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Abstract—Control flow discovery algorithms are able to recon-
struct the workflow of a business process from a log of performed
activities. These algorithms, however, do not pay attention to the
reconstruction of roles, i.e. they do not group activities according
to the skills required to perform them. Information about roles in
business processes is commonly considered important and explic-
itly integrated into the process representation, e.g. as swimlanes
in BPMN diagrams. This work proposes an approach to enhance
a business process model with information on roles. Specifically,
the identification of roles is based on the detection of handover
of roles. On the basis of candidates for roles handover, the set of
activities is first partitioned and then subsets of activities which
are performed by the same originators are merged, so to obtain
roles. All significant partitions of activities are automatically
generated. Experimental results on several logs show that the
set of generated roles is not too large and it always contains
the correct definition of roles. We also propose an entropy based
measure to rank the candidate roles which returns promising
experimental results.

Index Terms—process mining, process enhancement, organiza-
tional mining, social network analysis.

I. INTRODUCTION AND PROBLEM DESCRIPTION

Process mining is a relatively young field, bridging business
process modeling and data mining. A growing community of
both academic and industrial partners, coming from different
fields, is actively working on several research topics [1].

Process mining, actually, is a very broad term and involves
several aspects and techniques. Specifically, it is possible to
classify process mining in three main activities:

1) discovery which aims, given a log as input, at building a
representation of the underlying business process model;

2) conformance techniques are useful to compare a reference
process model with respect to a given log (i.e., the ideal
process against what happens in reality);

3) enhancement which enrich a process model, given as
input, with new information extracted starting from an
input log.

Apart from this characterization, it is interesting to note that
several perspectives might be involved in process mining. In
particular, it is possible to concentrate on:
• the control-flow, which is a (possibly graphical) represen-

tation of the business process model (i.e., the ordering of
activities);

• the organizational perspective, which focuses on the
interactions among activities originators;

• focusing on cases (single process instances) may help
identifying peculiarities based on specific characteristics
(for example, which case conditions lead to a particular
path of the process model);

• the time perspective is extremely useful to measure and
monitor the process, for example to find bottlenecks or
predict the remaining time of a case.

In this paper, we concentrate on the enhancement of a
process from the organizational perspective. Specifically, we
present an approach which, given a process model and a
log in input, tries to partition the set of activities of the
process in “swimlanes”. This partitioning is performed by
grouping originators in roles and associating activities with
the corresponding role.

The partitioning proposed in this work is based on the
identification of roles and this is, in turn, based on the
observation of the distribution of originators over activities
and roles. This division is extremely important and gives new
detailed insights on the process model (which can be extracted
using discovery techniques). For example, it is possible to
compare the actual roles distribution with the mined ones or
to analyze the proposed roles in order to improve the current
organization.

The approach proposed in this work, summarized in Fig-
ure 1, is composed of two phases: it starts from the original
process model and, in the first phase, each edge of the process
model is weighted according to the corresponding level of
handover of role. Edges with weight below a threshold are
removed from the model. Resulting connected components are
considered as belonging to the same role. The second phase of
the approach aims at merging components that, in the original
process model, were not close each other.

The remainder of this paper is structured as follows: Sec-
tion II presents some works related to social network analysis
and organizational mining. Section III introduces the general
framework and definitions that will be used throughout this
paper and Section IV describes the general approach and the
metrics employed. The paper continues in Section V with the
description of the proposed algorithms. Experimental results
are described in Section VI, and conclusions are presented in
Section VII.



(a) Original process model.

(b) Expected result, with activities partitioned in roles.

Fig. 1. Input and expected output of the approach presented in this paper.

II. RELATED WORK

The organizational perspective of process mining aims at
discovery relations among activity originators. Typically, these
activities involve several approaches, such as classification of
users in roles and Social Network Analysis [2].

In [3], Song and van der Aalst present an exhaustive
characterization of organizational mining approaches. In par-
ticular, three different types of approaches are presented:
a) organizational model mining; b) social network analysis;
and c) information flows between organizational entities.

