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Abstract—The increasing availability of event data
recorded by information systems, electronic devices, web
services and sensor networks provides detailed information
about the actual processes in systems and organizations.
Process mining techniques can use such event data to discover
processes and check the conformance of process models.
For conformance checking, we need to analyze whether the
observed behavior matches the modeled behavior. In such
settings, it is often desirable to specify the expected behavior
in terms of a declarative process model rather than of a
detailed procedural model. However, declarative models do
not have an explicit notion of state, thus making it more
difficult to pinpoint deviations and to explain and quantify
discrepancies. This paper focuses on providing high-quality
and understandable diagnostics. The notion of activation
plays a key role in determining the effect of individual events
on a given constraint. Using this notion, we are able to show
cause-and-effect relations and measure the healthiness of the
process.

Keywords-process mining; conformance checking; Declare;
temporal logic;

I. INTRODUCTION

Imperative process modeling languages such as BPMN,
Petri nets, UML ADs, EPCs and BPEL, are very useful
in environments that are stable and where the decision
procedures can be predefined. Participants can be guided
based on such process models. However, they are less ap-
propriate for environments that are more variable and that
require more flexibility. Consider, for instance, a physician
in a hospital confronted with a variety of patients that need
to be handled in a flexible manner. Nevertheless, there are
some general regulations and guidelines to be followed. In
such cases, declarative process models are more effective
than the imperative ones [1], [2], [3]. Instead of explicitly
specifying all possible sequences of activities in a process,
declarative models implicitly specify the allowed behavior
of the process with constraints, i.e., rules that must be
followed during execution. In comparison to imperative
approaches, which produce “closed” models (what is not
explicitly specified is forbidden), declarative languages are
“open” (everything that is not forbidden is allowed). In this
way, models offer flexibility and still remain compact.

Declarative languages based on LTL (Linear Temporal
Logic) [4] can be fruitfully applied in the context of
process discovery [5], [6], [7] and compliance checking
[8], [9], [10], [11], [12]. In [3], [13], the authors intro-
duce an LTL-based declarative process modeling language
called Declare. Declare is characterized by a user-friendly

graphical representation with formal semantics grounded
in LTL. A Declare model is a set of Declare constraints,
which are defined as instantiations of Declare templates.
Templates are abstract entities that define parameterized
classes of properties. The example in Figure 1 shows the
representation of the response template �(a ⇒ ♦b) in
Declare and its possible instantiation, where parameters a
and b take the values Create Questionnaire and Send
Questionnaire. This constraint means that every action
Create Questionnaire must eventually be followed by
action Send Questionnaire . The above characteristics
make Declare very suitable for defining and analyzing
compliance models, i.e., checking whether the behavior
of a system (e.g., recorded in an event log of the system)
complies with predefined regulations.

While in imperative languages, designers tend to forget
incorporating some possible scenarios (e.g., related to
exception handling), in declarative languages, designers
tend to forget certain constraints. This leads to under-
specification rather than overspecification, i.e., people are
expected to act responsibly and are free to select scenarios
that may seem out-of-the-ordinary at first sight.

When analyzing the conformance of a process with
respect to a set of constraints, it is important to note
that constraints can be vacuously satisfied. For example,
if Create Questionnaire never occurs, then the response
constraint holds trivially. This is commonly referred to
as vacuous satisfaction. In this paper, we start from the
existing notion of vacuity detection [14], [15], [16] and
we propose an approach for evaluating the “degree of
adherence” of a process trace with respect to a Declare
model. In particular, we introduce the notion of healthiness
of a trace that is, in turn, based on the concept of activation
of a Declare constraint.

An activation of a constraint in a trace is an event
whose occurrence imposes, because of that constraint,
some obligations on other events in the same trace.

a b

Create Ques�onnaire Send Ques�onnaire

Figure 1: Response template and its possible instantiation



Low Medical HistoryLow Insurance Check

Contact HospitalHigh Insurance CheckHigh Medical History

Receive Ques�onnaire ResponseSend Ques�onnaireCreate Ques�onnaire

co‐existence

not co‐existence

alternate response not succession

precedenceresponse

Figure 2: Running example: Declare model consisting of six constraints and eight activities

In the example in Figure 1, the occurrence of Create
Questionnaire imposes that Send Questionnaire must
eventually occur. An activation is a fulfillment or a
violation depending on whether the imposed obliga-
tion is fulfilled or not. Consider, for instance, trace
〈Create Questionnaire, Send Questionnaire , Create
Questionnaire, Contact Hospital〉. The obligation im-
posed by the first occurrence of Create Questionnaire
is fulfilled (Send Questionnaire eventually occurs after
Create Questionnaire), whereas the obligation imposed
by the second occurrence of Create Questionnaire is
not (Send Questionnaire does not occur after the sec-
ond Create Questionnaire). Therefore, we consider the
first activation of the response constraint in this trace a
fulfillment and the second one a violation.

