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Abstract— The choice of parameters’ values for noise-tolerant
Process Mining algorithms is not trivial, especially for users that
are not expert in Process Mining. Exhaustive exploration of all
possible set of values is not feasible, since several parameters are
real-valued. Selecting the “right” values, however, is important,
since otherwise the control-flow network returned by the mining
can be quite far from the correct one. Here we face this problem
for a specific Process Mining algorithm, i.e. Heuristics Miner++.
We recognize that the domain of real-valued parameters can be
actually partitioned into a finite number of equivalence classes
and we suggest exploring the parameters space by a local search
strategy driven by a Minimum Description Length principle.
We believe that the proposed approach is sufficiently general
to be used for other Process Mining algorithms. Experimental
results on a set of randomly generated process models show
promising results.

I. PROCESS MINING

Process mining is the area of data mining that extracts

important information from data that refers to business pro-

cesses. A business process is a sequence of steps performed

for a given purpose. Examples of these processes are “the

software development process” or the “management of an

order from a supplier”.

Nowadays, the diffusion of IT systems for supporting the

execution of business processes, allows many companies to

gather a large amount of data recording the history of the

performed activities. These logs contain important informa-

tion, since in principle they could be used to reconstruct the

actual control-flow of work. A manual analysis of the logs,

however, is not feasible due to the large size of such logs.

The aim of Process Mining algorithms is to try to automate

this analysis.

Within process mining there are three types of algorithms

that can be distinguished (as presented also in [1]): i) those

for control-flow discovery, that try to build a model (such as

a Petri Network) describing the behaviour of the process; ii)

those for conformance analysis, that starting from a process

model and a log file, determine how much the behaviour

described in the log reflects that of the model; iii) and finally,

there are the organizational mining algorithms that, assuming

the log contains information about the author of each action,

extract a “social network” that describes the set of relations

between actions’ authors.

In this paper, we present results referring to control-flow

discovery algorithms. As an example, consider the log W :

W =
{

(A,B1, B2, C,D)5 ; (A,B2, B1, C,D)5
}
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Fig. 1. An example of mined process model for the log W , where activities
B1 and B2 are executed in parallel.

where we have 10 process instances (5 repetitions of the

first type and 5 for the second) that differ in the ordering

of the activities B1 and B2. From this log, an hypothetical

process mining system can infer the presence of 5 activities

and, since the ordering between B1 and B2 is not always the

same through the log, we can assume their execution to be

“parallel”. In Fig. 1 we show the result of a typical process

mining algorithm: the start activity must be A, followed by

the parallel execution of activities B1 and B2. When B1

and B2 terminate, activity C can be executed, followed by

activity D.

When considering real-world industrial scenarios, how-

ever, it is hard to have the availability of a complete log

for a process. In fact, the most typical case is the one where

the log is partial and/or noisy.

A log is partial if it does not contain a record for all the

performed activities; it is noisy if either:

1) some recorded activities do not match with the “ex-

pected” ones, i.e. there exist records of performed

activities which are unknown or which are not expected

to be performed within the business process under anal-

ysis (for example an activity that, in a real environment

is required, but that is unknown to the designer);

2) some recorded activities do not match with those actu-

ally performed, i.e. activity A is performed, but instead

of generating a record for activity A, a record for

activity B is generated; this error may be introduced by

a bug into the logging system or due to the unreliability

of the transmission channel (e.g. a log written to a

remote place).

3) the order in which activities are recorded may not al-

ways coincide with the order in which the activities are

actually performed; this may be due to the introduction

of a delay in recording the beginning/conclusion of the

activity, e.g. if the activity is a manual activity and the

worker delays the time to record the start/end of the

activity, or to delays introduced by the transmission

channel used to communicate the start/end of a remote

activity.



While case 1) may be acceptable in the context of work-

flow discovery, where the names of the performed activi-

ties are not set or known a priori, cases 2) and 3) may

clearly interfere with the mining of the process, leading to

an incorrect control-flow reconstruction (that is a control-

flow different from the one that the process designer would

expect). Because of that, it is important for a process mining

algorithm to be noise-tolerant. This is especially true for the

task of control-flow discovery, where it is more difficult to

detect errors because of the initial lack of knowledge on the

analysed process.

