
Online Process Discovery to Detect Concept

Drifts in LTL-Based Declarative Process Models

Fabrizio Maria Maggi1, Andrea Burattin2, Marta Cimitile3, and
Alessandro Sperduti2

1 University of Tartu, Estonia
f.m.maggi@ut.ee

2 University of Padova, Italy
{burattin,sperduti}@math.unipd.it
3 Unitelma Sapienza University, Italy

marta.cimitile@unitelma.it

Abstract. Today’s business processes are often controlled and supported
by information systems. These systems record real-time information about
business processes during their executions. This enables the analysis at
runtime of the process behavior. However, many modern systems pro-
duce “big data”, i.e., collections of data sets so large and complex that
it becomes impossible to store and process all of them. Moreover, few
processes are in steady-state and due to changing circumstances pro-
cesses evolve and systems need to adapt continuously. In this paper, we
present a novel framework for the discovery of LTL-based declarative
process models from streaming event data in settings where it is im-
possible to store all events over an extended period or where processes
evolve while being analyzed. The framework continuously updates a set
of valid business constraints based on the events occurred in the event
stream. In addition, our approach is able to provide meaningful infor-
mation about the most significant concept drifts, i.e., changes occurring
in a process during its execution. We report about experimental results
obtained using logs pertaining the health insurance claims handling in a
travel agency.

Keywords: Process Discovery, Event Stream Analysis, Operational Support,
Concept Drift, Linear Temporal Logic, Business Constraints, Declare

1 Introduction

Together with conformance checking and process model enhancement, process
discovery is one of the three basic forms of process mining [25]. In particular,
process discovery aims at producing a process model based on example execu-
tions in an event log and without using any a-priori information. When using
event logs recorded by information systems supporting changeable and highly
dynamic processes (e.g., healthcare processes), traditional process discovery tech-
niques (mainly based on procedural process modeling languages) often produce



the so called spaghetti-like models. In these models, too many execution paths
are explicitly represented so that they become completely unreadable.

In the last years, several works have been focused on the discovery of declara-
tive process models, i.e., on the discovery of a set of business constraints that hold
during the process execution [12, 8, 10, 17, 15, 16]. These techniques are very suit-
able for processes characterized by high complexity and variability due to the
turbulence and the changeability of their execution environments. One of the
challenges in process mining listed in the Process Mining Manifesto4 is to find a
suitable representational bias to visualize the resulting models but also to be used
internally when searching for a model. In this sense, the dichotomy procedural
versus declarative can be seen as a guideline when choosing the most suitable lan-
guage to represent models resulting from process discovery algorithms: process
mining techniques based on procedural languages can be used for predictable
processes working in stable environments (e.g., a process for handling travel
requests), whereas techniques based on declarative languages can be used for
unpredictable, variable processes working in turbulent environments (see also
[19]).

In this paper, business constraints are represented using the Declare nota-
tion [26]. Declare is a declarative language that combines a formal semantics
grounded in Linear Temporal Logic (LTL) on finite traces,5 with a graphical
representation. In essence, a Declare model is a collection of LTL rules, each
capturing a control flow dependency between two activities.

The Process Mining Manifesto also states that process mining should not be
restricted to off-line analysis and can also be used for online operational support.
In particular, process mining techniques should be able to mine an event stream,
i.e., a real-time, continuous, ordered sequence of items [13]. Algorithms that are
supposed to interact with event streams must respect some requirements, such
as: a) it is impossible to store the complete stream; b) backtracking over an
event stream is not feasible, so algorithms are required to make only one pass
over data; c) it is important to quickly adapt the model to cope with unusual
data values; d) the approach must deal with variable system conditions, such
as fluctuating stream rates. Currently, only few algorithms are able to mine an
event stream [7, 6]. In addition, this is the first paper that presents algorithms
for discovering declarative process models based on streaming event data. In
particular, our technique is able to show a snapshot of the business constraints
valid at a certain point in time during the process execution, thus providing the
user with a continuously updated picture of the process behavior.

Another challenge mentioned in the Process Mining Manifesto is related to
the fact that process mining must deal with concept drifts, i.e., with the situation
in which the process is changing while being analyzed. Processes may change
due to periodic/seasonal changes (e.g., “in December there is more demand” or
“on Friday afternoon there are fewer employees available”) or due to changing

4 The Process Mining Manifesto is authored by the IEEE Task Force on Process
Mining (http://www.win.tue.nl/ieeetfpm/).

5 For compactness, we will use the LTL acronym to denote LTL on finite traces.



conditions (e.g., “the market is getting more competitive”). Such changes impact
processes and it is vital to detect and analyze them. In this paper, we identify
concept drifts in a Declare model in terms of constraint activations. Activations
for Declare constraints are defined in [5]. For example, for a business constraint
like “every request is eventually acknowledged” each request is an activation.
An activation becomes a fulfillment or a violation depending on whether the
request is followed by an acknowledgement or not. Concept drifts are discovered
by analyzing how the percentages of activations, fulfillments and violations for
a set of Declare constraints vary over the time.

To assess the applicability of our approach, we conducted an experimentation
with a set of synthetic logs. In particular, we used two variants of a process
pertaining the health insurance claims handling in a travel agency.

The paper is structured as follows. Section 2 introduces the characteristics of
event stream mining as well as some basic notation about Declare. Next, Section
3 introduces the proposed algorithms for the online discovery of Declare models.
Section 4 illustrates the two approaches for stream mining we use in this paper
based on sliding window and lossy counting respectively. Section 5 presents and
discusses the experimental results. Finally, Section 6 concludes and spells out
directions for future work.