Organizational model mining consists in grouping users
with similar characteristics. This grouping can rely on the
similarity of activities performed (task based) or on working
together on the same process instance (case based). The basic
idea of social network analysis [4] is to discover how the
work is handled between different originators. Several metrics
are employed to point out different perspectives of the social
network. Examples of such metrics are the handover of work
(when the work is started by one user and is completed by an-
other), subcontracting (when activities are performed by user
a, then user b and then a again) and working together (users
involved in the same case). The information collected in social
networks can be aggregated in order to produce organizational
entities (such as roles or organizational unit). These entities
are useful to provide insights at a higher abstraction level.
Organizational entities are constructed considering a metric
and the deriving social network and aggregating nodes. These
new connections can be weighted according to the weights of
the originating network.

None of the above papers specifically addresses the problem
of discovering roles in business processes.

III. WORKING FRAMEWORK

Given a business process P , it is possible to identify its set
of tasks (or activities) A and the set U with all the involved
originators (e.g. person, resources, . . . ). In this context, the
complete set of observable events, generated by P , is defined
as E = A× U .

A process can generate a log L = {e1, . . . , en}, which is
defined as a set of traces. Each element of the log identifies a
case (i.e. a process instance) of the observed model. A trace
e = 〈e1, . . . , em〉 is a sequence of events, where ej ∈ E
represents the jth event of the sequence. With ei ∈ e we
indicate that event ei is contained in the sequence e.

Given a process model P , let D(P ) be the set of direct
dependencies (i.e. directed connections) of the process model.
For the sake of simplicity, whenever there is no ambiguity on
the process P , we assume D as a synonym of D(P ). For ex-
ample, the set D of the process model depicted in Figure 1(a)
is: D = {A→ B,A → C,B → D,C → D,D → E}. We
assume to have the possibility to “replay” activities of traces
on the process model (e.g. [5]).

Given an event e ∈ E, such that e = (a, u), let’s define the
projection operators πA(e) = a and πU (e) = u. Moreover, let
us define the operator Ua(L) as:

Ua(L) = {πU (e) | ∃e∈L e ∈ e ∧ πA(e) = a}.

Given a dependency a→ b ∈ D, it is possible to define the
set of couples of originators Ua→b(L):

Ua→b(L) = {(πU (ei), πU (ej)) | the replay identifies a
dependency of a→ b mapped to ei and ej}.

This operator returns the set of couples of originators, in the
log L, that performs the dependency a→ b.

Similar operators are Uaa→b(L) and U ba→b(L). They can
be used to get originators of activity a or b, when they are
involved in the dependency a→ b:

Uaa→b(L) = {ui | (ui, uj) ∈ Ua→b(L)},

U ba→b(L) = {uj | (ui, uj) ∈ Ua→b(L)}.

On all these sets, it is possible to apply the classical rela-
tional algebra operators [6]. For example, using the selection
operator we define σ=(Ua→b(L)) = {(ui, uj) | (ui, uj) ∈
Ua→b(L) ∧ ui = uj}.

For simplicity, whenever there is no ambiguity on L, we
assume Ua, Ua→b and Uaa→b as a synonyms of Ua(L),
Ua→b(L) and Uaa→b(L), respectively.

Given the sets Ua(L), Ua→b(L), and Uaa→b(L), we want to
define the multisets [7] Ua(L), Ua→b(L), and Uaa→b(L) which
take into account the frequency of the originators in L:

Ua(L) = 〈Ua(L), fUa〉 Ua→b(L) = 〈Ua→b(L), fUa→b
〉

Uaa→b(L) = 〈Uaa→b(L), fUa
a→b
〉

where fUa , fUa→b
, and fUa

a→b
are multiplicity functions, which

indicate the number of times that each element of the corre-
sponding set is observed in L. For example, given u ∈ Ua(L),
fUa

(u) returns the number of times that the originator u
performs activity a in L. In this work, the cardinality of a
multiset M = 〈M,fM 〉 is defined as |M| =

∑
m∈M fM (m).

The intersection of two multisets M1 = 〈M1, fM1〉 and
M2 = 〈M2, fM2〉 is defined as the intersection of the two



sets M1 and M2 and the multiplicity function is defined as
the minimum between the multiplicity values:

M1 ∩M2 = 〈M1 ∩M2,min{fM1(x), fM2(x)}〉.

In this context, we will also consider the sum of multisets.
Given M1 = 〈M1, fM1

〉 and M2 = 〈M2, fM2
〉, the sum is

defined as:

M1 ]M2 = 〈M1 ∪M2, fM1
(x) + fM2

(x)〉.