The healthiness of a process trace can be quantified
based on the number of activations, fulfillments and vi-
olations of the given constraint in the trace. In this paper,
we define a set of “health indicators” to measure the
healthiness of the trace with respect to that constraint. All
conformance checking techniques described in this paper
have been implemented in ProM and have been evaluated
on a variety of synthetic and real-life logs.

The paper is structured as follows. Section II introduces
the Declare language through a running example. Sec-
tion III gives an overview of the techniques we have devel-
oped for a posteriori analysis of declarative processes. In
Section IV we demonstrate the scalability of our approach
through some experiments and report on a case study
based on real-life logs from several Dutch municipalities.
Section V concludes the paper.

II. DECLARE

In this paper, we present an approach for a posteriori
analysis of Declare processes based on event logs. There-
fore, we first introduce Declare1 [3], [17], [13] through a
running example.

The insurance claim process that we use as our running
example corresponds to the handling of health insurance
claims in a travel agency. A claim can be classified as high
or low but not both. For low claims, two independent tasks,
i.e., check insurance and check medical history need to be
both executed. Also for high claims, an insurance check is
needed. However, in the case of high claims, an insurance

1http://www.win.tue.nl/declare/

check is always followed by a medical history check. It is
possible to check the insurance more than once but it is not
possible to execute the high insurance check twice without
a medical history check in between. It is also possible to
contact doctor/hospital for verification. However, in case
of high claims, this cannot be done before the insurance
check. If one of the checks shows that the claim is not
valid, then the claim is rejected; otherwise, it is accepted.
In this process, questionnaires can also be created and sent
to the applicant. The applicant can decide whether to fill
in the questionnaires or not.

Figure 2 shows a simple Declare model with some
example constraints for the insurance claim process just
described. The model includes eight activities (depicted as
rectangles, e.g., Create Questionnaire) and six constraints
(shown as connectors between the activities, e.g., not co-
existence). The not co-existence constraint indicates that
Low Insurance Check and High Insurance Check can never
coexist in the same trace. On the other hand, the co-
existence constraint indicates that if Low Insurance Check
and Low Medical History occur in a trace, they always co-
exist. If High Medical History is executed, High Insurance
Check is eventually executed without other occurrences
of High Medical History in between. This is specified
by the alternate response constraint. Moreover, the not
succession constraint means that Contact Hospital cannot
be followed by High Insurance Check. The precedence
constraint indicates that, if Receive Questionnaire Re-
sponse is executed, Send Questionnaire must be executed
before (but if Send Questionnaire is executed this is not
necessarily followed by Receive Questionnaire Response).
Finally, if Create Questionnaire is executed this is even-
tually followed by Send Questionnaire as indicated by the
response constraint. In the following, we indicate activities
Create Questionnaire, Send Questionnaire, Receive Ques-
tionnaire Response, High Insurance Check, Low Insurance
Check and High Medical History with C, S, R, H , L and
M respectively.

Declare is grounded in Linear Temporal Logic (LTL)
with a finite-trace semantics2. For instance, a constraint
like the response constraint in Figure 2 can be formally
represented using LTL and in particular, it can be written
as �(C ⇒ ♦S) that means “whenever activity Create

2For compactness, in the following we will use the LTL acronym to
denote LTL on finite traces.
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Figure 3: Automata for the response, alternate response and not co-existence constraints in our running example

Questionnaire is executed, eventually activity Send Ques-
tionnaire is executed”. In a formula like this, it is possible
to find traditional logical operators (e.g., implication ⇒),
but also temporal operators characteristic of LTL (e.g.,
always � and eventually ♦). In general, using the LTL
language it is possible to express constraints relating
activities (atoms) through logical operators or temporal
operators.