2 Preliminaries

In this section, we introduce some preliminary notions. In particular, in Sec-
tion 2.1, we summarize some basic information about event stream mining
needed to understand the paper. In Section 2.2, we give an overview of the
Declare language.

2.1 Event Stream Mining

In the data mining literature, there are few definitions of event stream. In this
work, we consider an event stream as an unbounded, sequence of data items,
observed at a high speed [2, 3]. Stream mining approaches can be divided into two
main categories: data-based and task-based [11]. Data-based mining algorithms
reduce the stream into finite datasets, which are supposed to be representatives
of the complete stream; task-based algorithms are modified (or new) approaches,
specifically designed for streams, in order to minimize time and space complexity.
The framework presented here falls into this latter category.

As typically reported in the literature, we assume that: i) the data that con-
stitutes the stream (i.e., the events) have a small and fixed amount of attributes;
ii) a mining approach should be able to analyze an infinite amount of data; iii) a
mining approach is allowed to use only a finite amount of memory and, typ-
ically, such amount is considerably smaller with respect to the data observed
in a reasonable span of time; iv) there is an upper bound on the time allowed
to analyze an event, typically the mining approach is required to linearly scale
with the number of processed items (e.g., the algorithm works with one pass of



Events emi
ed over �me

Stream miner instance

... Network communica�on

Time

...

B

A

CD

precedence

not succession

precedence

not succession

precedence

succession

BE

A

CD
precedence

not succession

precedence

not succession

precedence

not succession

precedence

succession

response

Fig. 1. General idea of event stream mining: the stream miner continuously receives
events and, using the latest observations, updates the process model.

the data [21]); v) the “concepts” generating the event stream may be stationary
or evolving [28, 30]. We assume that each event in an event stream is associated
with an activity (i.e., a well-defined step in the process), is related to a particular
case (i.e., a process instance) and is executed at a certain point in time specified
through a timestamp.

In this work, our aim is to reconstruct a declarative model of the process
generating the stream, while storing a minimal amount of information. Figure 1
proposes a simple representation of our approach: one or more sources emit
events (represented, in the picture, as solid dots), which are collected by our
miner instance. The miner elaborates these events and keeps the process model
updated. In addition, we want to characterize the portions of the event stream in
which the process behavior changes in terms of business constraints. Therefore, it
is important to evaluate whether our approach is able to correctly detect concept
drifts.

2.2 Declare: Some Basic Notions

Declare is a declarative process modeling language introduced by Pesic and van
der Aalst in [26]. A Declare model consists of a set of constraints which, in turn,
are based on templates. Templates are abstract entities that define parameter-
ized classes of properties and constraints are their concrete instantiations. Here,
we indicate template parameters with capital letters (see Table 1) and real activ-
ities in their instantiations with lower case letters (e.g., constraint �(a → ♦b)).
Templates have a user-friendly graphical representation understandable to the
user and their semantics are specified through LTL formulas. Each constraint
inherits the graphical representation and semantics from its template. The most
frequently used Declare templates are shown in Table 1. However, the language



Table 1. Graphical notation and textual description of some Declare constraints

Template Meaning LTL semantics Graphical notation

responded existence(A,B)
if A occurs then
B occurs before or after A

♦A → ♦B
A B

response(A,B)
if A occurs then
eventually B occurs after A

�(A → ♦B)
A B

precedence(A,B)
if B occurs then
A occurs before B

(¬B ⊔A) ∨�(¬B)
A B

alternate response(A,B)
if A occurs then eventually
B occurs after A without other
occurrences of A in between

�(A → ©(¬A ⊔B))
A B

alternate precedence(A,B)
if B occurs then
A occurs before B without other
occurrences of B in between

((¬B ⊔A) ∨�(¬B))∧
�(B → ©((¬B ⊔A) ∨�(¬B)))

A B

chain response(A,B)
if A occurs then B occurs
in the next position after A

�(A → ©B)
A B

chain precedence(A,B)
if B occurs then A occurs
in the next position before B

�(©B → A)
A B

not responded existence(A,B)
if A occurs then B cannot
occur before or after A

♦A → ¬(♦B)
A B

not response(A,B)
if A occurs then B cannot
eventually occur after A

�(A → ¬(♦B))
A B

not precedence(A,B)
if B occurs then
A cannot occur before B

�(♦B → ¬A)
A B

is extensible and new templates can be defined with their own graphical repre-
sentations and LTL semantics.

Consider, for example, the response constraint �(a → ♦b). This constraint
indicates that if a occurs, b must eventually follow. Therefore, this constraint is
satisfied for traces such as t1 = 〈a, a, b, c〉, t2 = 〈b, b, c, d〉, and t3 = 〈a, b, c, b〉,
but not for t4 = 〈a, b, a, c〉 because, in this case, the second instance of a is not
followed by a b. Note that, in t2, the considered response constraint is satisfied
in a trivial way because a never occurs. In this case, we say that the constraint
is vacuously satisfied [14]. In [5], the authors introduce the notion of behavioral
vacuity detection according to which a constraint is non-vacuously satisfied in
a trace when it is activated in that trace. An activation of a constraint in a
trace is an event whose occurrence imposes, because of that constraint, some
obligations on other events in the same trace. For example, a is an activation
for the response constraint �(a → ♦b), because the execution of a forces b to be
executed eventually.