For the sake of simplicity, we will omit L whenever there
is no ambiguity (e.g, Ua instead of Ua(L)). Moreover, the
notation M = {ax, by} identifies the multiset where a has
multiplicity x and b has multiplicity y.

The selection operator σθ can be used also on multisets.
For example, σ=(Ua→b) = 〈σ=(Ua→b), fUa→b

〉 (where the
multiplicity function is defined only on elements of the set
σ=(Ua→b)).

The problem we try to solve is to find a partition [8]
R ⊂ P(A)1 of the set of activities A, given a log L and the
original process P . From the business point of view, we are
requiring that each activity belongs to exactly one role. The
partition R identifies the set of roles of the process. In this
paper, the term “partition of activities” and “role” are used
as synonyms. It is possible to see our task as a “clustering
problem” [9]: we group our elements (i.e. activities) into
clusters (i.e. roles), according to the features they share (i.e.
originators performing activities belonging to the same role).
Moreover, the rationale behind our approach is the same of
clustering algorithms: we aim at achieving partitions with high
intra-cluster and low inter-cluster similarities (i.e. each role is
characterized by a specific set of users).

Let |L| be the size of the log, i.e., the number of traces it
contains. Given a log L and an originator u ∈ U , it is possible
to define |L|u as:

|L|u =
∑
e∈L

|e|∑
i=1

| {ei | πU (ei) = u}|.

In other words, |L|u returns the number of times that originator
u executes activities in L. A similar measure, which also takes
into account the role is |L|uR, where R is a role:

|L|uR =
∑
e∈L

|e|∑
i=1

|{ei | πA(ei) ∈ R ∧ πU (ei) = u}|.

Finally, given a log L and a partition R, it is possible to
define the multiset of originators involved in the role as:

UR(L) =
⊎
a∈R
Ua(L).

As presented in Section II, approaches for the identification
of the handover of work between originators exist; however,
this work proposes an approach to point out handover of
roles and therefore the identification of roles themselves. This

1P(A) identifies the powerset of A.

operation is based on activity originators. Specifically, we as-
sume that, under ideal scenarios, there is a clear distinction of
originators performing activities belonging to different roles.
However, it is really difficult to observe such clear distinction
in business environments (i.e., originators are involved in
several roles) and thus we need to resort to a metric to measure
the degree of handover between roles. This and how to define
a role are the topics covered by the next section.

IV. RULES FOR HANDOVER OF ROLES

As stated in the previous section, the identification of
business roles, as presented in this work, assumes that an
activity is not allowed to belong to two roles at the same
time. Let us recap: given a process P and the dependency
a → b ∈ D(P ), Uaa→b(L) is the multiset of originators
(with frequencies) that perform the activity a (as part of the
dependency a → b) in the log L; and Ua→b(L) identifies the
set of couples of originators (with frequencies) performing a
followed (possibly after some time) by b. Given a dependency
between two activities we present a couple of rules which,
combined, indicate if there is handover of role between the
two activities. Specifically, the combination of rules indicates
a measure of the expectation of handover between roles.

A. Rule for Strong No Handover
The first rule is used to identify the absence of handover of

role. In this case, given the multiset Ua→b for a dependency
between two activities a → b, the idea is to check if there
are couples (u, v) ∈ Ua→b such that u = v. If this is the
case, it means that there is an originator performing both
a and b. As stated previously, we assume that one person
hardly holds more than one role; thereby there is no handover
of role between subsequent activities performed by the same
originator.

B. Rule for No Handover
The previous rule applies only on very specific situations.

More generally, given a dependency a → b ∈ D if the two
sets of originators are equal, i.e. Ua = Ub, we assume there is
no handover of role. This rule can be seen as a weaker version
of the previous one: there are originators interchangeably
performing a and b. On the contrary, if Ua ∩ Ub = ∅ then,
each activity has a disjoint set of originators and this is the
basic assumption to have handover of role between a and b.

In typical business scenarios, however, it is very common
to have border-line situations, and that is why a “boolean-
valued” approach is not feasible. In the following, we propose
a metric to capture the degree of handover of role between
two activities.