The logical operators are: implication (⇒), conjunction
(∧), disjunction (∨) and negation (¬). The main temporal
operators are: always (�p, in every future state p holds),
eventually (♦p, in some future state p holds), next (©p,
in the next state p holds) and until (p t q, p holds until q
holds).

However, LTL constraints are not very readable for non-
experts. Therefore, Declare provides an intuitive graphical
front-end for LTL formulas. The LTL back-end of De-
clare allows us to verify Declare constraints and Declare
models, i.e., sets of Declare constraints.

For instance, a Declare constraint can be verified on
a log by translating its LTL semantics into a finite state
automaton [18] that we call constraint automaton. Figure 3
depicts the constraint automata for the response constraint,
the alternate response constraint and the not co-existence
constraint in Figure 2. In all cases, state 0 is the initial state
and accepting states are indicated using a double outline.
A transition is labeled with the activity triggering it. As
well as positive labels, we also have negative labels (e.g.,
¬L for state 0 of the not co-existence constraint). This
indicates that we can follow the transition for any event
not mentioned (e.g., we can execute event C from state 0
of the not co-existence automaton and remain in the same
state). This allows us to use the same automaton regardless
of the input language. A constraint automaton accepts a
trace (i.e., the LTL formula holds) if and only if there
exists a corresponding path that starts in the initial state
and ends in an accepting state.

III. AN APPROACH FOR A POSTERIORI ANALYSIS

In this section, we first define what an “activation”,
a “fulfillment”, a “violation” and a “conflict” are for a
Declare constraint. After that, we present an algorithm to
identify them in a process trace. Finally, we show how
we can define various “health indicators” based on these

notions. These indicators are used to evaluate the degree
of healthiness of a process trace and of a log.

A. Vacuity Detection in Declare

In [6], the authors introduce for the first time the concept
of vacuity detection for Declare constraints. Consider, for
instance, the response constraint in Figure 2. This con-
straint is satisfied when a questionnaire is created and is
(eventually) sent. However, this constraint is also satisfied
in cases where the questionnaire is not created at all. In this
latter case, we say that the constraint is vacuously satisfied.
Cases where a constraint is non-vacuously satisfied are
called interesting witnesses for that constraint.

In [15], the authors introduce an approach for vacu-
ity detection in temporal model checking for LTL; they
provide a method for extending an LTL formula ϕ to
a new formula witness(ϕ) that, when satisfied, ensures
that the original formula ϕ is non-vacuously satisfied. In
particular, witness(ϕ) is generated by considering that a
path π satisfies ϕ non-vacuously (and then is an interesting
witness for ϕ), if π satisfies ϕ and π satisfies a set of
additional conditions that guarantee that every subformula
of ϕ does really affect the truth value of ϕ in π. We call
these conditions vacuity detection conditions of ϕ. They
correspond to the formulas ¬ϕ[ψ ← ⊥], where, for all
the subformulas ψ of ϕ, ϕ[ψ ← ⊥] is obtained from ϕ by
replacing ψ by false or true, depending on whether ψ is in
the scope of an even or an odd number of negations. Then,
witness(ϕ) is the conjunction of ϕ and all the formulas
¬ϕ[ψ ← ⊥] with ψ subformula of ϕ:

witness(ϕ) = ϕ ∧
∧
¬ϕ[ψ ← ⊥]. (1)

Consider, for instance, the response constraint �(C ⇒
♦S). In this case, the vacuity detection condition is ♦C,
so that the interesting witnesses for this constraint are all
cases where �(C ⇒ ♦S)∧♦C is valid. Roughly speaking,
the constraint specifying that “whenever activity Create
Questionnaire is executed, eventually activity Send Ques-
tionnaire is executed” is non-trivially valid in all cases
where it is valid and where, also, Create Questionnaire is
actually executed.

This approach was applied to Declare in [6] for vacuity
detection in the context of process discovery. However,



Table I: Semantics for Declare constraints, activations and graphical representation