An activation of a constraint can be a fulfillment or a violation for that con-
straint. When a trace is perfectly compliant with respect to a constraint, every
activation of the constraint in the trace leads to a fulfillment. Consider, again,
the response constraint �(a → ♦b). In trace t1, the constraint is activated and
fulfilled twice, whereas, in trace t3, the same constraint is activated and fulfilled
only once. On the other hand, when a trace is not compliant with respect to a
constraint, an activation of the constraint in the trace can lead to a fulfillment
but also to a violation (at least one activation leads to a violation). In trace t4,
for example, the response constraint �(a → ♦b) is activated twice, but the first
activation leads to a fulfillment (eventually b occurs) and the second activation
leads to a violation (b does not occur subsequently). An algorithm to discrimi-



nate between fulfillments and violations for a constraint in a trace is presented
in [5].

In [5], the authors define two metrics to measure the conformance of an
event log with respect to a constraint in terms of violations and fulfillments,
called violation ratio and fulfillment ratio of the constraint in the log. These
metrics are valued 0 if the log contains no activations of the considered constraint.
Otherwise, they are evaluated as the percentage of violations and fulfillments of
the constraint over the total number of activations.

3 Algorithms for the Online Discovery of Declare Models

In this section, we describe the proposed algorithms for the online discovery of
Declare constraints. In particular, we will illustrate three different basic algo-
rithms. Each of them can be used to discover constraints referring to different
Declare templates. Every algorithm takes as input an event stream and builds a
set of candidate constraints obtained by instantiating a Declare template with all
the possible combinations of activity names detected so far in the event stream.
The algorithms keep up-to-date the fulfillment ratio and the violation ratio of
each candidate constraint at every occurrence of an event in the event stream.
Then, at each point in time, it is possible to discover a Declare model by select-
ing, among the candidates, the ones with the highest fulfillment ratio.

In all the algorithms, we use the notion of map. Here, a map refers to the well
known hash table data structure [9]. Given a set of keys K and a set of values
V , a map is a set M ⊆ K × V . We use the following operators: (i) M.put(k, v),
to add value v with key k to M ; (ii) M.get(x) ∈ V , with k ∈ K, to retrieve from
M the value associated with key k; (iii) M.keys ⊆ K to obtain the set of keys
in M .

3.1 Response and Not Response

The algorithm presented in this section can be used for the online discovery of
response and not response constraints. We illustrate the algorithm (Algorithm 1)
for the response template. The algorithm is identical for the not response tem-
plate, since the fulfillment ratio for a response constraint corresponds to the
violation ratio of the not response constraint over the same activities (and vice
versa).6 A similar algorithm (with small modifications) is able to discover alter-
nate response and chain response constraints.

In this algorithm, L is the set of all the activity names observed in the event
stream (in all the cases). activationsCounter c is a map defined for each case
c and containing, for each activity name, the number of its occurrences in c.
This map can be used to count the number of activations for each constraint
(the number of activations can be obtained by counting how many times the

6 A similar observation also applies to the algorithms described in the following sec-
tions.



Algorithm 1: Online algorithm for response and not response.
Input: e = (c, a, t) the event to be processed (c is the case id of the event, a is the activity

name, t is the timestamp)

1 if L is not defined then define the empty set L
2 if activationsCounterc is not defined then define the map activationsCounterc
3 if pendingActivations

c
is not defined then define the map pendingActivations

c

4 if a /∈ activationsCounterc.keys then

5 activationsCounterc.put(a, 1)
6 foreach l ∈ L do

7 pendingActivations
c
.put((l, a), 0)

8 pendingActivations
c
.put((a, l), 1)

9 else

10 activationsCounterc.put(a, activationsCounterc.get(a) + 1)
11 foreach (k1, k2) ∈ pendingActivations

c
.keys do

12 if k2 = a then /* a equals to the second activity name */
13 pendingActivations

c
.put((k1, a), 0)

14 else if k1 = a then /* a equals to the first activity name */
15 acts← pendingActivations

c
.get((a, k2))

16 pendingActivations
c
.put((a, k2), acts + 1)

17 if a /∈ L then L← L ∪ {a}

corresponding activity name has occurred in each case of the event stream).
pendingActivationsc is a map defined for each case c and containing the number
of pending activations in c for each response constraint activated in c (the keys
in the map are pairs of activity names representing the constraint parameters).

The algorithm receives as input an event e = (c, a, t), where c is the case
id, a is the activity name and t is the timestamp. This event is processed by
updating maps activationsCounter c and pendingActivationsc. If c is a new case,
these maps are first defined (lines 2-3).

Then, if a has never occurred in c (i.e., if a is not in activationsCounter c), a
is added as a key in activationsCounter c with number of occurrences equal to 1
(a has occurred only once in c). Lines 6-8 of the algorithm are used to update
map pendingActivationsc when a occurs in c for the first time. In particular, all
the response constraints having a as second parameter cannot have any pending
activation when a occurs (all of them are fulfilled when a occurs). Therefore,
line 7 of the algorithm sets to 0 the number of pending activations in c for the
response constraints having a as second parameter. On the other hand, all the
response constraints having a as first parameter are activated when a occurs and
waiting for some other event to occur. Then, a is a pending activation for these
constraints (and the only one). Therefore, line 8 of the algorithm sets to 1 the
number of pending activations in c for the response constraints having a as first
parameter.