C. Degree of No Handover of Roles
Given a process P a dependency a → b ∈ D(P ), and the

respective multisets Uaa→b, Uba→b and Ua→b, it is possible to
define the degree of no handover of role wab, that captures the
rules above mentioned:

wab(L) =
|Uaa→b(L) ∩ Uba→b(L)|+ |σ=(Ua→b(L))|

|Uaa→b(L)|+
∣∣Uba→b(L)∣∣ , (1)



The numerator of this equation considers the intersection of
the two multisets of originators (to model no handover) plus
the number of originators that perform both activities a and b
(to model strong no handover). These weights are divided by
the sum of the sizes of the two multisets of originators.

By definition, Equation (1) identifies the absence of han-
dover of role. Specifically, it assumes values in the closed
interval [0, 1], where 1 indicates there is no handover of roles
and 0 indicates handover. Since the ideal case (i.e., completely
disjoint sets of originators for each role) is very unlikely, we
propose to use a threshold τw on the value wab. If wab > τw,
then there is no handover of roles; otherwise the handover
occurs. A partition of the activities can then be obtained by
removing from the process model all the dependencies which
corresponds to handovers: connected activities are in the same
element of the partition (see Fig. 2).

Example 1: Given a process P , a log L, and the depen-
dency a→ b ∈ D(P ), assume that:
• Uaa→b(L) = {u11, u12, u13},
• Uba→b(L) = {u11, u12, u13}, and
• Ua→b(L) = {(u1, u1)1, (u2, u2)1, (u3, u3)1}.

The value wab(L) = 1 strongly indicates there is no handover
of role in this case. In fact, as the set Ua→b(L) suggests, the
same originator is observed performing both a and b several
times.

Example 2: Let’s now consider a scenario completely dif-
ferent from Example 1. Given a process P , a log L, and the
dependency a→ b ∈ D(P ), assume that:
• Uaa→b(L) = {u11, u12, u13},
• Uba→b(L) = {u14, u15, u16}, and
• Ua→b(L) = {(u1, u4)1, (u2, u5)1, (u3, u6)1}.

The value wab(L) = 0 strongly indicates the presence of
handover of role. It can be seen that the two sets of originators
do not share any person and, based on our assumptions, this
is a symptom of handover.

Example 3: Consider now a third example, in the middle
between Ex. 1 and 2. Given a process P , a log L, and the
dependency a→ b ∈ D(P ), assume that:
• Uaa→b(L) = {u11, u12, u13},
• Uba→b(L) = {u11, u12, u14}, and
• Ua→b(L) = {(u1, u1)1, (u2, u4)1, (u3, u2)1}.

In this case, wab(L) = 0.5 so there is no clear handover.
Looking at the originator sets, u1 performs subsequently a and
then b, in one case. Moreover, u2 is observed performing both
a and b but not on the same process instance. In this example,
it turns out to be fundamental the value of the threshold τw,
in order to decide if handover of role occurs.

D. Merging Roles

As mentioned in the introductory part, the approach pre-
sented in this paper is based on two steps: the first step
identifies handover of roles (through the metric wab) which
induces a partition of activities, i.e. roles. Clearly, this way of
performing the partitioning is too aggressive: if the control-
flow “comes back” to roles already discovered, the handover

(a) Weighted dependencies.

(b) Removed dependencies associated to handover of roles.

Fig. 2. Process model of Fig. 1(a) with weights associated to every
dependency (top), and after the dependencies associated to handover of
roles are removed (bottom). Activities are thus partitioned into the subsets
{A}, {B}, {C}, {D,E}.

does not entail the creation of a new role. The aim of
the second step is to merge partitions that are supposed to
represent the same role.

Given a process P and a log L, the first step generates a
partitioning R of the activities. In order to merge some roles,
we propose a metric which returns the merging degree of two
partitions. Given two roles Ri, Rj ∈ R:

ρRiRj
(L) =

2|URi(L) ∩ URj (L)|
|URi

(L)|+ |URj
(L)|

. (2)

The basic idea of this metric is the same as presented in
Equation (1), i.e., to measure the amount of shared originators
between the two roles. This metric produces values on the
closed interval [0, 1] and, if activities of the two partitions are
performed by the same originators, the values of the metric
is 1 (and therefore the two roles are supposed to be the same
and merged). If the roles have no common originators, then
the value of ρ is 0 and the roles are kept separated.

Due to the blurry situations that are likely in reality, a
threshold τρ is employed: if ρRiRj

(L) > τρ then Ri should be
merged with Rj ; otherwise they are considered distinct roles.