Name Constraint Activations Graphical representation

Relation templates

responded existence(A,B) ♦A⇒ ♦B A A B

co-existence(A,B) ♦A⇔ ♦B A, B A B

response(A,B) �(A⇒ ♦B) A A B

precedence(A,B) (¬B tA) ∨ �(¬B) B A B

succession(A,B) response(A,B) ∧ precedence(A,B) A, B A B

alternate response(A,B) �(A⇒©(¬A tB)) A A B

alternate precedence(A,B) precedence(A,B) ∧ �(B ⇒©(precedence(A,B))) B A B

alternate succession(A,B) alternate response(A,B)∧ alternate precedence(A,B) A, B A B

chain response(A,B) �(A⇒©B) A A B

chain precedence(A,B) �(©B ⇒ A) B A B

chain succession(A,B) �(A⇔©B) A, B A B

Negative relation templates

not co-existence(A,B) ¬(♦A ∧ ♦B) A, B A B

not succession(A,B) �(A⇒ ¬(♦B)) A, B A B

not chain succession(A,B) �(A⇒©(¬B)) A, B A B

the algorithm introduced in [15] can generate different re-
sults for equivalent LTL formulas. Consider, for instance,
the following equivalent formulas (corresponding to the
alternate response constraint in our running example):

ϕ = �(H ⇒ ♦M)∧�(H ⇒©((¬H tM)∨�(¬M))),

ϕ′ = �(H ⇒©(¬H tM)).

When we apply (1) to ϕ and ϕ′, we obtain that
witness(ϕ) 6= witness(ϕ′):

witness(ϕ) = false ,

witness(ϕ′) = ϕ′ ∧ ♦(¬© (¬H tM)) ∧ ♦(H)
∧♦(H ∧ ¬© (M)).

In compliance models, LTL-based declarative languages
like Declare are used to describe requirements to the
process behavior. In this case, each LTL rule describes
a specific constraint with clear semantics. Therefore, we
need a univocal (i.e., not sensitive to syntax) and intuitive
way to diagnose vacuously compliant behavior in an LTL-
based process model. Furthermore, interesting witnesses
for a Declare constraint could show very different be-
haviors. Consider, for instance, the response constraint
�(C ⇒ ♦S) and traces p1 = 〈C, S,C, S, C, S, C, S,R〉
and p2 = 〈H,M,C, S,H,M,R〉. Both p1 and p2 are
interesting witnesses for �(C ⇒ ♦S) (in both traces
�(C ⇒ ♦S) is valid and the vacuity detection condition

♦C is also valid). However, it is intuitive to understand
that in p1 this constraint is activated four times (because
Create Questionnaire occurs four times), whereas in p2 it
is activated only once. To solve these issues we introduce
the notion of constraint activation.

Definition 1 (Subtrace): Let σ be a trace. A trace σ′ is
a subtrace of σ (σ′ @ σ) if σ′ can be obtained from σ by
removing one or more events.

Definition 2 (Minimal Violating Trace): Let π be a De-
clare constraint and Aπ the constraint automaton of π. A
trace σ is a minimal violating trace for Aπ if it is not
accepted by Aπ and if every subtrace of σ is accepted by
Aπ .

Definition 3 (Constraint Activation): Let π be a De-
clare constraint and Aπ the constraint automaton of π.
Each event included in a minimal violating trace for Aπ
is an activation of π.

Consider, for instance, the automaton in Figure 3(a). In
this case, the minimal violating trace is 〈C〉. Therefore, the
response constraint in our running example is activated
by Create Questionnaire. Moreover, for the automaton
in Figure 3(b), the minimal violating trace is 〈H〉 and,
then, the alternate response constraint is activated by High
Insurance Check. Finally, for the automaton in Figure 3(c),
the minimal violating sequences are 〈L,H〉 and 〈H,L〉.



The not co-existence constraint is, therefore, activated by
both High Insurance Check and Low Insurance Check.

Roughly speaking, an activation for a constraint is
an event that constrains in some way the behavior of
other events and imposes some obligations on them. For
instance, the occurrence of an event can require the oc-
currence of another event afterwards (e.g., in the response
constraint) or beforehand (e.g., in the precedence con-
straint). An obligation can also be a prohibition. Consider,
for instance, the not co-existence constraint in Figure 2.
In this case, the occurrence of one of the two events High
Insurance Check and Low Insurance Check forbids the
occurrence of the other one.

In Table I, we indicate events that represent an activation
for each Declare constraint. Note that events that represent
an activation for a constraint are marked with a black dot
in the graphical notation of Declare, e.g., both A and B
are activations for the succession constraint (as visualized
by the black dots).

