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Abstract

Process mining represents an important field in BPM and data
mining research. Recently, it has gained importance also for practi-
tioners: more and more companies are creating business process in-
telligence solutions. The evaluation of process mining algorithms re-
quires, as any other data mining task, the availability of large amount
of real-world data. Despite the increasing availability of such datasets,
they are affected by many limitations, in primis the absence of a “gold
standard” (i.e., the reference model).

This paper extends an approach, already available in the literature,
for the generation of random processes. Novelties have been intro-
duced throughout the work and, in particular, they involve the com-
plete support for multiperspective models and logs (i.e., the control-
flow perspective is enriched with time and data information) and for
online settings (i.e., generation of multiperspective event streams and
concept drifts). The proposed new framework is able to almost en-
tirely cover the spectrum of possible scenarios that can be observed in
the real-world. The proposed approach is implemented as a publicly
available Java application, with a set of APIs for the programmatic
execution of experiments.
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1 Introduction

Process mining [34] gained a lot of attention and is now considered an im-
portant field of research, bridging data mining and business process mod-
eling/analysis. In particular, the aim of process mining is to extract useful
information from business process executions. Under the umbrella of pro-
cess mining, different activities could be identified. For example, control-
flow discovery aims at reconstructing the actual process model starting only
from the observations of its executions; conformance checking tries to dis-
cover discrepancies between the expected (i.e., compliant) executions and
the actual ones; enhancement extends a process model with additional infor-
mation obtained from the actual observations.

In data mining, the term gold standard (or sometimes also referred as
ground truth) typically indicates the “correct” answer to a mining task (i.e.,
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the reference model). For example, in data clustering, the gold standard
may represent the right (i.e., the target) assignment of elements to their cor-
responding clusters. Many times, referring to a gold standard is fundamen-
tal in order to properly evaluate the quality of mining algorithms [9, 26].
Several concepts, like precision and recall are actually grounded on this idea.
In general, it is possible to identify the concept of gold standard for all min-
ing tasks.

As for all other mining challenges, the evaluation of new algorithms
is difficult. In order to properly assess the quality of mining algorithms,
typically, the evaluation of mining algorithm should be base on real world
data. However in the context of business processes, companies are usu-
ally reluctant to publicly share their data for analysis purposes. Moreover,
detailed information on their running processes (i.e., the reference models)
are considered as company assets and, therefore, are kept private.

Since few years, an annual event, called BPI challenge1, releases real
world event logs. Despite the importance of this data, the logs are not
accompanied with their corresponding gold standards. Moreover, they do
not provide examples of all possible real world situations: many times, re-
searchers and practitioners would like to test their algorithms and systems
against specific conditions and, to this purpose, those event logs may not be
enough. Some other tools, described in the literature (Section 2) can be used
to construct business processes or to simulate existing ones. However, they
are very difficult to use and limited in several aspects (e.g., they can only
generate process models, or can simulate just the control-flow perspective).

1.1 Research Challenges

The final aim of this paper is to support researchers and practitioners in
developing new algorithms and techniques for process mining and busi-
ness process intelligence. Moreover, we put particular emphasis on the
online/stream paradigm which, with the advent of the big data and Internet
of things, is rising interest. To achieve our goal we have to face the general
data availability problem which, in our context, could be decomposed into
several research challenges:

C1 build large repositories of randomly created process models with control-
flow and data perspectives;

C2 obtain realistic (e.g., noisy) multiperspective event logs, which are re-
ferring to a model already known (i.e., the gold standard), to test pro-
cess mining algorithms;

C3 generate potentially infinite multiperspective streams of events starting
from process models. These strems have to simulate realistic scenar-

1See http://www.win.tue.nl/bpi/2015/challenge.
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ios, e.g., they could contain noise, fluctuating event emission rates,
and concept drifts.

C1 and C2 are required in order to test an approach against several
different datasets, and avoid overfitting phenomena (i.e., tailoring an ap-
proach to perform well on particular data, but lacking in abstraction).

C3 is becoming more and more important due to the emerging impor-
tance of big data analysis. Big data is typically characterized [14, 16] by the
data volume and velocity (a typical way of dealing with such volume and
velocity is via unbounded event streams [1, 15]); variety (for this, we need
multiperspective models, not only with the control-flow perspective); vari-
ability (this led us to properly simulate concept drifts [4]).

In this paper we propose a series of algorithms which can be used
to randomly generate multiperspective process models (Section 3). These
models can easily be simulated in order to generate multiperspective event
logs (Section 5). Moreover, the whole approach is design keeping the simu-
lation of online settings (Section 6) in mind: it is possible to generate drifts
on the processes (i.e., local evolutions) and it is possible to simulate multi-
perspective event streams (which are also replicating the drifts).

Therefore, the aim of this paper is twofold: on one hand, we aim at de-
scribing the extensions made with respect to our previous work [5], which
constitutes PLG2. On the other hand, we want to highlight the research
challenges that need to be solved in order to create realistic and useful test
data.

The new approach is implemented in a standalone Java application
(Section 7) which is also accompanied by a set of APIs, useful for the pro-
grammatic definition of custom experiments.

In summary, this paper extend the work we presented in [5] since we
are now able to:

• generate random process models with additional data perspective (or
import existing ones);

• have a detailed control over the data attributes (e.g., by controlling
their values via scripts);

• have a detailed control over the time perspective (controlled via scripts);

• evolve a process model, by randomly changing some of its features
(e.g., adding/removing/replacing subprocesses);

• generate a realistic multiperspective event log, with executions of a
process models and noise addition (with probabilities for different
noise behaviors);
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• generate a stream of multiperspective events referring to process mod-
els that could change over time with customizable output ratio.

2 Related Work

The idea of generating process models for evaluating process mining algo-
rithms has already been explored.

In particular, van Hee and Liu, in [38], presented an approach to gen-
erate random Petri nets representing processes. Specifically, they suggest
to use a top-down approach, based on a step-wise refinement of Workflow
nets [36], to generate all possible process models belonging to a particu-
lar class of Workflow network (also called Jackson nets). This approach
has been adopted, for example, in the generation of collections of process
model with specific features [37]. A similar and related approach has been
reported in [2], where authors propose to generate Petri nets according to a
different set of refinement rules.

In both cases, approaches do not address the problem of generating
traces from the developed Petri nets. This task, however, has been ex-
plored in the past, in particular for the generation of process mining ori-
ented logs [12]. The idea is to decorate a Petri net model, using CPN tool2,
in order to log executions into event log files. Although the approach is ex-
tremely flexible and grounded on a solid tool, it suffers of usability draw-
backs. The most important problem consists of the complexity of whole
procedure, which is also particularly error prone; the complexity in man-
aging timestamps; the impossibility to simulate data objects (i.e., multiper-
spective models) in a proper way; and impossibility to simulate streams.

