java Security package. Instead, the
code of the Paillier cryptosystem has been written almost
from scratch.

Since we are going to need keys for the Paillier system, we
implemented a procedure to randomly generate the required
prime numbers. Such numbers are also used as a passphrase
of the AES system.

We tested our implementation in order to evaluate the per-
formance of our Privacy Provider. In particular we checked
the encryption and the decryption procedures, on different
data types, by generating 10000 random values for each
type. Fig. 4 reports the main outcomes of such tests. We
performed all our experiments on a machine with an Intel(R)
Core(TM) i7-2670QM processor (2.20GHz) and Oracle Java
1.7.0 55. The string encryption is based on the standard
AES implementation available in Java4). Instead, all other
data types are encrypted using our own implementation of
Paillier. The average encryption time for non-string data
is about 1 millisecond, while the decryption took a little

3At the current stage of the PROMPT project, sources are available upon
request. Once the project will be completed, the entire code will be publicly
available.

4See http://docs.oracle.com/javase/7/docs/
technotes/guides/security/.



more than 3 millisecond. These times are higher than string
data encryption and decryption times: this is probably due
to the symmetric nature of AES and its optimization both
in the architecture and implementation. We also tested the
performance of the random public/private keys generation,
producing 10000 keys. The average time required for the
generation of a key is 8.65 milliseconds. The machine
we used for the key generation test is the same machine
mentioned above.

Let us consider a real-world log, with 200000 events, and
each of them with 5 string attributes and 5 numeric attributes
(10 attributes in total), the encryption time for such log is of
about 18 minutes and 20 seconds. We believe that this time
result is absolutely acceptable for business application, and
hence shows that our approach can be applied in industrial
settings.

V. CONCLUSION AND FUTURE WORK

In this paper we exposed some privacy issues that arise
when extracting information systems data from real scenarios
for process mining purposes. In particular we propose to
solve the problem with a framework which is able to encrypt
both strings and numerical data. We propose the adoption of
AES as a symmetric cryptosystem for strings, and Paillier
for the homomorphic encryption of numerical values. The
entire approach has been implemented in ProM, and a time
performance evaluation has been carried out.

For the time being there are no analysis plugins involving
numerical data attributes supporting our framework: only
conformance checking plugins, which need case id and
events order, can be executed successfully. In order to allow
numerical data attributes to be exploited by existing analysis
plugins, we should properly modify each plugin, and adopt
a fully homomorphic cryptosystem (and possibly symmetric)
in the encryption of numeric data. Another problem is that
our current implementation forces the user to download
a generated encryption key, so he is not able to specify
a passphrase, compromising the overall usability of the
software.

Acknowledgment: The work by A. Burattin has been
funded by the Eureka-Eurostars PROMPT project (E!6696).
M. Conti is supported by a Marie Curie Fellowship, for the
project “PRISM-CODE: Privacy and Security for Mobile
Cooperative Devices” funded by the European Commis-
sion (grant n. PCIG11-GA-2012-321980), and by the PRIN
project “TENACE: Protecting National Critical Infrastruc-
tures From Cyber Threats” (grant n. 20103P34XC) funded
by the Italian MIUR.

REFERENCES

[1] W. M. P. van der Aalst, K. van Hee, J. M. van der Werf, A. Kumar,
and M. Verdonk, “Conceptual model for online auditing,” Decision
Support Systems, vol. 50, no. 3, pp. 636–647, 2011.

[2] W. M. P. van der Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Springer, 2011.

[3] A. Burattin, Process Mining Techniques in Business Environments.
Springer International Publishing, 2015.

[4] W. M. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, and A. Weijters, “Workflow mining: A survey of issues
and approaches,” Data & knowledge engineering, vol. 47, no. 2, pp.
237–267, 2003.

[5] S. A. White, “Introduction to BPMN,” IBM Cooperation, vol. 2, 2004.
[6] C. W. Günther, “Process mining in Flexible Environments,” PhD

Thesis, Technische Universiteit Eindhoven, Eindhoven, 2009.
[7] M. Jans, M. Alles, and M. Vasarhelyi, “The case for process mining

in auditing: Sources of value added and areas of application,” Interna-
tional Journal of Accounting Information Systems, vol. 14, no. 1, pp.
1 – 20, 2013.