B. An Algorithm to Discriminate Fulfillments from Viola-
tions

When a trace is compliant w.r.t. a constraint, every
activation of that constraint leads to a fulfillment. For
instance, in p1, the response constraint is activated and
fulfilled four times, whereas in p2, the same constraint
is activated and fulfilled once. Notice that, when a trace
is non-compliant w.r.t. a constraint, an activation of a
constraint can lead to a fulfillment but also to a violation
(and at least one activation leads to a violation). Consider,
again, the response constraint in our running example and
the trace p3 = 〈C, S,C,R〉. In this trace, the response con-
straint is violated. However, it is still possible to quantify
the degree of adherence of this trace in terms of number
of fulfillments and violations. Indeed, in this case, the
response constraint is activated twice, but one activation
leads to a fulfillment (eventually an event S occurs) and
one activation leads to a violation (S does not occur
eventually). Therefore, we need a mechanism to point out
that the first occurrence of Create Questionnaire is a
fulfillment and the second one is a violation.

Furthermore, if we consider trace 〈H,H,M〉 and the
alternate response constraint in our running example, we
have that the two occurrences of H cannot co-exist but it
is impossible to understand (without further information
from the user) which one is a violation and which one is
a fulfillment. In this case, we say that we have a conflict
between the two activations.

In order to identify fulfillments, violations and conflicts
for a constraint π in a trace σ, we present now an algorithm
(see Algorithm 1) that is based on the construction of a
so-called activation tree of σ w.r.t. π, where every node is
labeled with a subtrace of σ. The algorithm starts from a
root labeled with the empty subtrace. Then, σ is replayed
and the tree is built in the following way:
• if the current event in σ is an activation of π, two

children are appended to each leaf-node: a left child
labeled with the subtrace of the parent node and a

Algorithm 1: Procedure to build the activation tree
Input: σ: trace; π: constraint
Result: activation tree of σ w.r.t. π

1 Let T be a binary tree with root labeled with an
empty subtrace

2 forall the e ∈ σ (explored in sequence) do
3 forall the leaf l of T do
4 if the subtrace associated to l is not dead

then
5 if e is an activation for π then
6 l[left] = new node, subtrace of l
7 l[right] = new node, subtrace of l +

e
8 else
9 subtrace of l = subtrace of l + e

10 end
11 end
12 end
13 end
14 return T

right child labeled with the same subtrace augmented
with the current activation;

• if the current event in σ is not an activation of π, all
leaf-nodes are augmented with the current event.

At each iteration, each subtrace in the leaf-nodes is exe-
cuted on the constraint automaton Aπ . A node is called
dead if the corresponding subtrace is not possible accord-
ing to the automaton or all events have been explored and
no accepting state has been reached. Dead nodes are not
explored further and crossed-out in the diagrams.

At the end of the algorithm, fulfillments, violations and
conflicts can be identified by selecting, among the (non-
dead) leaf-nodes, the maximal fulfilling subtraces.

Definition 4 (Maximal Subtrace): Given a set Σ of sub-
traces of a trace σ, a maximal subtrace of σ in Σ is an
element σ′ ∈ Σ such that 6 ∃σ′′ ∈ Σ with σ′ @ σ′′.

Definition 5 (Maximal Fulfilling Subtrace): Given a
trace σ and a constraint π, let Σ be the set of the

〈 〉

〈 〉

〈S〉

〈S〉
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〈C(1), S〉

〈C(1), S〉

〈C(1), S,R〉

〈C(1), S, C(2)〉

〈C(1), S, C(2), R〉

Figure 4: Activation tree of trace 〈C(1), S, C(2), R〉
w.r.t. the response constraint in our running example: dead
nodes are crossed out and nodes corresponding to maximal
fulfilling subtraces are highlighted
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Figure 5: Activation tree of trace 〈H(1),M,H(2), H(3),M〉 w.r.t. the alternate response constraint in our running example
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Figure 6: Activation tree of trace 〈H,M,L(1), L(2)〉 w.r.t. the not co-existence constraint in our example

subtraces of σ associated to the non-dead leaf-nodes of
the activation tree of σ w.r.t. π. Let M ⊆ Σ the set of
the maximal subtraces of σ in Σ. An element of M is
called maximal fulfilling subtrace of σ w.r.t. π.

An activation a of π in σ is a fulfillment if a is included
in all the maximal fulfilling subtraces of σ w.r.t. π; a is
a violation if a is not included in any maximal fulfilling
subtrace of σ w.r.t. π; a is a conflict if a is only included
in some maximal fulfilling subtraces of σ w.r.t. π.