The work reported in [5], extended by this work, provides a first pos-
sible complete tool for the random generation of process models and their
execution logs.

The approach described in this paper (namely, PLG2) extends previous
works in two substantial ways. On one hand it improves the generation of
random models and their logs by adding data and time perspectives: the
new version of PLG2 is capable of generating random data objects and sim-
ulate manually defined ones. Moreover, complete and detailed support for
activity and trace timing is provided as well. Secondly, the whole project
has been designed with online settings in mind: it is possible to easily (and
automatically) generate random new versions of process models, in order
to simulate “concept drifts”. Moreover, processes can be simulated to gen-
erate multiperspective (i.e., with data and preserving temporal relations)
event streams.

2See http://cpntools.org.
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Figure 1: Classes diagram, represented in UML, of the internal structure
used for the representation of a process model in PLG2. The structure basi-
cally reflects a possible instance of a BPMN model diagram.

3 Process Models in PLG2

This section presents the internal representation used to handle business
processes. The generation of random business process is reported as well.

3.1 Internal Representation of Business Processes

In PLG2, the internal structure of a process model is actually rather intu-
itively derived from the definition of a BPMN process model [28]. Figure 1
depicts the diagram of the classes involved in the modeling. In particular,
a process is essentially an aggregation of components. Each component can
be either a flow object, a sequence or a data object. Flow objects are divided
into:

• events (which are divided into start or end);

• gateways (either exclusive or parallel);

• tasks (which can be activities).

Please note that it is not possible to instantiate general events or gateways
or tasks (i.e., those classes are abstract). This technique is used to enforce
a proper typing of such —otherwise ambiguous— elements. Sequences are
used to connect two flow objects. A sequence, clearly, imposes a direction
of the flow. Data objects are associated with activities and can be plain data
objects or dynamic data objects. A plain data object is basically a key-value
pair. A dynamic data object, instead, has a value that can change every time
it is required (i.e., it is dynamically generated by a script). Another char-
acterization of data object is with respect to their “direction”: a data object
can be generated or required by an activity. These two characterizations play
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an important role in the process simulation phase. We will get into these
details in Section 5.

With respect to the previous version of this work [5], we decided to
evolve the internal structure into a more general one. This BPMN standard-
oriented representation is fundamental in order to allow much more flex-
ibility. For example, now, it is possible to load BPMN models generated
with external tools3, as long as the modeled components are available also
in PLG2 (for example, it is not possible to load a BPMN model with inclu-
sive gateways). However, since we are restricting to non-ambiguous com-
ponents, we also can convert our processes into more formal languages
(e.g., it is possible to convert and export the generated models into Petri
nets, using the PNML file format4).

3.2 Formal Definition of Business Process

The process representation that we just reported can be structured in a more
formal definition. Specifically, a process model P can be seen as a graph
P = (V, E), where V is the set of nodes, and E ⊆ V×V is the set of directed
edges. However, since in our context not all nodes or edges are equal, we
can improve the definition of V and E. Let’s then define a process as a tuple
P = ((Estart, Eend, A, G, D), (S, C)), where:

• (Estart, Eend, A, G, D) is a tuple, in which each component is a set of
nodes with a specific semantic associated. In particular, Estart is the set
of starting nodes, Eend is the set of end nodes, A is the set of activities,
G is the set of gateways, D is the set of data objects;

• (S, C) is another tuple. Each component of this tuple is a set of edges.
Specifically, S ⊆ Estart× A∪ A× Eend ∪ A× A∪ A×G∪G×G∪G×
A is a set of sequences connecting process flow objects.
C ⊆ A× D ∪ D× A, such that ∀d ∈ D |{(·, d) ∈ C} ∪ {(d, ·) ∈ C}| ≤
1, is a set of associations going from activities to data objects and from
data objects to activities. The additional condition guarantees that
one data object is connected with at most one activity.

Please note that, the definition just provided partially enforces the se-
mantic correctness of each component involved (for example, it is not pos-
sible to connect an end event with a gateway or a data object with an event).

With respect to the data object associations, the C component of a pro-
cess P permits data objects both incoming and outgoing into and from ac-
tivities. This behavior is described in the UML classes diagram, reported in
Fig. 1, with the direction element of a DataObject.

3An example of supported tool is Signavio, http://www.signavio.com.
4See http://www.pnml.org for more information on this standard.
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4 Random Generation of Business Processes in PLG2

The definition of process just described can be used as general representa-
tions for the description of relations between activities, events, gateways,
and data objects. In this paper, however, we are also interested in the gen-
eration of random process models, in order to be able to create a “process
population” capable of describing several behaviors.

In order to generate random processes, we need to combine some well
known workflow control-flow patters [31,35]. The patters we are interested
in are reported in this summarized list:

• sequence (WCP-1): direct succession of two activities (i.e., an activity
is enabled after the completion of the preceding);

• parallel split (WCP-2): parallel execution (i.e., once the work reaches
the split, it is forked into parallel branches, each executing concur-
rently);

• synchronization (WCP-3): synchronization of parallel branches (i.e.,
the work is allowed to continue only when all incoming branches are
completed);

• exclusive choice (WCP-4): mutual execution (i.e., once the work reaches
the split, only precisely one of the outgoing branches is allowed to
continue);

• simple merge (WCP-5): convergence of branches (i.e., each incoming
branch results in continuing the work);

• structured loop (WCP-21): ability to execute sub-processes repeatedly.

Clearly, these patterns do not describe all the possible behaviors that can
be modeled in reality, however we think that most realistic processes are
based on them. Actually, we are also going to extended these patters (with
the addition of data-objects), in order to generate multiperspective models.

The way we use these patterns is by progressively combining them
in order to build a complete process. The combination of such patterns
is performed according to a predefined set of rules. We implement this
idea via a Context-Free Grammar (CFG) [22] whose productions are related
with the patterns mentioned above. Specifically, we defined the follow-
ing context-free grammar GProcess = {V, Σ, R, P} where V = {P, G, G′, G�,
G⊕, G⊗, A, Aact, Ado, D} is the set of the non-terminal symbols, Σ = {; , (, ),�
,⊗,⊕,↗,↙, estart, eend, a, b, c, . . . , d1, d2, d3, . . . } is the set of all terminals

8



Symbols Meaning

estart The start event of the process
eend The end event of the process
( ) Parentheses are used to describe operators precedence
; Operator, it indicates a sequential connection
� Operator, repetition of the first parameter by executing

the second
⊕ Operator, its parameters executed in parallel (“AND”)
⊗ Operator, its parameters executed in mutual exclusion

(“XOR”)
a↙d Indicates that data object d is required by activity a
a↗d Indicates that data object d is generated by activity a

a, b, c, . . . The set of possible activity names
d1, d2, d3, . . . A set of possible data objects

Table 1: All the terminal symbols of the context-free grammar used for the
random generation of business processes and their corresponding mean-
ings.