[8] R. Mans, W. van der Aalst, R. Vanwersch, and A. Moleman, “Process
mining in healthcare: Data challenges when answering frequently
posed questions,” in Process Support and Knowledge Representation
in Health Care, ser. Lecture Notes in Computer Science, R. Lenz,
S. Miksch, M. Peleg, M. Reichert, D. Riao, and A. ten Teije, Eds.
Springer Berlin Heidelberg, 2013, vol. 7738, pp. 140–153.

[9] A. Hoecht and P. Trott, “Outsourcing, information leakage and the risk
of losing technology-based competencies,” European business review,
vol. 18, no. 5, pp. 395–412, 2006.

[10] ——, “Innovation risks of strategic outsourcing,” Technovation,
vol. 26, no. 56, pp. 672 – 681, 2006.

[11] W. M. P. van der Aalst, T. A. J. M. M. Weijters, and L. Maruster,
“Workflow Mining: Discovering Process Models from Event Logs,”
IEEE Transactions on Knowledge and Data Engineering, vol. 16, p.
2004, 2004.

[12] W. M. P. van der Aalst, T. A. J. M. M. Weijters, and A. K. A.
de Medeiros, “Process Mining with the Heuristics Miner-algorithm,”
BETA Working Paper Series, WP 166, Eindhoven University of
Technology, Eindhoven, 2006.

[13] A. Burattin and A. Sperduti, “Heuristics Miner for Time Intervals,” in
European Symposium on Artificial Neural Networks (ESANN), Bruges,
Belgium, 2010.

[14] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering
Block-Structured Process Models from Event Logs - A Constructive
Approach,” in Proceedings of Petri Nets. Springer Berlin Heidelberg,
2013, pp. 311–329.

[15] W. M. P. van der Aalst, H. A. Reijers, and M. Song, “Discovering
Social Networks from Event Logs,” Computer Supported Cooperative
Work (CSCW), vol. 14, no. 6, pp. 549–593, Oct. 2005.

[16] C. W. Günther and E. H. M. W. Verbeek, “XES Standard Definition,”
www.xes-standard.org, 2009.

[17] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” 1999.
[18] ——, The Design of Rijndael. Secaucus, NJ, USA: Springer-Verlag

New York, Inc., 2002.
[19] P. Paillier, “Public-key cryptosystems based on composite degree

residuosity classes,” in Advances in Cryptology - EUROCRYPT ’99,
ser. Lecture Notes in Computer Science, J. Stern, Ed. Springer Berlin
Heidelberg, 1999, vol. 1592, pp. 223–238.

[20] C. Fontaine and F. Galand, “A survey of homomorphic encryption for
nonspecialists,” EURASIP J. Inf. Secur., vol. 2007, pp. 15:1–15:15,
Jan. 2007.

[21] G. Danezis and C. Troncoso, “You cannot hide for long: De-
anonymization of real-world dynamic behaviour,” in Proceedings of
the 12th ACM Workshop on Workshop on Privacy in the Electronic
Society, ser. WPES ’13. New York, NY, USA: ACM, 2013, pp. 49–60.

[22] ——, “Vida: How to use bayesian inference to de-anonymize persistent
communications,” in Privacy Enhancing Technologies, ser. Lecture
Notes in Computer Science, I. Goldberg and M. Atallah, Eds. Springer
Berlin Heidelberg, 2009, vol. 5672, pp. 56–72.

[23] A. Datta, D. Sharma, and A. Sinha, “Provable de-anonymization
of large datasets with sparse dimensions,” in Principles of Security
and Trust, ser. Lecture Notes in Computer Science, P. Degano and
J. Guttman, Eds. Springer Berlin Heidelberg, 2012, vol. 7215, pp.
229–248.

[24] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large
sparse datasets,” in Security and Privacy, 2008. SP 2008. IEEE
Symposium on, May 2008, pp. 111–125.

[25] E. H. M. W. Verbeek, J. Buijs, B. van Dongen, and W. M. P. van der
Aalst, “ProM 6: The Process Mining Toolkit,” in BPM 2010 Demo,
2010, pp. 34–39.