Consider, for instance, the activation tree in Figure 4
of trace 〈C(1), S, C(2), R〉 w.r.t. the response constraint in
our running example. The maximal fulfilling subtrace is
〈C(1), S,R〉. We can conclude that C(1) is a fulfillment,
whereas C(2) is a violation. Figure 5 depicts the activation
tree of trace 〈H(1),M,H(2), H(3),M〉 w.r.t. the alternate
response constraint in our running example. The maximal
fulfilling subtraces are, in this case, 〈H(1),M,H(2),M〉
and 〈H(1),M,H(3),M〉. We can conclude that H(1)

is a fulfillment, whereas H(2) and H(3) are conflicts.
Finally, Figure 6 depicts the activation tree of trace
〈H,M,L(1), L(2)〉 w.r.t. the not co-existence constraint in
our running example. The maximal fulfilling subtraces are,
in this case, 〈H,M〉 and 〈M,L(1), L(2)〉. We can conclude
that H , L(1) and L(2) are conflicts.

C. Healthiness

We now give a definition of the healthiness of a trace
with respect to a given constraint. Given a trace σ and
constraint π, each event in the trace can be classified as an
activation or not based on Def. 3. na(σ, π) is the number of
activations of σ w.r.t. π. Each activation can be classified

as a fulfillment, a violation, or a conflict based on the
activation tree. nf (σ, π), nv(σ, π) and nc(σ, π) denote
the numbers of fulfillments, violations and conflicts of σ
w.r.t. π, respectively. n(σ) is the number of events in σ.

Definition 6 (Healthiness): The healthiness of a trace
σ w.r.t. a constraint π is a quadruple Hπ(σ) =
(ASπ(σ), FRπ(σ), V Rπ(σ), CRπ(σ)), where:

1) ASπ(σ) = 1 − na(σ,π)
n(σ) is the activation sparsity of

σ w.r.t. π,
2) FRπ(σ) =

nf (σ,π)
na(σ,π)

is the fulfillment ratio of σ
w.r.t. π,

3) V Rπ(σ) = nv(σ,π)
na(σ,π)

is the violation ratio of σ w.r.t. π
and

4) CRπ(σ) = nc(σ,π)
na(σ,π)

is the conflict ratio of σ w.r.t. π.

A trace σ is “healthy” with respect to a constraint π
if the fulfillment ratio FRπ(σ) is high and the violation
ratio V Rπ(σ) and the conflict ratio CRπ(σ) are low. If
FRπ(σ) is high, the activation sparsity ASπ(σ) becomes
a positive factor, otherwise it is symptom of unhealthiness.

It is possible to average the values of the healthiness
over the traces in a log and over the constraints in a
Declare model thus obtaining aggregated views of the
healthiness of a trace w.r.t. a Declare model, of a log
w.r.t. a constraint and of a log w.r.t. a Declare model.

D. Likelihood of a Conflict Resolution

Consider trace 〈H,M,L(1), L(2)〉 w.r.t. the not co-
existence constraint in our running example. The max-
imal fulfilling subtraces are, in this case, 〈H,M〉 and



〈M,L(1), L(2)〉 and H , L(1) and L(2) are conflicts. How-
ever, the maximal fulfilling subtraces also contain further
information. In fact, H is included in one of the maximal
fulfilling subtraces and L(1) and L(2) in the other one. This
means that L(1) and L(2) can co-exist but both cannot co-
exist with H . In this way, we can conclude that either H
is a violation and L(1) and L(2) are fulfillments or, vice
versa, H is a fulfillment and L(1) and L(2) are violations.
We call the corresponding maximal fulfilling subtraces
conflict resolutions.

The user can decide how to solve a conflict by selecting
a conflict resolution. However, it is possible to provide the
user with two health indicators that can support her in this
decision: the local likelihood of a conflict resolution and
the global likelihood of a conflict resolution.

Definition 7 (Local Likelihood): Let σ′ be a conflict
resolution of a trace σ w.r.t. a constraint π. Let na(σ′, π)
and nf (σ′, π) be the number of activations and fulfill-
ments of a conflict resolution σ′, respectively. The local
likelihood of σ′ is defined as LL(σ′) =

nf (σ
′,π)

na(σ′,π) .