(their “interpretation” is described in Table 1), R is the set of productions:

P → estart ; G ; eend
G → G′ | G�

G′ → A | (G; G) | (A; G⊕; A) | (A; G⊗; A) | ε
G⊕ → G⊕ G | G⊕ G⊕
G⊗ → G⊗ G | G⊗ G⊗
G� → (G′ � G)

A → Aact | Ado
Ado → Aact ↙D| Aact ↗D

Aact → a | b | c | . . .
D → d1 | d2 | d3 | . . .

and P is the starting symbol for the grammar. Using this grammar, a pro-
cess is described by a string derived from GProcess.

Analyzing the production rules, it is possible to see that each process
requires a starting and a finishing event and, in the middle, there must be
a sub-graph G. A sub-graph can be either a “simple sub-graph” (G′) or a
“repetition of a sub-graph” (G�).

Starting from the first case: a sub-graph G′ can be a single activity A;
the sequential execution of two sub-graphs (G; G); the exclusive or paral-
lel execution of some sub-graphs (respectively, (A; G⊗; A) and (A; G⊕; A));
or an “empty” sub-graph ε. It is important to note that the generation of
parallel and mutual exclusion branches is always “well structured”.
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Analyzing the repetition of a sub-graph (G�) it should be noticed that,
semantically, the repetition of a sub-graph (G′ � G) is described as follows:
each time we want to repeat the “main” sub-graph G′, we have to perform
another sub-graph G; the idea is that G (that can even be only a single or
empty activity) corresponds to the “roll-back” activities required in order
to prepare the system to the repetition of G′ (which, also, could be a empty
activity).

The structure of G⊕ and G⊗ is simple and expresses the parallel execu-
tion or the choice between at least 2 sub-graphs.

A represents the set of possible activities. In this case two productions
are possible: Aact which generates just an activity, or Ado which generates
an activity with a data object associated. In this latter case, two more pro-
ductions are possible: Aact ↙D and Aact ↗D: the first generates an activity
with a required data object, the second produces an activity with a gener-
ated data object. Finally, the grammar defines activities just as alphabetic
identifiers but, actually, the implemented tool “decorates” it with other at-
tributes, such as a unique identifier. The same observation holds for data
objects.

Finally, this grammar definition allows for more activities with the same
name, however in our implemented generator all the activities are consid-
ered to be different.

In Fig. 2 an example of all the steps involved in the generation of a
process are shown: the derivation tree, the string of terminals, and two
graphical representations of the final process (using BPMN and Petri net
notations).

4.1 Grammar Capabilities

The context free grammar just provided is not capable of generating all
the possible business models that could be described using languages such
BPMN or Petri net. In particular, we are restricting to block structured
ones [23]. Although restricting to block structured processes might seems
rough, these processes benefit from very interesting properties [39]. More-
over, recently, the process mining community started to focus on this types
of processes [3,24,33], especially for the soundness properties that they can
guaranteed. With the adoption of the context-free grammar proposed, we
decided to stick to this type of language as well.

Please note that the block structure restriction only affects the random
process generation part of PLG2: all other components (i.e., process evolu-
tion, and simulations for generation of event logs or stream) are still func-
tioning also with imported (and non-block structured) processes.

We can also note that there is a straightforward translation of a string
produced by the PLG2 grammar into the graph representation introduced
in the previous sections. Therefore, the processes generated with PLG2 can
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P

estart; G; eend

estart G

(G; G)

A

Aact

a

(G; G)

(G′ � G)

A; (G⊕ G); A

Aact

b

Ado

Aact ↗D

c↗d1

A

Aact

d

Aact

e

A

Aact

f

A

Aact

g

eend

(a) Example of derivation tree. Note that, for space reason, we
omitted the explicit representation of some basic productions.

estart;
(
a;
((

b;
(
c↗d1 ⊕d

)
; e � f

)
; g
))

; eend

(b) The string derived from the above tree.

Start
A

End
×

B +

C d_1

+D E

×

F

G

(c) BPMN representation, created by PLG2, for the process generated.

Figure 2: Derivation tree of a process and its string and BPMN representa-
tion.
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always be expresses as BPMN (with all perspectives) or Petri net (with just
the control-flow perspective).

4.2 Grammar Extension with Probabilities

As previously stated, we want to randomly generate strings of terminal us-
ing the context-free grammar described earlier. However, in order to pro-
vide the user with a deep control over the final structure of the generated
processes, we converted the CFG into a stochastic context-free grammar
(SCFG) [7, 8]. This type of grammars have also been widely used for mod-
eling RNA structures [17, 32].

Specifically, to adopt this models, we need to add probabilities asso-
ciated to each production rule. This allows us to introduce user-defined
parameters to control the presence of specific pattern into the generated
process. These are the probabilities defined (with indication on whether
the user is asked to provide the value):

π1 for G → G� required
π2 for G → G′ as 1− π1

π3 for G′ → A required
π4 for G′ → (G; G) required
π5 for G′ → (A; G⊕; A) required
π6 for G′ → (A; G⊗; A) required
π7 for G′ → ε required

π8 for G⊕ → G⊕ G⊕ computed
π9 for G⊕ → G⊕ G as 1− π8

π10 for G⊗ → G⊗ G⊗ computed
π11 for G⊗ → G⊗ G as 1− π10

π12 for A → Ado required
π13 for A → Aact as 1− π12

In order to have a valid grammar the system has to enforce that the
probabilities of each production sum to 1. Let’s define the groups proba-
bilities as: GPr = {{π1, π2}, {π3, . . . , π7}, {π8, π9}, {π10, π11}, {π12, π13}}.
Then the following property has to be fulfilled: ∀ Pr ∈ GPr ∑p∈Pr p = 1.
As you can see, this property holds by construction for {π1, π2} and for
{π12, π13}. For {π3, . . . , π7} it is artificially enforced (the user is required to
insert weights, which are then proportionally adapted in order to sum up
to 1).

The two remaining sets (i.e., {π8, π9} and {π10, π11}) are treated slightly
differently: in this case the user is required to insert the maximum number
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of possible AND/XOR branches. This information let us dynamically com-
pute the probability values. Let’s consider the AND case: in the beginning,
π8 = π9 = 0.5. The system keeps these values unchanged until the max-
imum number of AND branches are generated (i.e., the number of times
that the production rule G⊗ → G ⊗ G⊗ is consecutively executed). Once
the max value is reached, probabilities are changed in order to stop gener-
ating more branches: π8 = 0 (and therefore π9 = 1). Similar approach is
adopted for the XOR branches (i.e., {π10, π11}). Although this adaptation
forces the context-free property of the grammar, we think that, for the fi-
nal user, it is much more easy to specify the maximum number of branches
instead of the actual probabilities.