If a has already occurred in c (i.e., if a is already in activationsCounter c), the
number of occurrences of a is incremented by 1 in activationsCounter c. Line 13
of the algorithm sets to 0 the pending activations in c for the response constraints
having a as second parameter. On the other hand, all the response constraints
having a as first parameter are activated when a occurs and, therefore, the
number of pending activations for these constraints in c is incremented by 1.



Algorithm 2: Online algorithm for precedence and not precedence.
Input: e = (c, a, t) the event to be processed (c is the case id of the event, a is the activity

name, t is the timestamp)

1 if L is not defined then define the empty set L
2 if activationsCounterc is not defined then define the map activationsCounterc
3 if fulfilledActivations

c
is not defined then define the map fulfilledActivations

c

4 if a /∈ activationsCounterc then

5 activationsCounterc.put(a, 1)
6 foreach l ∈ L do

7 if l ∈ activationsCounterc then

8 fulfilledActivations
c
.put((l, a), 1)

9 fulfilledActivations
c
.put((a, l), 0)

10 else

11 fulfilledActivations
c
.put((l, a), 0)

12 fulfilledActivations
c
.put((a, l), 0)

13 else

14 activationsCounterc.put(a, activationsCounterc.get(a) + 1)
15 foreach l ∈ L do

16 if l ∈ activationsCounterc then

17 acts← fulfilledActivations
c
.get((l, a))

18 fulfilledActivations
c
.put((l, a), acts + 1)

19 if a /∈ L then L← L ∪ {a}

Finally (line 17), if activity name a is observed for the first time in the event
stream, a is added to L.

Using the algorithm just described it is possible to count the number of activa-
tions for every candidate response constraint (using maps activationsCounter c),
and the number of violations (counting the number of activations still pending in
maps pendingActivationsc). These metrics are enough for deriving, at any point
in time, fulfillment ratio and violation ratio for (not) response constraints.

3.2 Precedence and Not Precedence

The algorithm presented in this section can be used for the online discovery of
precedence and not precedence constraints. We illustrate the algorithm (Algo-
rithm 2) for the precedence template. A variant of this algorithm can be easily
derived for the online discovery of alternate precedence and chain precedence
constraints.

L is again the set of all the activity names occurred in the event stream
(in all the cases). activationsCounter c is a map containing, for each activity
name, the number of its occurrences in c. fulfilledActivationsc is a map defined
for each case c and containing the number of fulfilled activations in c, for each
precedence constraint activated in c (the keys in the map are pairs of activity
names representing the constraint parameters).

The algorithm receives as input an event e = (c, a, t) belonging to a case c.
This event is processed by updating maps activationsCounter c and fulfilledAc-
tivationsc. If c is a new case, these maps are first defined (lines 2-3).



If a has never occurred in c, a is added as a key in activationsCounter c
with number of occurrences equal to 1. Lines 6-12 are used to update map
fulfilledActivationsc when a occurs in c for the first time. In particular, for each
activity l in L, the precedence constraint having a as first parameter and l as
second parameter has no fulfillments. Indeed, this constraint is activated when l

occurs and is fulfilled if l is preceded by a. This cannot be the case because a has
occurred now for the first time. Therefore, lines 9 and 12 of the algorithm sets to
0 the number of fulfilled activations in c for the precedence constraints having l

as second parameter. For each activity l in L, the precedence constraints having
l as first parameter and a as second parameter are activated when a occurs.
In particular, a is a fulfillment if and only if l has already occurred in c. Only
in this case, the algorithm sets to 1 the number of fulfilled activations (line 8).
Otherwise, the number of fulfilled activations is 0 (line 11).

If a has already occurred in c, the number of occurrences of a is incremented
by 1 in activationsCounter c. For each event l in L, the precedence constraints
having l as first parameter and a as second parameter are activated when a

occurs. Therefore, if l has already occurred in c (and only in this case), the
algorithm increments by 1 the number of fulfilled activations in c for the prece-
dence constraints having a as second parameter (line 18). If activity name a has
occurred for the first time in the event stream, a is added to L.

Using the algorithm just described it is possible to count the number of
activations for every candidate precedence constraint (using maps activation-
sCounter c), and the number of fulfillments (counting the number of fulfilled
activations in maps fulfilledActivationsc). With this information it is possible
to derive, at any point in time, fulfillment ratio and violation ratio for (not)
precedence constraints.

3.3 Responded Existence and Not Responded Existence

We use Algorithm 3 to discover responded existence and not responded existence
constraints. We illustrate the algorithm for the responded existence template.

As in the algorithms already discussed, also for this algorithm, L is the set
of all the activity names occurred in the event stream. activationsCounter c con-
tains, for each activity name, the number of its occurrences in c. pendingAc-
tivationsc contains the number of pending activations in c for each responded
existence constraint activated in c.

The algorithm receives as input an event e = (c, a, t) belonging to a case c.
This event is processed by updating maps activationsCounter c and pendingAc-
tivationsc. If c is a new case, these maps are first defined (lines 2-3).