Note that the local likelihood of a conflict resolution is a
number in the open interval (0, 1). If we consider again the
example described before, we have that LL(〈H,M〉) =
1/3 and LL(〈M,L(1), L(2)〉) = 2/3. This means that,
more likely, H is a violation and L(1) and L(2) are
fulfillments.

In the following definition a Declare model is a pair
D = (A,Π), where A is a set of activities and Π is a set
of Declare constraints defined over activities in A.

Definition 8 (Global Likelihood): Let D = (A,Π) be a
Declare model. Let σ′ be a conflict resolution of a trace
σ w.r.t. a constraint π ∈ Π. Let K be the set of the
conflicting activations in σ. For each conflicting activation
a ∈ K, let γ(a) be the percentage of constraints in Π
where a is a fulfillment, if a is resolved as a fulfillment
in σ′, or where a is a violation, if a is resolved as a
violation in σ′. The global likelihood of σ′ is defined as
GL(σ′) =

∑
a γ(a)

|K| .

The global likelihood of a conflict resolution is a
number between 0 and 1. If we consider again the example
described before, we have that GL(〈H,M〉) = 1/6 and
LL(〈M,L(1), L(2)〉) = 0. This means that, from the global
point of view, more likely, H is a fulfillment and L(1) and
L(2) are violations.

IV. EXPERIMENTS

For the a posteriori analysis of a log w.r.t. a Declare
model, we have implemented the Declare Analyzer, a
plug-in of the process mining tool ProM3. The plug-in
takes as input a Declare model and a log and – using the
algorithm described in Section III – it provides detailed
diagnostics and quantifies the health of each trace (and of
the whole log).

In Section IV-A, we evaluate the performance of our
approach using both synthetic and real-life logs. Then, in

3http://www.promtools.org
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Figure 7: Execution time for varying log sizes and the
polynomial regression curve associated
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Figure 8: Execution times for varying trace lengths and
the polynomial regression curve associated

Section IV-B, we validate our approach on a real case
study in the context of the CoSeLoG project4 involving
10 Dutch municipalities. Here, we also present our plug-
in and illustrate how the detailed diagnostics are visualized
graphically.

A. Scalability

In order to experimentally demonstrate the scalability
of our approach, we have performed two experiments5.
In the first experiment, we verify the scalability of the
technique when varying the log size. For this experiment,
we have generated a set of synthetic logs by modeling the
process described as running example in CPN Tools6 and
by simulating the model. In particular, we used randomly
generated logs including 250, 500, 750 and 1000 traces.
The results are presented in Figure 7. The plot shows that

4http://www.win.tue.nl/coselog
5The experiments have been performed on a standard laptop, with a

dual-core processor with its power forced to 1.6 GHz. The presented
results report the average value of the execution time over 5 runs.

6http://cpntools.org



the execution time grows polynomially with the size of
the logs.

In the second experiment, we evaluate the trend of the
execution time w.r.t. the length of the traces. For this
experiment, we have selected, in the CoSeLoG logs, 6 sets
of traces, each composed of 10 traces of the same length.
Figure 8 shows the results of this experiment. Even if the
size of an activation tree is exponential in the number of
activations, the execution time is polynomial in the length
of the traces. Indeed, performances get worse when the
number of activations is close to the number of events
in a trace. However, from our experience, in practice, this
case is, in general, unlikely. As shown in Section IV-B, the
activation sparsity is in most cases high and, therefore, the
number of activations is low with respect to the number
of events in a trace. This means that, from the practical
point of view, the algorithm is applicable. For example,
as shown in Figure 8, processing 10 traces with 63 events
requires slightly more than 1 second.

In addition, in our implementation we never construct
the whole activation tree of a trace. This also influence
the performances of the approach. At each step of the
algorithm, we keep track only of the maximal traces
without building the nodes corresponding to their sub-
traces. These sub-traces are identified (and evaluated) only
when the original maximal trace is violated (and pruned
away).

B. Case study

We have validated our approach by performing various
experiments using real-life event logs from the CoSeLoG
project. Here, we show results for the process of handling
permissions for building or renovating private houses for
which we have logs from several Dutch municipalities.
For the validation reported here, we have used two logs
of processes enacted by two different municipalities. We
first have discovered a Declare model using an event log
of one municipality using the Declare Miner plug-in in
ProM [6], [5]. This model is shown in Figure 9. Then,
using the Declare Analyzer, we have analyzed the degree
of adherence of a log of the second municipality with re-
spect to the mined model. Analysis showed commonalities
and interesting differences. From a performance viewpoint
the results were also encouraging: 481 cases with 17032
events could be replayed in 15 seconds.