V. ALGORITHM DESCRIPTION

In this section, we give some algorithmic details concerning
the two previously described steps. We do this with the help
of the process described in Figure 1(a). Moreover, we give
an algorithm to generate all “plausible” partitions of activities
(sets of candidate roles).

A. Step 1: Handover of Roles Identification

The first step of our approach consists in the identification
of the partitions induced by every handover of role. Please
note that, in our context, an handover of role may occur
only when the work passes from one activity to another (i.e.,
dependencies between activities of the process).

To achieve our goal, given a process P , the algorithm
starts by extracting all the dependencies D(P ). After that,



Algorithm “Roles Aggregation”
Require: Log L; a set of roles R; and threshold τρ ∈ [0, 1]

1: repeat
2: ρmax ← max(Ri,Rj)∈R×R ρRiRj

(L)
3: Rρmax

← argmax(Ri,Rj)∈R×R ρRiRj
(L) . Maximals

4: if ρmax ≥ τρ then
5: Choose (Ri, Rj) ∈ Rρmax . Selection is performed con-

sidering the couple that maximizes the number of merged
originators, if necessary the number of merged activities
and, finally, the lexicographical order of role activities.

6: R← (R \ {Ri, Rj})∪{Ri ∪Rj} . Merge Ri and Rj
7: end if
8: until no merge is performed
9: return R

Fig. 3. Algorithm to perform the aggregation of roles (i.e. “Step 2”).

every dependency is weighted using Equation (1) (the result is
reported in Figure 2(a)). At this point, we apply a threshold τw.
Specifically, we consider a particular dependency as handover
of role only if its weight is less or equal to τw. Every time
an handover is observed, the corresponding dependency is
removed from the process.

Let’s consider again the example process of Fig. 1(a) and
the weights of Fig. 2(a). Let’s assume wab ≤ τw, wac ≤ τw,
wbd ≤ τw, wcd ≤ τw and wde > τw. Fig. 2(b) reports the
process obtained after handover of roles have been removed.

At the end of the first step, four roles have been identified:
{A}, {B}, {C}, and {D,E}. These roles correspond to the
activities of the connected components [10] of Fig. 2(b).

B. Step 2: Roles Aggregation

As stated previously, the first step of the approach identifies
roles which may be too fine grained. For example, in Fig. 2(b)
each connected component represents a role, however, as
Fig. 1(b) shows, we actually want A in the same role of D
and E, and we want B together with C. In this step, we use
Equation (2) to evaluate if any couple of roles may be merged.

Figure 3 proposes the pseudocode of the procedure used in
this phase. It requires, as input, a log L, a set of roles (i.e.,
a partitioning of activities) R and a value for the threshold
τρ. First of all, the algorithm finds the best pairs of roles
that can be merged (line 3), i.e., pairs with maximal ρ. If the
best value of ρ is above the threshold τρ, it means that it is
possible to merge two roles. However, several pairs may have
the same maximal ρ. The criterion to select just one pair is
to consider the roles that maximize the number of affected
originators. If there are several pairs with identical ρ values
and number of affected originators, we choose the pair that
maximizes the number of merged activities. If we still have
more than one pair, we just pick the first pair according to
lexicographical order of contained activities (line 5). The two
selected candidate roles are then merged. The same procedure
is repeated until no more roles are merged (line 8), i.e., there
is no pair with value of ρ above the threshold τρ. Finally, the
modified set of roles is returned (line 9).
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Fig. 4. Representation of the growth of the number of possible partitioning,
given the number of elements of a set.

C. Generation of Candidate Solutions

The approach, as presented so far, requires the configuration
of two thresholds, i.e. τw and τρ. Little variations in configu-
ration of these parameters may lead to very different roles. To
tackle this problem, we think it might be interesting to extract
all the significant partitioning and propose them to the user.
Given the set A of tasks, the number of possible partitions is
identified by the Bell number [8]. This quantity, given n as
the size of the set is recursively defined as:

B(n) =

n−1∑
t=0

(
n− 1

t

)
B(t)

Figure 4 presents the explosion of the number of possible
partitioning, given the number of elements of a set.

By construction, the proposed approach requires two param-
eters: τw and τρ. The values of these two threshold is required
to be in the interval [0, 1]; however, it can be seen that only a
finite number of values produces different results.