In order to provide the user with a more detailed control of the gram-
mar, we require to specify an additional parameter, which is called max-
imum depth. This parameter allows the user to control the depth of the
derivation tree: once the tree reaches the maximum depth, probabilities are
artificially changed to these values: π3 = π7 = 0.5, π4 = · · · = π6 = π8 =
π10 = 0. This probabilities change forces the derivation tree to limit its
depth by allowing only new activity or skip patters.

5 Process Simulation in PLG2

In order to evaluate process mining algorithms or, in general, to stress busi-
ness intelligence systems, we are not only interested in the random gener-
ation of processes, but we also need observations of the activities executed
for each process instance, i.e. event logs. This section reports details on
how we generate multiperspective logs and how to make them more real-
istic by artificially inserting some noise.

Before getting into the actual simulation algorithms, it is important to
define the concept of event log. In order to better understand how an event
log is composed, we clarify that an execution of a business process forms a
case. The sequence of events in a case is called trace, and each trace, in turn,
consists of the list of events which refer to specific activities performed. It
is possible to see each event as a set of attributes (i.e., key-value pairs). The
fundamental attributes of an event are: (i) the name of the executed activ-
ity, (ii) the timestamp (which reports the execution time of the given event)
and (iii) the activity lifecycle (whether the event refers to the beginning or to
the completion of an activity). The lifecycle attribute is important when a
recorded activity lasted for a certain amount of time (i.e., it is not instanta-
neous): in this case, two events are recorded, one when the activity begins
and another when the activity ends.

More formally, given the set of all possible activity names A, the set
of all possible case identifiers C, the set of timestamps T , and the set of
lifecycle transitions L = {start, complete}, it is possible to define an event e
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as a tuple, such as e = (c, a, t, l) ∈ C ×A× T × L. In this case, it describes
the occurrence of activity a, with lifecycle transition l, for the case c, at
time t. Please note that the attributes reported here are just the minimum
required ones: other attributes can be added to the event (in general, each
data object of the process will generate a new attribute). Given an event
e = (c, a, t, l, a1, . . . , ak), it is possible to extract each field using a projection
operator: #case(e) = c; #activity(e) = a; #time(e) = t; #lifecycle(e) = l, and so on.

Given a finite set N+
n = {1, 2, . . . , n} and a “target” set A, we define

a sequence σ as a function σ : N+
n → A. We say that σ maps indexes to

the corresponding elements in A. For simplicity, we refer to a sequence
using its “string” interpretation: σ = 〈s1, . . . , sn〉, where si = σ(i) and
si ∈ A. Moreover, we assume to have concatenation and cardinality op-
erators: respectively

〈
e1

1, . . . , e1
n
〉
·
〈
e2

1, . . . , e2
m
〉
=

〈
e1

1, . . . , e1
n, e2

1, . . . , e2
m
〉

and
|〈e1, . . . , en〉| = n.

In our context, we use timestamps to sort the events. Therefore, it is safe
to consider a trace just as a sequence of events. In turn, a log is just a set
of traces. Therefore, traces are allowed to overlap: given a log l with two
traces t1 =

〈
e1

1, . . . , e1
n
〉
∈ l and t2 =

〈
e2

1, . . . , e2
m
〉
∈ l it is possible to have

that #time
(
e1

1

)
≤ #time

(
e2

1

)
≤ #time

(
e1

n
)

or #time
(
e2

1

)
≤ #time

(
e1

1

)
≤ #time

(
e2

m
)
.

5.1 Multi-Perspective Simulation

The procedure for the generation of logs out of business process, basically,
consists of a simulation engine running a “plain-out activity” [34]. However,
in order to properly simulate all the perspectives required, some conven-
tions need to be defined.

The structure of process models that PLG2 can handle is restricted to
the family of BPMN models with an unambiguous semantic. Therefore, in
PLG2, it is possible to consider a process as its equivalent Petri net repre-
sentation [27, 29]. The main advantage, in this case, is that it is possible to
play the token-game for simulating the process.

The procedures for the simulation of a process instance are reported in
Algorithm 1, 2 and 3. These procedures use the following additional func-
tions: in, out and rnd. Let’s assume a process P = ((Estart, Eend, A, G, D),
(S, C)), as described in Section 3.2. Given c ∈ A ∪ G, we can define in(c) =
{c′ | (c′, c) ∈ S} and out(c) = {c′ | (c, c′) ∈ S}. rnd(s), instead, given a
general set s, returns a randomly selected element e such that e ∈ s.

Algorithm 1 represents the main entry point of the simulation: it ex-
pects, as input, a process model and the number of traces to simulate. Then,
it basically iterates the generation of single traces in order to populate the
log. Line 6 is required in order to properly sort the events, and line 8 intro-
duces, if required, some noise into the trace. The noise generation will be
described in Section 5.2.

Algorithm 2 is in charge of the control-flow simulation. The algorithm
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Algorithm 1: A general simulation procedure
Input : P = ((Estart, Eend, A, G, D), (S, C)): the process to simulate

tot: the number of traces to generate
Output: An event log

1 log← ∅
2 for i = 1 up to tot do
3 t← 〈 〉 . Generate a new trace

4 SimulateProcess(P, t, rnd(Estart), ⊥)} . Algorith 2

66 sort(t) . Sort events w.r.t. their times

88 add trace-level noise to t . See Section 5.2

9 log← log∪ {t} . Add the trace to the log

10 end
11 return log

expects as input the process to simulate, the component to analyze, and the
sequence (i.e., the edge) that brought the analysis to the current component.
First of all, the algorithm requires the definition of a global set t. This set
is fundamental for the “token game”: making an analogy with Petri nets,
it stores the current marking (i.e., the tokens configuration). In our case,
however, the set contains the edges that are “allowed to execute”.

The idea behind Algorithm 2 is to call itself on all elements (events,
tasks, and gateways) of the process. Then different behaviors are per-
formed, based on the analyzed element. Specifically, if the element is a
task, it is simulated (line 4), and then the algorithm is called on the follow-
ing component (line 10). If the analyzed element is a XOR gateway, then the
call is just passed to one (randomly picked) outgoing element (line 10). If
the currently analyzed element is an AND gateway, we made the assump-
tion that it can be either a split or a join (not both at the same time). It is
possible to discriminate between split and join by checking the number of
outgoing edges (line 13 and 21). If the gateway is an AND split, it is nec-
essary to make one call for each AND branch (line 19). If the gateway is a
join, then it is necessary to check whether all the incoming branches are ter-
minated (lines 22-28). If this is the case, then the flow is allowed to continue
with the following activities (line 35). Please note that we omitted here the
description of the token handling (i.e., insertion, check, and removal) for
readability purposes: it is managed in a standard way.