Figures 10, 11 and 12 illustrate the output produced by
the Declare Analyzer. The results are presented both as
aggregated details for the entire log (Figure 10) and at the
trace level (Figures 11 and 12). From the log view, we can
see that the log and the model are reasonably close to each
other: the fulfillment ratio is, for almost all constraints,
very high and, therefore, the average fulfillment ratio
over the entire Declare model is also high (0.7542). The
activation sparsity of the log is, in most cases, close to 1,
indicating a low activation frequency for each constraint
in the model. For the not succession constraint between
Beslissing and Rapportage, the combination of an under
average activation sparsity with a high fulfillment ratio

Administra�eToetsing

Beslissing

RapportageVarzenden beschikking
precedence

not succession

precedence

not succession

precedence

not succession

precedence

succession

response

Figure 9: Model discovered from an event log of a Dutch
Municipality in the context of the CoSeLoG project.
For clarifying, we provide the English translation of the
Dutch activity names. Administratie, Toetsing, Besliss-
ing, Verzenden beschikking and Rapportage can be trans-
lated with Administration, Verification, Judgement, Send-
ing Outcomes and Reporting, respectively

reveals the “good healthiness” of the log with respect to
that constraint.

Nevertheless, the two municipalities execute the two
processes in a slightly different manner (the violation ratio
and the conflict ratio of the log w.r.t. the Declare model are
0.2453 and 0.0005 respectively). The discrepancies have
mainly been detected for the succession constraint and for
the response constraint in the reference model. Here, the
violation ratio is high. For the succession constraint the
high violation ratio in combination with a low activation
sparsity is symptom of strong unhealthiness.

In the trace representation (Figures 11 and 12), for
each trace, aggregated details (averages w.r.t. the entire
Declare model) are shown. For trace 22991, we have an
activation sparsity of 0.8704, a violation ratio of 0.2143,
a fulfillment ratio of 0.6429 and a conflict ratio of 0.1429
w.r.t. the entire model. Different colors are used to indicate
violations (red), fulfillments (green) and conflicts (yellow)
of each constraint in the trace (events that are not activa-
tions are grayed out). For conflicts, the possible resolutions
are shown. For every resolution, the local and the global
likelihood is indicated (together with their average).

For instance, for trace 22991 in the figure, we have a
conflict in the not succession constraint between Beslissing
and Rapportage (in this trace, Rapportage follows Besliss-
ing). The first resolution (with Beslissing as a violation
and Rapportage as a fulfillment) has value 0.5 for the
local likelihood and value 0.1111 for the global likelihood
(0.3056 on average). The second resolution (with Besliss-
ing as a fulfillment and Rapportage as a violation) has
value 0.5 for the local likelihood and value 0.2222 for the
global likelihood (0.3611 on average). Therefore, accord-
ing to these indicators, it is more likely that Beslissing is
a fulfillment and Rapportage is a violation.

Figure 12 shows that moving with the mouse over a
particular constraint it is possible to have details about
the healthiness of a trace w.r.t. that specific constraint.



Figure 10: Output of the Declare Analyzer plug-in: log view.

Figure 11: Output of the Declare Analyzer plug-in: aggregated trace view.

The activation sparsity of trace 22991 w.r.t. not succession
constraint between Beslissing and Rapportage is 0.6667,
the violation ratio is 0, while the fulfillment ratio and the
conflict ratio are both 0.5.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel approach to check the
conformance of observed behavior (i.e., an event log)
with respect to desired behavior modeled in a declarative
manner (i.e., a Declare model). Unlike earlier approaches,
we are able to provide reliable diagnostics which do

not depend on the underlying LTL syntax. We provided
behavioral characterizations of activations, fulfillments,
violations and conflicts. These can be used to provide
detailed diagnostics at the event level, but can also be
aggregated into health indicators such as the fulfillment
ratio (fraction of activations having no problems), viola-
tion ratio and conflict ratio. Experiments show that the
approach scales well (polynomial in the size of the log
and in the length of the traces). Initial experiences in a
case study based on the event logs of two municipalities
revealed that the diagnostics are indeed very useful and



Figure 12: Output of the Declare Analyzer plug-in: trace view details.

can be interpreted easily.
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