As example, if we consider τw, it is used to remove edges
from the original process. Since the number of edges of a
process is finite, there is a finite number of values of τw that
splits activities of the process. The same observation can be
used to enumerate the possible values of τρ.

The algorithm described in Figure 5 proposes an approach
which automatically extracts all the significant configurations
of τw and τρ and returns such set of solutions. Specifically,
line 2 collects all the significant values of τw. All these values
are used to remove the handover of roles (line 6-10). Line 12,
given the partitioning just obtained, it generates the set of
all significant values for τρ, which are considered for the
computation of step 2 (line 15). The returned result consists
of a set with all the significant partitions (with respect to the
log L) that can be extracted.

The algorithm proposed in Fig. 5 has a worst-case com-
plexity which is O(n3), where n is number of edges of the
given process. In fact, it is possible that each dependency of
the process has a different weight wab. The same situation



Algorithm “Roles Selection”
Require: Process P ; and a log L

1: S← ∅ . Set of final solutions
2: Tw ← {wab(L) | a→ b ∈ D(P )}
3: for all τw ∈ Tw do . Tries all significant values for τw

4: Copy the process P in P ′

5: . Step 1
6: for all a→ b ∈ D(P ) do
7: if wab(L) ≤ τw then
8: Remove dependency a→ b from P ′

9: end if
10: end for
11: R← set of activities in connected components of P ′

12: T ρ ← {ρRiRj
(L) | Ri, Rj ∈ R}

13: for all τρ ∈ T ρ do . Tries all significant values for τρ

14: . Step 2
15: Rfinal ← Roles Merger (L, R, τρ) . See Fig. 3
16: S← S ∪ {Rfinal} . Consider the new solution
17: end for
18: end for
19: return S

Fig. 5. Complete algorithm to automatically find all different partitioning of
activities, given a log, and a process model.

may happen when considering ρAB : it is possible to have n
clusters from step 1, and each pair of them can have a different
value of ρAB . However, it is important to note that, typically,
n is relatively small and, more importantly, is independent
from the given log. In particular, it is necessary to analyze the
log (linear complexity, with respect to the number of events
it contains), but this operation is performed only once: all
the other activities (reported in Fig. 5) can use the already
collected statistics.

It is possible to sort the set of partitions according to the
number of roles. This ordered set is then proposed to the
final user. In this way, the user will be able to explore all
the significant alternate definitions of roles.

D. Partition Evaluation

A possible way to evaluate the discovered partitions, is to
use the concept of entropy [11]. In this context, we propose
our measure. Specifically, given R as the current partition, i.e.,
set of roles (each role is a set of activities), U as the set of
originators, and L as a log, we define an entropy measure of
the partition as:

H(R, L) =
∑
u∈U

∑
R∈R

−|L|
u
R

|L|u
log2

(
|L|uR
|L|u

)
. (3)

Let us recall that |L|uR is defined as the number of times that
activities belonging to the role R, and performed by user u,
are observed in L; and that |L|u is defined as the number of
activities executed by originator u in the log L.

This measure is zero if each originator is involved in one
and only one role. Otherwise, the measure increases with the

degree of mixture of contribution of originators to multiple
roles.

VI. EXPERIMENTS

The approach presented in this paper has been implemented
in the ProM 6.2 [12] toolkit and will freely be available soon.
We performed several tests against an artificial dataset.

In our datasets, we have the target partitioning (i.e. the
expected roles) and, given a log, our goal is to discover those
roles. To evaluate our results we compare the target roles with
the extracted ones and we use a measure inspired by purity
[13]. Let us recall that A represents the set of activities (or
tasks) of the process and that a role is a set of activities. |R|
is the number of activities contained in the role R. Given the
target set of roles Rt and the discovered one Rd, our degree
of similarity is defined as:

similarity =
1

|Rd|
∑

Rd∈Rd

max
Rt∈Rt

2|Rd ∩ Rt|
|Rd|+ |Rt|

.

The idea behind this formulation is that if the partitioning
discovered is equal to the target, the similarity value is 1,
otherwise it decreases.

Two artificial processes have been created with PLG [14].
These processes, shown in Figure 6, have been simulated
1000 times. However, due to the lack of PLG in simulating
the organizational perspective, we prepared a second ProM
package, which is able to decorate a given log with information
on the originators. This package requires some configuration:
first of all, it is necessary to set the number of roles and the
number of originators. After that, a distribution of activities
among roles is required, and it is necessary to assign each
originator to one or more roles. The package will decorate
the log by randomly choosing, for each activity, an originator
belonging to the same role of the activity itself. By default,
each originator of a role is equally likely to be selected,
however, a simple procedure to specify ad-hoc probabilities
is available as well.