Then, if activity a has never occurred in c, a is added as a key in activation-
sCounter c with number of occurrences equal to 1. Lines 6-11 of the algorithm
are used to update map pendingActivationsc when activity a occurs in c for the
first time. In particular, all the responded existence constraints having a as sec-
ond parameter cannot have pending activations (all of them are fulfilled when a

occurs). Therefore, line 7 of the algorithm sets to 0 the pending activations in
c for the responded existence constraints having a as second parameter. On the



Algorithm 3: Algorithm for responded existence and not resp. existence.
Input: e = (c, a, t) the event to be processed (c is the case id of the event, a is the activity

name, t is the timestamp)

1 if L is not defined then define the empty set L
2 if activationsCounterc is not defined then define the map activationsCounterc
3 if pendingActivations

c
is not defined then define the map pendingActivations

c

4 if a /∈ activationsCounterc then

5 activationsCounterc.put(a, 1)
6 foreach l ∈ L do

7 pendingActivations
c
.put((l, a), 0)

8 if l ∈ activationsCounterc then

9 pendingActivations
c
.put((a, l), 0)

10 else

11 pendingActivations
c
.put((a, l), 1)

12 else

13 activationsCounterc.put(a, activationsCounterc.get(a) + 1)
14 foreach (k1, k2) ∈ pendingActivations

c
.keys do

15 if k2 = a then /* a equals to the second event */
16 pendingActivations

c
.put((k1, a), 0)

17 else if k1 = a then /* a equals to the first event */
18 if k2 ∈ activationsCounterc then

19 pendingActivations
c
.get((a, k2))

20 else

21 acts← pendingActivations
c
.get((a, k2))

22 pendingActivations
c
.put((a, k2), acts + 1)

23 if a /∈ L then L← L ∪ {a}

other hand, for each event l in L, the responded existence constraints having a

as first parameter and l as second parameter are activated when a occurs. In
particular, a is a fulfillment if and only if l has already occurred in c. In this case,
the algorithm sets to 0 the number of pending activations in c (line 9). Other-
wise, if l has not occurred in c yet, a is a pending activation and the algorithm
sets to 1 the number of pending activations (line 11).

If activity name a has already occurred in c, the number of occurrences of
a is incremented by 1 in activationsCounter c. Line 16 of the algorithm sets to
0 the pending activations in c for the responded existence constraints having
a as second parameter (there are no longer pending activations for these con-
straints when a occurs). All the responded existence constraints having a as first
parameter are activated when a occurs and, therefore, the number of pending
activations for these constraints in c is set to 0 if the second parameter has al-
ready occurred and is incremented by 1 if the second parameter has not occurred
yet. Finally (line 23), if activity name a has occurred for the first time in the
event stream, a is added to L.

4 Stream Mining Algorithms

As mentioned earlier in this paper, an event stream is an infinite sequence of
events. Due to the infinite amount of cases we need to cope with and due to the
finite memory size available, we need approaches to remove less significant cases



Algorithm 4: Stream Mining with Sliding Window.
Input: S: event stream; maxM : maximum size of the memory

1 Let M be the available memory
2 forever do

3 e← observe(S) /* Observe a new event e = (c, a, t) */
/* Check if event e has to be used */

4 if analyze(e) then

/* Memory update */

5 if size(M) = maxM then

6 shift(M)

7 insert(M, e)

/* Mining update */
8 if perform mining then

9 DeclareMiner(M)

and keep only the most representative ones. In this work, we use two approaches
to deal with infinite streams: sliding window and an adaptation of lossy count-
ing [18]. The first approach is very simple and effective but, as shown in our
experimentation, not very efficient; the second approach is more complex but
guarantees better performance and, at the same time, good quality of the re-
sults. In general, both these approaches give us strategies that guide the decision
about which information is not useful anymore and, therefore, can be forgotten.

4.1 Sliding Window

One of the simplest way to tackle the stream mining problem is to collect events
for a certain observation period and apply the “off-line version” of a discovery
algorithm on the collected data. This idea is presented in Algorithm 4 and the
approach is called sliding window. An event e = (c, a, t) observed in a stream S

(line 3) is analyzed (line 4) to decide whether it will be considered for mining.7

If the analyze function returns true, the algorithm inserts the new event into the
memory M (line 7). When M reaches its maximum size (line 5), it is necessary
to delete the oldest event (line 6). Periodically (e.g., after the observation of a
certain number of events), it is possible to perform the discovery. In our case,
we can run the Declare Miner [15], but any other discovery algorithm can be
applied.

The main drawback of the sliding window approach is that the time required
for processing an event is completely unbalanced and strongly depends on the
event processed. In particular, when a new event is observed, most of the times,
only inexpensive operations are performed (i.e., insert(M, e)). However, when
the model must be updated, the log retained in memory is mined from scratch.
This implies that, in this case, the event is handled at least twice: the first time
to store it in the memory M and the second time by the discovery algorithm.

7 In general, all the incoming events are analyzed. Only in extreme cases in which it
is not possible to store further events in memory, the new events are discarded.



Algorithm 5: Stream Mining with Lossy Counting.
Input: S event stream; ǫ maximum allowed error; T template.

1 N ← 1

2 w ←
⌈

1

ǫ

⌉

/* Define the bucket width */

3 DT = ∅ /* Main data structure, its type is
D : case id× replayer for template T × frequency× maximum error */

4 forever do

5 bcurrent =
⌈

N

w

⌉

/* Define the current bucket id */

6 e← observe(S) /* Observe a new event, where e = (c, a, t) */

/* Update data structure DT */
7 if ∃ (ccandidate, r, f,∆) ∈ DT such that ccandidate = c then

8 Process event e on replayer r
9 Update the (c, r, f,∆) tuple of DT , by incrementing f by 1

10 else

11 rT ← new replayer for template T
12 DT ← DT ∪ {(c, rT , 1, bcurrent − 1)}

/* Periodic cleanup */

13 if N = 0 mod w then

14 foreach (citer, r, f,∆) ∈ DT such that f + ∆ ≤ bcurrent do

15 Remove (citer, r, f,∆) from DT

/* Generate model */
16 if model then

17 Extract constraints from DT

18 N ← N + 1 /* Increment the buckets counter */

Generally speaking, however, an off-line algorithm may iterate several times on
a log. This issue is critical since, in online settings, for performance reasons, it
is desirable a procedure that analyze each event no more than once.