Algorithm 3 is responsible for adding an activity to the provided trace.
The algorithm first creates the start event for the activity and populates it
with the standard fields (lines 1-4). If the activity has a non-instantaneous
duration, the algorithm also creates a complete event (line 17-20).

In order to determine the activity time and its duration, the system
needs to check whether the user specified any of these parameters. If no
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Algorithm 2: Simulate Process
Input : P = ((Estart, Eend, A, G, D), (S, C)): the process to simulate

t: the trace containing the simulated events
c: process component to simulate
s = (i, c): incoming sequence

1 tokens← globally defined set of tokens (i.e., sequences), initially the empty set

2 if c is a Task or c is a XOR gateway then
3 if c is a Task then
4 Simulate Activity(P, t, c) . Algorithm 3
5 tokens← tokens \ {s}
6 end
7 if | out(c)| ≥ 1 then
8 n← rnd(out(c)) . Randomly select the following

component
9 tokens← tokens∪ {(c, n)} . Update tokens

10 Simulate Process(P, t, n, (c, n)) . Recursion
11 end
12 else if c is an AND gateway then
13 if | out(c)| > 1 then . We treat c as a split
14 tokens← tokens \ {s}
15 forall the n ∈ out(c) do . Add all tokens
16 tokens← tokens∪ {(c, n)}
17 end
18 forall the n ∈ out(c) do
19 Simulate Process(P, t, n, (c, n)) . Recursive call
20 end
21 else . In this case, we treat c as a join
22 allBranchesSeen← true

. Check whether all branches (i.e., incoming
edges) have been executed

23 forall the p ∈ in(c) do
24 if (p, c) /∈ t then
25 allBranchesSeen← false
26 break
27 end
28 end
29 if allBranchesSeen is true then
30 forall the p ∈ in(c) do . Remove tokens
31 tokens← tokens \ {(p, c)}
32 end
33 n← out(c) . Get the outgoing edge
34 tokens← tokens∪ {(c, n)} . Update tokens
35 Simulate Process(P, t, n, (c, n)) . Recursive call
36 end
37 end
38 end
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Algorithm 3: Simulate Activity
Input : P = ((Estart, Eend, A, G, D), (S, C)): the process

t: the trace that contain the new events
a: activity to simulate

. Generate the activity start event

1 estart ← new event referring to activity a
2 #activity(estart)← the name of activity a
3 #time(estart)← activity time . Details in text

4 #lifecycle(estart)← start
. Decorate with all generated data objects

5 forall the d ∈ {d | (a, d) ∈ C} do
6 #d(estart)← value generated for d
7 end
. Decorate with all required data objects

8 if |t| > 1 then
9 forall the d ∈ {d | (d, a) ∈ C} do

10 lastEvent← t(|t| − 1)
11 #d(lastEvent)← value generated for d
12 end
13 end
14 add event-level noise to estart . See Section 5.2

15 t← t · 〈estart〉
. Generate the activity completion event

16 if activity a is not instantaneous then
17 ecomplete ← new event referring to activity a
18 #activity(ecomplete)← the name of activity a
19 #time(ecomplete)← #time(estart)+ activity duration
20 #lifecycle(ecomplete)← complete

. Decorate with all generated data objects

21 forall the d ∈ {d | (a, d) ∈ C} do
22 #d(estart)← value generated for d
23 end
24 add event-level noise to ecomplete . See Section 5.2

25 t← t · 〈ecomplete〉
26 end

specifications are reported, then the activity is assumed to be instantaneous
and to execute a fixed amount of time after the previous one. However,
as said, the user can manually specify these parameters. To do so, the
user has to provide two Python [30] functions: time after(caseId) and
time lasted(caseId). Both these functions are called by the simula-
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Listing 1: Example of random activity duration (between 5 and 15 min-
utes) and random time after the execution of an activity (between 1 and 5
minutes).

from random import randint
# This Python script is called for the generation of the time

related features of the activity. Note that the functions
parameters are the actual case id of the ongoing simulation (
you can use this value for customize the behavior according to
the actual instance).

# The time_after(caseid) function is returns the number of second
to wait before the following activity can start.

def time_after(caseid):
return randint(60*1, 60*5)

# The time_lasted(caseid) function returns the number of seconds
the activity is supposed to last

def time_lasted(caseid):
return randint(60*5, 60*15)

tor with the caseId parameter valued to the actual case id: this allows
the two functions to be case-dependent (for example, it is possible to save
files with contextual information). Specifically, time after(caseId) is
required to return the number of seconds that have be (virtually) waited
before the following activity is allowed to start. time lasted(caseId),
instead, has to return the number of seconds that the activity is supposed
to last. This approach is extremely flexible, and allows the user to make
very complex simulations. For example, it is possible to define different
durations for the same activity depending on which flow the current trace
has followed so far, or with respect to the number of iterations on a loop.
Examples of such functions are reported in listing 1.

Once the time-related properties of an activity are computed, Algo-
rithm 3, has to deal with the data objects associated with the current ac-
tivity. In particular, generated data objects (see Section 3.1) are supposed to
generate values written as the current activity’s attribute. Required data ob-
jects, instead, are written as attributes for the activity which precedes the
current one in the trace. The ratio behind this decision is that generated data
objects are assumed as values written as output of the current activity. Re-
quired data objects, instead, are variables that has to be observed prior to the
execution of the current activity. However, since the simulation is driven
by the control-flow, it is necessary to adjust the variable values a posteriori.

In order to better understand the utility of required data objects, let’s
consider the process fragment reported in Figure 3. In this case, the simu-
lation will first perform “Activity A” and then either “Activity B” or “Ac-
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d = 1

d = 2

Figure 3: A process fragment of a XOR split gateway with two branches,
each of them starting with a different required data object.

Listing 2: Example of script for the generation of random integer values (in
the range 0, 1000).

from random import randint
# This Python script is called for the generation of the integer

data object. Note that the parameter of this function is the
actual case id of the ongoing simulation (you can use this
value to customize your data object). The function name has to
be "generate".

def generate(caseId):
return randint(0, 1000)

tivity C”. However, all the times the simulation engine generates “Activity
B”, it also decorates the event referring to “Activity A” (belonging to the
same trace) with d = 1. Instead, all the times the simulation engine gen-
erates “Activity C”, it also decorates the event referring to “Activity A”
(belonging to the same trace) with d = 2. Therefore, an analysis system
fed with such example trace could infer a correlation between the value of
the attribute d of “Activity A”, and the following activity.