A. Model 1

Model 1 (Figure 6 (a)) contains 13 activities divided over 3
roles. A peculiarity of this process is that the workflow starts
with activities belonging to “Role 1” and finishes with other
activities belonging to the same “Role 1”. This process have
been simulated to generate five different logs:
• one with exactly one originator per role;
• another with exactly two originators per role;
• the third log is similar to the second but is also includes

a “jolly”: an originator performing all activities;
• the fourth log contains three originators; all of them

are involved on all activities, however, each role has a
“leader”. Given a role, an activity is executed by its leader
with probability 0.5, otherwise all other originators are
equally likely;

• the last log has 6 originators performing all the activities
with a leader for each role (with the same probabilities
of the previous case).



(a) Model 1.

(b) Model 2.

Fig. 6. Process models generated for the creation of the artificial dataset.

B. Model 2

Model 2 (Figure 6 (b)) is composed by 9 activities and 4
roles. In this case, the process also has a loop of activities
within “Role 3”. This process has been simulated to generate
3 logs:
• one with exactly one originator per role;
• another with exactly two originators per role;
• the last one with 8 originators, all of them involved in

all the activities, with one “leader” per role (with same
probabilities of last logs of Model 1).

C. Results

The first results are presented in Table I. Specifically, for
each log, the number of different partitions is reported. Please
note that this number is always relatively small and, in the
worst cases (log with six users and log with jolly of the first
model), we have 36 different partitionings.

Figure 7 proposes, for the two models, the distribution of the
partitions according to the corresponding similarity measure
(with respect to target roles). Concerning the logs of Model
1, all the partitions have similarity values very high, most of
them are concentrated on the interval [1, 0.5]. In the case of

TABLE I
THIS TABLE REPORTS THE RESULTS, FOR THE TWO MODELS, IN TERMS OF

NUMBER OF SIGNIFICANT DIFFERENT PARTITIONS DISCOVERED.

Logs No. of partitions

(a) Model 1

1 user per role 6
2 users per role 34
2 users per role – 1 jolly 36
3 users 31
6 users 36

(b) Model 2

1 user per role 3
2 users per role 12
8 users 9

Model 2, most of partitions lay on the interval [1, 0.7]. It is
very important to note that in all cases the system extracts the
target roles (i.e. partition with similarity 1).

The purpose of the last experiment is to evaluate the entropy
measure. Specifically, for each log, we ranked all partitions
according to the corresponding entropy measure. After that, we
verified the position of the target partition. Results are reported
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(a) Results for Model 1.
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Fig. 7. Results, for the two models, in terms of number of significant partitioning with respect to the purity value, reported in bin of width 0.1.

TABLE II
THIS TABLE REPORTS, FOR EACH LOG, THE RANK OF THE TARGET

PARTITION. RANKING IS BASED ON THE ENTROPY VALUE.

Logs Rank of target partition

(a) Model 1

1 user per role 1
2 users per role 1
2 users per role – 1 jolly 4
3 users with leader 4
6 users with leader 12

(b) Model 2

1 user per role 1
2 users per role 1
8 users with leader 5

in Table II. As you can see, whenever there is no “confusion”
(i.e. one originator is involved in exactly one role), the entropy
measure suggests the desired partition (i.e. it is in first place).
Instead, when the same originator performs several roles, the
confusion increases and it is harder, for our entropy measure,
to correctly identify the target partition (i.e. the target partition
is not in first place).

VII. CONCLUSIONS AND FUTURE WORK

In this paper we considered the problem of enhancing a
process model with information about roles. Specifically, we
aimed at discovery a partitioning of activities. This activity
is performed by taking into account originators and which
activities they perform. Measures of handover of roles are
defined and employed; and an approach to automatically
extract only the significant partitionings is shown too.

As future work, we would like to improve the entropy
measure so to have a reliable approach to the automatic
selection of the solution. Moreover, we think it will be very
useful to conduct a deeper analysis on real datasets, in order
to point out the actual capacity of our metrics (i.e., wab and
ρrirj ) to discover roles.
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