4.2 Lossy Counting

One of the strongest approach that can be used to solve the approximate fre-
quency counting problem is called lossy counting. In this section, we present a
modified version of lossy counting that can be used for the discovery of Declare
models. The entire procedure is presented in Algorithm 5.

The basic idea of lossy counting is to divide the stream into ideal buckets,
each of them with size w =

⌈

1
ǫ

⌉

, where ǫ ∈ (0, 1) is a parameter indicating the
maximum allowed error (0 means that no data is discarded, leading to large
space usage; 1 indicates that almost all historical data is discarded, leading to
less reliable results). The current bucket (i.e., the bucket containing the last
event observed) is bcurrent =

⌈

N
w

⌉

, where N is the number of events observed so
far.

The most important data structure used by this approach is a set of entries of
the form (c, r, f,∆), where c is the identifier of a case (a case id), r is the replayer
associated with a Declare template T and implementing one of the algorithms
illustrated in Section 3, f is the estimated frequency of case c and ∆ is the
current maximum error. Note that there is a replayer for each case and for each



template and each replayer keeps track of the activations, the fulfillments and
the violations in that case for that template.

Every time a new element e = (c, a, t) is observed (line 6), the algorithm
checks whether the data structure contains an entry for case c (line 7). If
such entry exists, then its frequency value f is incremented by one and the
replayer processes the new event (lines 8-9). Otherwise a new tuple is added,
(c, rT , 1, bcurrent − 1) (where rT is a new replayer, for case c) at line 12. Every
time N ≡ 0 mod w, the algorithm cleans the data structure by removing the
entries that satisfy the inequality f + ∆ ≤ bcurrent (line 15). Such condition
ensures that, every time the cleanup procedure is executed, bcurrent ≤ ǫN . Peri-
odically (e.g., after the observation of a certain number of events), it is possible
to extract the set of valid constraints as described in Section 3 (line 17).

5 Case Study

We implemented the algorithms illustrated in the previous sections as a plug-in
of the process mining tool ProM (http://www.processmining.org). To carry
out our experiments,8 we have generated two synthetic logs (L1 and L2) by
modeling two variants of the insurance claim process described in [4] in CPN
Tools (http://cpntools.org) and by simulating the models. L1 contains 14,840
events and L2 contains 16,438 events. We merged the logs (four alternations of L1

and L2) using the Stream Package, publicly available in the ProM repositories.
The same package has been used to transform the resulting log into an event
stream.

Starting from the generated stream, we have compared the effectiveness and
the efficiency of the online process discovery using the lossy counting approach
with respect to the approach based on sliding window. In our experimentation,
we discovered a Declare model every 1000 events processed, i.e., we fixed an
evaluation point every 1000 events.9

For evaluating the effectiveness of the two approaches, we have used met-
rics precision and recall [20]. To compute recall and precision we assumed that
the discovered Declare constraints could be classified into one of four categories,
i.e., i) true-positive (TP : correctly discovered); ii) false-positive (FP : incorrectly
discovered); iii) true-negative (TN : correctly missed); iv) false-negative (FN : in-
correctly missed). Precision and recall are defined as

Precision =
TP

TP + FP
Recall =

TP

TP + FN
. (1)

The gold standard used as reference is the set of all true positive instances. In
our experiments, we have used as gold standards two Declare models (M1 and

8 All the experiments have been conducted on a machine with an Intel i7 processor
(limiting the execution to just one core), 8 GB of RAM and the Oracle Java virtual
machine installed on a GNU/Linux Ubuntu operating system.

9 In all the experiments, we discover (not) response, (not) precedence and (not) re-
sponded existence constraints.



0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000

F
1

Observed events

ε = 0.001 ε = 0.005 ε = 0.01

Fig. 2. F1 trend for the lossy counting approach for different values of the maximum
allowed error ǫ.

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000

F
1

Observed events

S = 3000 S = 1000 S = 500

Fig. 3. F1 trend for the sliding window approach for different values of the window
size.

M2) discovered from L1 and L2 using the Declare Miner (available in ProM)
and containing constraints satisfied in all the cases. Precision and recall have
been evaluated in every evaluation point. To compute them, we have used either
M1 or M2 as gold standard based on whether the evaluation point corresponds
to an event belonging to L1 or L2 respectively. In every evaluation point, we
selected the constraints with fulfillment ratio equal to 1 among the candidate
constraints generated by the lossy counting approach and discovered (with the
Declare Miner) the constraints with support 100% in the sliding window ap-
proach. Then, we compared these sets of constraints with the gold standards. A
discovered constraint is classified as true-positive or false-positive depending on
whether it belongs to the gold standard or not. A constraint that belongs to the
gold standard but that has not been discovered is a false-negative.

In Fig. 2, we show the trend of the harmonic mean of precision and recall

F1 = 2 ·
Precision ·Recall

Precision + Recall
(2)

for the lossy counting approach. The plot shows that the quality of the discovered
models in every evaluation point is sufficiently high with respect to the gold
standards.