From the characterization reported in Fig. 1, and described in Section 3,
it is possible to distinguish two types of data objects: plain data objects and
dynamic data objects. This distinction is required by the simulation engine in
order to properly deal with them: plain data objects are treated as fixed val-
ues (i.e., the simulation generates always the same value); dynamic data ob-
jects are actually Python scripts whose values are determined by the execu-
tion of the script itself. These scripts must implement a generate(caseId)
function which is supposed to return either an integer or a string value
(depending on the type of data object). An example of integer dynamic
data object script is reported in listing 2. Please note that, also in this case,
the function is called with the caseId parameters valued with the actual
instance’s case id, providing the user with an in-depth, and case depen-
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dent, control over the generated values. ScriptExecutor component
(and its subclasses), reported in Figure 1, are in charge of the execution
of the Python scripts.

There is no particular limit on the number of plain and dynamic data
objects that a task can have, both required and generated. Clearly, the
higher the number of data objects to generate, the longer the simulation
will take.

The current random process generator component is only able to gen-
erate plain data objects. Specifically, the generated data objects are named
variable a, variable b, . . . and the values they return are just random
strings.

Considering all the simulation aspects described in this section we can
conclude that our approach is able to simulate multiperspective models in
order to generate multiperspective logs. The “multiperspective” term, in
this context, means that the data generate does not only refer to the control-
flow perspective, but have also detailed timing properties and the data gen-
erate could be extremely articulated and tailored to the actual simulation
scenario.

5.2 Noise Addition

In order to generate more realistic data, we introduced a noise component.
The noise component plays a role after the process has been simulated

and a trace is available. Specifically, this trace is fed to the noise component
which could apply noise at three different “levels”: (i) at the trace level (i.e.,
noise which involve the trace organization); (ii) at the event level (i.e., noise
which involve events on the control-flow perspective); (iii) at the data object
level (i.e., noise which involve the data perspective associated to events).
The actual noise generation is driven by the parameters set by the user.
Such parameters, basically, indicate the probability of applying a particular
noise type to the trace. Setting all these values to zero implies having trace
with no noise.

The noise details for the trace and -partially- for the event level have
already been discussed in the literature and reported in details in [11, 19].
The idea is that the user has to specify the probability of all the different
noise events, and the simulator will apply the corresponding effect. Possi-
ble trace-level noise phenomena are:

• a trace which is missing its head (i.e., its first events). In this case the
user has also to specify the maximum size for a head (which will be
randomly chosen between 1 and the provided value);

• a trace which is missing its tail (i.e., its last events). In this case the
user has also to specify the maximum size for the tail (which will be
randomly chosen between 1 and the provided value);
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• a trace which is missing an episode (i.e., a sequence of contiguous
events). In this case the user has also to specify the maximum size
for an episode (which will be randomly chosen between 1 and the
provided value);

• an alien event introduced into the trace, in a random position, with
random attributes;

• a doubled event on the trace.

Possible noise effects at the event level are:

• the random change of the activity name of an event;

• the perturbed order between two events of a trace (since the times-
tamp attributes of two events are involved, we consider this as an
event-level noise).

Finally, possible data object-level noises are:

• random modification of an integer dynamic data object. In this case
the user has also to specify the maximum value ∆ of the change: given
the old value v, the new one (i.e., after noise) will be v + δ, with δ
random in the closed interval [−∆,+∆];

• random modification of a string dynamic data object (replacement of
the current string with a randomly generated new one).

In order to simplify the noise configuration, we already defined some
basic “noise profiles”, such as: (i) complete noise; (ii) noise only on the
control-flow; (iii) noise only for data-objects; (iv) noise only on activity
names; (v) no noise at all.

6 Stream Simulation in PLG2

As stated before, PLG2 explicitly was design for the simulation of online
event streams. Specifically, in this context, we adopted the definition of
stream already used in the process mining community [6, 25].

6.1 Continuous Data Generation

An event stream differs from an event log in two fundamental aspects. First
of all, and event stream has not a predefined end (i.e., the user can gener-
ate as many events he wants, so the simulation can last for an unspeci-
fied amount of time). The second distinction consists in keeping the events
sorted by their time, and not grouped.
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Figure 4: Graphical representation of an event stream. Boxes represent
events: their background colors represent the case id, and the letters in-
side are the activity names. First line reports the stream, following lines are
the single cases.

Therefore, differently from an event log (which is a set of sequences,
i.e., the traces), an event stream is just a sequence of events. Therefore, the
only property that must be enforced is that, given an event stream σ, for
all indexes i available, #time(σ(i)) < #time(σ(i + 1)). Instead, it will happen,
for some indexes i, that #case(σ(i)) 6= #case(σ(i + 1)) (i.e., contiguous events
refer to different process instances). In this last case, the two events are said
to belong to interleaving traces. Figure 4 reports a graphical representation
of three interleaving traces and how the actual stream looks like.

From an implementation point of view, the idea is to create a socket,
which is accepting connections from external clients. PLG2, then, “emits”
(i.e., writes on the socket) events that are generated. The challenge, in this
case, is to let the system simulate and send events for a potentially infinite
amount of time.

In order to generate our continuous stream, we need to ask the user for
two parameters: the maximum number of parallel instances running at the
same time, and the “time scale”. The first parameter is used to populate the
data structures required for the generation of the stream. Then, since the
event emission is performed in “the real time” (opposed to the “simulated
time”), it might be necessary to scale the simulation time in order to have
the desired events emission rate. To this end we need a time multiplier,
which is expected to be defined in (0, ∞]. This time multiplier is used to
transform the duration of a trace (and the time position of all the contained
events), from the simulation time to the real time.

The procedure for the generation of streams is reported in Algorithm 4.
It starts by allocating as many priority queues as the number of paral-
lel instances of the stream (line 3). These queues are basically used as
events buffer. Then, the procedure starts a potentially infinite loop for the
events streaming. At the beginning of this loop, the algorithm first needs
to check whether the buffer contains enough events. If this is not the case
(line 7), then a new process instance is simulated (line 9, using Algorithm 1)
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and, after applying the time scale (line 10), all its events are added to the
event buffer (line 11). Events are enqueue considering their time order (i.e.,
events with lower timestamps have higher priority).5 Once the algorithm
is sure about the availability of events, it extracts (and removes), from the
buffer, the event with highest priority (line 13). At this point, it is necessary
to make happen the mapping between the simulation and the real time:
the algorithm has to wait for a certain amount of time, in order to ensure
the correct event distribution in the real time (line 16). After such wait, the
event can finally be emitted (line 20), and all connected clients are notified.

Please note that, every time the algorithm has to repopulate the buffer, it
asks the framework for the process which has to be simulated (line 8). This
is a fundamental point: the user can change the process for the simulation,
without stopping the current stream emission, and if such change occurs, a
concept drift will be observed. Concept drifts [15,18,25,26] represent another
important characteristic, which fundamentally differentiate event streams
from event logs and, therefore, identify a requirement.