1

10

100

1000

10000

ε = 0 ε = 0.001 ε = 0.005 ε = 0.01 ε = 0.05 ε = 0.1

E
v
e

n
ts

 p
e

r 
se

co
n

d

Error values

(a) Time efficiency for lossy counting

1

10

100

1000

10000

S = 3000 S = 2500 S = 2000 S = 1500 S = 1000 S = 500

E
v
e

n
ts

 p
e

r 
se

co
n

d

Window size

(b) Time efficiency for sliding window

Fig. 4. Time efficiency for lossy counting and sliding window approaches. Both graphs
use logarithmic scales.

In Fig. 3, we show the trend of F1 for the sliding window approach. Con-
cerning the configuration parameters chosen for this experiment, the quality of
the models generated by the sliding window approach is, on average, higher with
respect to the models generated by the lossy counting approach, even if it has
a higher variance. However, as shown later in this section, for the same config-
uration parameters, the approach based on sliding window is extremely more
expensive in terms of time efficiency. Note that the values for F1 are, in both
cases, not very high. This is due to the fact that incomplete traces might not be
able to provide insight into violations (see [29]). Both approaches are able to de-
tect the concept drifts correctly, since the comparisons with both gold standards
lead to good values for F1.

The efficiency of the two approaches has been evaluated through i) the num-
ber of events processed per second (for evaluating the response times of the two
approaches) and ii) the number of events stored at each evaluation point (for
evaluating the memory size needed). For the lossy counting-based approach, we
have evaluated these two metrics for different values of the maximum allowed
error. For the sliding window-based approach, we have evaluated he metrics for
different sizes of the window.

The results are shown in Fig. 4-5. Plots (a) and (b), in Fig. 4, report the
number of events that each approach is able to analyze per second. As expected,
the time efficiency in both cases depends on the configuration parameters. For
the lossy counting approach, the lower is the allowed error, the greater is the
number of replayers to be updated (and this results in a lower efficiency). For
the sliding window approach, the larger is the window size, the larger is the log
to be mined at every evaluation point (again, this has a negative influence over
the time efficiency). In general, however, it is evident that, when trying to obtain
models with good quality, the sliding approach becomes much more inefficient
than the approach based on lossy counting.



1

10

100

1000

10000

100000

1000000

0 20000 40000 60000 80000 100000 120000

S
to

re
d

 e
v
e

n
ts

Observed events

ε = 0

ε = 0.001

ε = 0.005

ε = 0.01

ε = 0.05

ε = 0.1

(a) Space usage for lossy counting

1

10

100

1000

10000

100000

1000000

0 20000 40000 60000 80000 100000 120000

S
to

re
d

 e
v
e

n
ts

Observed events

S = 3000

S = 2500

S = 2000

S = 1500

S = 1000

S = 500

(b) Space usage for sliding window

Fig. 5. Space usage for lossy counting and sliding window approaches. Both graphs use
logarithmic scales.

Plots (a) and (b) of Fig. 5 report the space usage for the two approaches to
store events. For the lossy counting approach, the larger is the allowed error, the
lower is the space required (since less events must be retained). When ǫ = 0, no
data is discarded and, therefore, the space usage grows linearly (the plot uses a
logarithmic scale). In all the other cases, given an error value, the space required
is rather constant. Some variations may be due to concept drifts. Indeed, when
we pass from L1 to L2 in the event stream, cases belonging to the first log are
discarded because become out of date. For the sliding window case, the space
usage is constant and proportional to the window size.

Table 2. Applicability to the BPI Challenges 2011, 2012 and 2013

Event stream
No. of activity

names

Total events

processed

Total proces-

sing time (secs)
Milliseconds

per event

Events

per second

2011 BPI Challenge 623 150 291 2977.238 19.81 50.48
2012 BPI Challenge 36 262 200 191.406 0.73 1369.86
2013 BPI Challenge 13 65 533 37.350 0.57 1754.56

Finally, we checked the applicability of the lossy counting approach to assess
its scalability when the number of activities in the process is high and, then,
the number of candidate constraints grows. In Table 2, we specify the execution
time for the logs provided in the BPI Challenges 2011 [1], 2012 [27] and 2013 [24]
(maximum allowed error 0.01). This table shows that the approach is applicable
even for streams containing more than 600 activity names. Of course, this solu-
tion is more expensive in terms of time and memory. However, to improve this
aspect and deal also with these extreme cases, the approach can be adapted by
using approaches that try to keep track only of the most interesting candidates.
This can be easily done by integrating this approach with approaches to discover
frequent item sets like the one proposed in [15]. Another way to save memory in



this sense is to remove redundancies as explained in [16]. For example, if a con-
straint is stronger than another, it is possible to monitor only the strongest one
and consider the weakest only if the strongest is violated. Another approach to
avoid redundancies and contradictions in the discovered constraints is explained
in [22, 23].

6 Conclusion

In this paper, we presented a novel framework for the online discovery of declara-
tive process models from streaming event data. The framework is able to produce
at runtime an updated picture of the process behavior in terms of LTL-based
business constraints. Moreover, it gives to the user meaningful information about
the most significant concept drifts occurring during the process execution. The
proposed approach combines algorithms for the online discovery of Declare mod-
els and algorithms for stream mining. The framework has been implemented in
ProM. Our experimentation shows the higher effectiveness of the approach based
on sliding window with respect to the approach based on lossy counting at the
cost of very poor performances.