Please note also that, in order to have a more accurate mapping between
simulation and real time, the implementation of the buffer population pro-
cedure (lines 7-11 of Alg. 4) can be executed in an external thread.6

In order to assess the feasibility of this algorithm we run several exper-
iments. In particular, we generated the process model reported in Fig. 5a.
This process contains 10 activities, one parallel execution, one loop and one
generated data object. Then, we run the streamer of this process for two
hours, generating, in total, 4 174 different traces and 67 856 events. The av-
erage throughput of the streamer, after an initial configuration stage, was
set at 9.4 events per second. Figure 5b reports the memory requirement
of the approach: the evolution of the buffer size and the total number of
events sent are plotted against the running time of the actual stream. As
the plot shows, the average number of stored event is between 300 and 400
events, which represents an affordable memory requirement for any hard-
ware configuration available nowadays.

6.2 Concept Drifts for Process Models

One common characteristic of online settings is the presence of concept
drifts. As described in the previous section, the tool is able to dynamically
switch the source generating the events. However, in order to change the
stream source, a new model is required. To create another model, two op-

5Implementation details are skipped here, but some time manipulations are required
in order to insert the new trace after all events already enqueued and keeping a certain
amount of time from the last event.

6This cannot ensure a completely correct mapping, however the difference has empirically
seen negligible.
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Algorithm 4: Stream
Input : p: the number of parallel instances

m: time multiplier
. Initialization of the data structures

1 queues← ∅ . This is an event buffer

2 for i = 1 up to p do
3 queues← queue ∪ {a new priority queue}
4 end
5 l ← ⊥
6 forever do

. Populate the event buffer

7 if |queues| < 2p then . Here |queues| is the sum of sizes

of all queues contained. Although the inequality

could be < 1, we prefer to use 2p since these

operations could be performed in a different

concurred thread

8 proc← the process to simulate
9 t← simulate a new trace for proc . Alg. 1

10 scale the trace duration (and events times) according to m
11 distribute the events of t (sorted by their time) to the queue

with the highest priority of the last event
12 end

. The actual streaming

13 e← extract (and remove) the event with highest priority from all
queues . From queues

14 if l 6= ⊥ then
15 w← #time(e)− #time(l)
16 wait for w time units
17 end
18 l ← e
19 #time(e)← now
20 emit e . To all connected clients

21 end

tions are available: one is to load or generate from scratch a model; the
other is to “evolve” an existing one: this is an important feature of PLG2.

To evolve an existing model, PLG2 replaces an activity with a subpro-
cess generated using the context-free grammar described in Section 4. This
operation, which takes place randomly, and with a probability provided by
the user, is repeated for each activity of the process. The new process could
be very similar to the originating one, or very different, and this basically
depends on the probability configured by the user.
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(a) Process model used for performance computation of the stream reported in this section.
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ported in Fig. 5a.

Figure 5: Simulations details: the process model used and the size of the
buffer. The entire simulation lasted for two hours.

For example, Figure 6 reports two evolutions of the process model,
which has been randomly generated and which is reported in (a). In (b)
the procedure applies the evolution by replacing “Activity G” with the se-
quence of three activities (“Activity H”, “Activity I” and “Activity J”). In (c),
the evolution involves “Activity D” (and the associated data object) which
is replaced with a skip (i.e., it is removed).

Please note that an evolution could involve the creation or the deletion
of data objects as well. Process evolution, therefore, can be used for the
definition of particular experiments (e.g., a stream with random concept
drifts occurring every 1000 events).
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(a) Starting process model, randomly generated.
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(b) First evolution of the process model. In this case, activity G has been replaced
by a sequence of three activities (H, I, J).
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(c) Second evolution of the process model. In this case activity D — and the asso-
ciated data object ‘variable a’ — have been removed.

Figure 6: A process model randomly generated with two sequential evolu-
tions. Please note that new activities can be introduced or removed (with
the associated data objects).

7 Implementation Details of PLG2

PLG2 has been implemented in a Java application. It is available as open
source project and also binary files are provided for convenience.7 The
project APIs can also be easily used to randomly generate processes or
logs. Listing 3 reports the Java code required to generate a random pro-
cess model; to simulate it in order to create 1000 traces; and to export the

7See http://plg.processmining.it and https://github.com/delas/plg.
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Listing 3: Java fragment for the creation of a new process, its simulation (to
generate 1000 traces), and its export as Petri net.

// process randomization
Process p = new Process("test");
ProcessGenerator.randomizeProcess(p,

RandomizationConfiguration.BASIC_VALUES);

// log simulation to generate 1000 traces
XLog l = new LogGenerator(p,

new SimulationConfiguration(1000)).generateLog();

// export as pnml
new PNMLExporter().exportModel(p, "p.pnml");

process as a Petri net (using the PNML standard).
The current implementation is able to load BPMN files generated with

Signavio or PLG2. It is also possible to export a model as PNML [21] or
PLG2 file. Moreover, it is possible to export graphical representation of
the model (both in terms of BPMN and Petri net) using the Graphviz file
format [13]. The simulation of log files generates a XES8-compliant [20]
objects, which can be exported both as (compressed) XES or (compressed)
MXML. These formats are widely used by most process mining tools.

Figure 7 reports a screenshot of the current implementation of PLG2.
From the picture it is possible to see the main structure of the GUI: there is
a “workspace” list of generated processes on the left. The selected process
is shown on the main area. Right clicking on activities allows the user to
set up activity-specific properties (such as times, or data objects). On the
bottom part of the main application it is possible to see the PLG2 console.
Here the application reports all the log information, useful for debugging
purposes. The application dialog in the foreground is used for the configu-
ration of the Python script which will be used to determine the time proper-
ties. As shown, specific syntax highlighting and other typing hints (such as
automatic indentation) helps the user in writing Python code. The stream
dialog is also displayed in foreground. As can be seen, in this case, it is pos-
sible to dynamically change the streamed process and the time multiplier.
The right hand side of such dialog (in the rectangle with black background),
moreover, reports “a preview” of the stream: 30 seconds of the stream are
reported (each round dot represents, in this case, up to 3 events).

As stated previously, some components of PLG2 require the execution
of Python scripts. To deal with that we used the Jython framework9 which,

8See http://www.xes-standard.org.
9See http://www.jython.org.

27

http://www.xes-standard.org
http://www.jython.org


Figure 7: Screenshot of PLG2. From the current visualization it is possible
to see that several models have been created in the workspace, the dialog
for the time rules configuration for “Activity C”, and the console, which
shows general information on what is going on. The stream dialog is re-
ported as well.

basically, is an implementation of Python which can run in Java. The inter-
action between Java and Python objects is encapsulated in the ScriptExecutor
hierarchy, reported in Fig. 1.

Since it is possible to repeat the code fragment reported in Listing 3 as
many times as required, we are able to fulfill C1 (Section 1.1). The detailed
process simulation, the advanced data values generation and the noise con-
figuration are necessary to create realistic multiperspective event logs and
therefore to accomplish C2. Finally, the feasibility of the stream procedure
reported, together with its main features (such as the possibility to generate
multiperspective streams, the dynamic change of the originating process
model and the possibility to adapt the time between events emitted) makes
possible to successfully cope with C3.

8 Case Studies

In this section we would like to propose two possible scenarios in which
PLG2 could easily be applied. In particular we will show a multiperspec-
tive analysis, performed in offline setting; and a control-flow discovery ac-
tivity in online scenario.
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Figure 8: Process model used for the offline simulation.

8.1 Offline Setting

On the first case study, we would like to analyze both the control-flow and
the data perspectives of a log files.

To perform our test, we generated a random process model, and then
we manually slightly modified it, in order to fit our goals. Specifically, we
added required data objects to activities C, D, and E. These data objects
are all named variable a, but each of them has a different value. The
generated model is reported in Figure 8 and represents our gold standard.
Therefore, when we perform the data analysis, we expect the presence of a
variable influencing the control-flow for those activities.

To perform our simulation, we generated a log with 2000 traces and
then we analyzed it using ProM10 [40]. For the control-flow discovery anal-
ysis we run the Inductive Miner [24] algorithm. Then, we converted the
generated model into a Petri net. The result is reported in Figure 9a. As
we can see, from the behavioral point of view, the mined model reflects
the original one, except for the data perspective (which cannot be extracted
with Inductive Miner). Starting from the Petri net mined, we run the Data-
flow Discovery plugin [10] in order to add data variables governing the
control-flow. The result, which is reported in Figure 9b, shows the presence
of a variable named variable a which is written by activity A, and read
by activities C, D, and E. The screenshot also reports the actual guard for
activity E (i.e., the value that is required in order to execute that activity).
Both the control-flow and data flow mined reflect the expected ones.

As a second test, we mined the control-flow using the tool Disco.11 The
control-flow discovered by the tool is shown in Figure 10. The formalism,
adopted by the tool for the representation of business processes, allows us
to see, basically, only direct following relationships. As we can note, activ-
ities C, D and E are executed, respectively 676, 622, and 702 times. Since in
total we have 2000 traces, this is an indication that maybe those activities
are mutually exclusive (although this is not necessary). Instead, activities
H and I are both executed 2000 times but we see there are connections be-

10See http://www.promtools.org.
11See http://fluxicon.com/disco/.
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(a) Control-flow extracted using the Inductive Miner algorithm and then con-
verted into a Petri net.

(b) Result of mining the data flow, which dec-
orates the mined Petri net.

Figure 9: Results of mining activities (control-flow and data flow) per-
formed using ProM plugins.

tween them. These connections indicate that the activities are not executed
in a specific order (i.e., they are parallel). These behavioral characteristics
reflect the gold standard.

8.2 Online Setting

For the second case study, we decided to analyze the online scenario with
concept drifts. To achieve this goal, we created a second model (M2), differ-
ent from the previous one (M1). Then we started streaming events referring
to M1.

In the meanwhile, we configured the stream mining plugin implemented
in ProM and described in [6]. Specifically, we used the mining approach
based on Lossy Counting, with parameter ε = 0.032. We also configured
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Figure 10: Result of mining the log using the tool Disco.

the miner to update the graphical representation of the process model ev-
ery 500 events received. The sequence of models extracted is reported in
Figure 11.

The first two models extracted are not equivalent to the expected one,
since the miner needs several observations in order to reinforce and accept
the patterns. Figure 11c shows the model which is equivalent to the gold
standard (in this picture split/join semantics are not reported for readabil-
ity purposes). At this point, we decided to change the stream, and emit
events referring to M2 (i.e., we simulated the occurrence of a concept drift).
The first model extracted after such concept drift is reported in Figure 11d
and shows both process models M1 and M2 embedded into the same rep-
resentation. This is a known phenomenon, and is due to the inertia of the
stream-based approaches. After some events, since the miner is not receiv-
ing anymore observations from M1, it starts to forget its structures. After
some more events, the second model M2 is definitely discovered, as shown
in Figure 11g, and no traces of M1 are left.

With these two case studies, we tried to show some of the possible us-
ages of the described approaches. In these tests, we just used algorithms
already available in the literature. However, the primary goal should be
testing new ones. Moreover, in the described cases, we just manually com-
pared the mined models and the expected ones but this could be done au-
tomatically. Finally, since we provide libraries to perform all functionalities
via Java code, batch approaches could be designed, in order to perform the
same operations against large repositories with models expressing very dif-
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(a) First model (after 500 events). (b) Intermediate model.

(c) Correct first model (after 2000 events). (d) Model mined after the drift occurred.

(e) Intermediate model. (f) Intermediate model.

(g) Correct second model extracted (about
10000 events after the drift occurred).

Figure 11: Evolution of discovered models during a process stream simu-
lation with a concept drift occurred.

ferent behaviors.

9 Conclusions and Future Work

This paper describes PLG2, which is the evolution of an already available
tool. The old tool was able to randomly generate process models and sim-
ulate them. The new tool introduces updates on two sides: on one hand it
extends the support to multiperspective models (by adding detailed con-
trol of time perspective and introducing data objects); on the other hand,
full support for the simulation of online settings (generating drifting mod-
els and simulating event streams) is provided.

We believe, that the combination of the two newly introduced aspects
allows the tool to be a valid instrument for the data mining, information
systems, and process mining community, since it allows the simulation of
very complex scenarios. As the predecessor of this tool has proven, by its
wide adoption, we think that the new features of PLG2 are important in
order to push and help researchers to tackle the new challenges that up-
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coming settings propose (for example, big data requires to handle streams
of multiperspective data).

We think that a lot of work is necessary in this field: the simulation of
real scenarios is a very tough and broad task. In particular, it is important to
investigate how to generate even more realistic scenarios. To achieve such
realism, it is necessary to work both on the model generation (control-flow,
time and data perspective) and on the simulation (for example identifying
new types of noise). For example, the introduction of noise on the model-
ing could be considered (e.g., inserting or removing edges randomly, or in
specific contexts).

An example of possible future work consists in the ad hoc simulation
of the social perspective (identifying common patterns and possible be-
haviors) which, right now, is already possible, but just through the data
perspective (e.g., generating data that describe the originators). Another
future work, on the simulation part consists in introducing noise referring
not to the trace/event modification, but to the distribution of the cases (i.e.,
not all control-flow paths are equally probable).
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