As future work, we will conduct a wider experimentation of the proposed
framework on several case studies also in real-life scenarios. In this way, it will
be possible to understand what can be improved and how. It may be the case,
for example, that some templates are more difficult to discover than others. As
discussed in Section 5, optimizations are also possible in terms of time efficiency
and memory usage.

Acknowledgement Andrea Burattin and Alessandro Sperduti are supported
by the Eurostars-Eureka project PROMPT (E!6696). The authors would like to
thank Francesca Rossi and Paolo Baldan for their advice.

References

1. 3TU Data Center. BPI Challenge 2011 Event Log, 2011.
doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54.

2. Charu Aggarwal. Data Streams: Models and Algorithms, volume 31 of Advances
in Database Systems. Springer US, Boston, MA, 2007.

3. Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernard Pfahringer. MOA: Mas-
sive Online Analysis Learning Examples. Journal of Machine Learning Research,
11:1601–1604, 2010.

4. R.P. Jagadeesh Chandra Bose. Process Mining in the Large: Preprocessing, Dis-

covery, and Diagnostics. PhD thesis, Eindhoven University of Technology, 2012.
5. A. Burattin, F.M. Maggi, W.M.P. van der Aalst, and A. Sperduti. Techniques for

a Posteriori Analysis of Declarative Processes. In EDOC, pages 41–50, 2012.
6. Andrea Burattin. Applicability of Process Mining Techniques in Business Environ-

ments. PhD Thesis, University of Bologna, 2013.
7. Andrea Burattin, Alessandro Sperduti, and Wil M. P. van der Aalst. Heuristics

Miners for Streaming Event Data. ArXiv CoRR, December 2012.



8. F. Chesani, E. Lamma, P. Mello, M. Montali, F. Riguzzi, and S. Storari. Ex-
ploiting Inductive Logic Programming Techniques for Declarative Process Mining.
ToPNoC, 5460:278–295, 2009.

9. T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algo-

rithms. The MIT Press, 2nd edition, September 2001.
10. C. Di Ciccio and M. Mecella. Mining constraints for artful processes. In Proc. of

BIS, LNBIP, pages 11–23. Springer, 2012.
11. Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Mining

Data Streams: a Review. ACM Sigmod Record, 34(2):18–26, June 2005.
12. S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens. Robust process discov-

ery with artificial negative events. JMLR, 10:1305–1340, 2009.
13. Lukasz Golab and M. Tamer Özsu. Issues in Data Stream Management. ACM

SIGMOD Record, 32(2):5–14, June 2003.
14. O. Kupferman and M.Y. Vardi. Vacuity Detection in Temporal Model Checking.

Int. Journal on Software Tools for Technology Transfer, pages 224–233, 2003.
15. F.M. Maggi, J.C. Bose, and W.M.P. van der Aalst. Efficient discovery of under-

standable declarative models from event logs. In CAiSE, pages 270–285, 2012.
16. F.M. Maggi, R.P.J.C. Bose, and W.M.P. van der Aalst. A knowledge-based inte-

grated approach for discovering and repairing declare maps. In CAiSE, 2013.
17. F.M. Maggi, A.J. Mooij, and W.M.P. van der Aalst. User-guided discovery of

declarative process models. In Proc. of CIDM, pages 192–199. IEEE, 2011.
18. Gurmeet Singh Manku and Rajeev Motwani. Approximate Frequency Counts over

Data Streams. In VLDB, pages 346–357, 2002.
19. Paul Pichler, Barbara Weber, Stefan Zugal, Jakob Pinggera, Jan Mendling, and

Hajo A. Reijers. Imperative versus declarative process modeling languages: An
empirical investigation. In BPM Workshops, pages 383–394, 2011.

20. A. Rozinat, A. K. Alves De Medeiros, C. W. Günther, A. J. M. M. Weijters, and
W. M. P. Van Der Aalst. The need for a process mining evaluation framework in
research and practice: position paper. BPM 2007, pages 84–89.

21. Nicole Schweikardt. Short-Entry on One-Pass Algorithms. In Encyclopedia of

Database Systems, pages 1948–1949. 2009.
22. Sergey Smirnov, Matthias Weidlich, Jan Mendling, and Mathias Weske. Action

patterns in business process models. In Service-Oriented Computing, volume 5900,
pages 115–129. 2009.

23. Sergey Smirnov, Matthias Weidlich, Jan Mendling, and Mathias Weske. Action
patterns in business process model repositories. Computers in Industry, 63(2):98–
111, 2012.

24. Ward Steeman;. Bpi challenge 2013, incidents, 2013.
25. W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement

of Business Processes. Springer, 2011.
26. W.M.P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative Workflows:

Balancing Between Flexibility and Support. Computer Science - R&D, pages 99–
113, 2009.

27. B.F.; van Dongen. Bpi challenge 2012, 2012.
28. Matthijs van Leeuwen and Arno Siebes. In Machine Learning and Knowledge

Discovery in Databases, pages 672–687, 2008.
29. Matthias Weidlich, Holger Ziekow, Jan Mendling, Oliver Gnther, Mathias Weske,

and Nirmit Desai. Event-based monitoring of process execution violations. In
Business Process Management, volume 6896, pages 182–198. 2011.

30. Gerhard Widmer and Miroslav Kubat. Learning in the Presence of Concept Drift
and Hidden Contexts. Machine Learning, 23(1):69–101, 1996.