A well known example of noise-tolerant, control-flow

discovery algorithm is Heuristics Miner, described in [2],

[3]. Heuristics Miner has been successively generalized to

the treatment of time intervals by Burattin & Sperduti in

[4] (Heuristics Miner++), in order to exploit the information

about the duration of each activity, when this information is

actually available. A typical problem that users face, while

using Heuristics Miner, is the need to set the values of

specific real-valued parameters1 which control the behaviour

of the mining, according to the amount and type of noise

the user believes is present into the process log. Since the

algorithm constructs the model with respect to the number

of observations in the log, its parameters are acceptance

thresholds on frequencies of control-flow relevant events

observed into the log: if the observed event is frequent

enough (i.e. its frequency is above the given threshold for that

event) then a specific feature of the control-flow explaining

the event is introduced. Different settings for the parameters

usually lead to different results for the mining, i.e. to different

control-flow networks.

While the introduction of these parameters and its tuning

is fundamental to allow the mining of noisy logs, the unex-

perienced user may find difficult to understand the meaning

of each parameter and the effect, on the resulting model,

of changing the value of one or more parameters from one

value to another one. Sometimes, even experienced users find

it difficult to decide how to set these parameters.

In this paper, we propose to face the problem of parameters

tuning for the Heuristics Miner++ algorithm. The approach

we adopt starts by recognizing that the domain of real-

valued parameters can be actually partitioned into a finite

number of equivalence classes and we suggest to explore

the parameters space by a local search strategy driven by a

Minimum Description Length principle. The proposed result

is then tested on a set of randomly generated process models,

obtaining promising results.

II. HEURISTICS MINER++

In the following section we are going to recall the main

features, introduced by Heuristics Miner++, that are used by

the mining and that allow the construction of the process

control-flow model.

1Since Heuristics Miner++ is a generalization of Heuristics Miner and
since it is “backward compatible”, it uses the same set of parameters as
Heuristics Miner.

1) Dependency Relations (⇒): An edge (that usually

represents a dependency relation) between two activities is

added if its dependency measure is above the value of the

dependency threshold. This relation is calculated, between

activities X and Y , as:

X ⇒W Y =
|X>WY | − |Y >WX|

|X>WY |+ |Y >WX|+ 2|X‖WY |+ 1
(1)

where |X>WY | indicates the number of times that X

precedes Y in the log W and |X‖WY | indicates the number

of times that X is overlapped with Y . The rationale of this

rule is that two activities are in a dependency relation if

most of times they are in the specifically required order and

if they are not overlapped (if two activities’ time spans are

overlapped this mean they are executed in parallel).

2) AND/XOR Relations (∧, ⊗): When an activity has

more than one outgoing edge, the algorithm has to decide

whether the outgoing edges are in AND or XOR relation

(“type of split”). Specifically, it calculates the following

quantity:

X ⇒W (Y ∧Z) =
|Y >WZ|+ |Z>WY |+ 2|X‖WY |

|X>WY |+ |X>WZ|+ 1
(2)

If this quantity is above a given AND threshold, the split

is an AND-split, otherwise it is considered to be in XOR

relation. The rationale of this case is that two activities are

in an AND relation if most of times they are observed in no

specific order (so one before the other and vice versa), of if

they are explicitly observed as overlapped.

3) Long Distance Relations (⇒l): Two activities X and Y

are in long distance relation if there is a dependency between

them, but they are not in direct dependency. This relation is

expressed by the formula:

X ⇒l
W Y =

|X ≫W Y |

|Y |+ 1
(3)

where |X ≫W Y | indicates the number of times that X

is directly or indirectly (there are other different activities

between X and Y ) followed by Y in the log W . If this

formula’s value is above a long distance threshold, then a

long distance relation is added into the model.

4) Loops of Length one and two: A loop of length one

(i.e. a self loop on the same activity) is introduced if the

quantity

X ⇒W X =
|X >W X|

|X >W X|+ 1
(4)

is above a length-one loop threshold. A loop of length two

is considered differently: it is introduced if the quantity:

X ⇒2
W Y =

|X >2
W Y |+ |Y >2

W X|

|X >2
W Y |+ |Y >2

W X|+ 1
(5)

is above a length-two loop threshold. In this case, the X >2
W

Y relation is observed when X is directly followed by Y and

then there is X again.



A. Parameters of the algorithm

In addition to the thresholds introduced above, Heuristics

Miner++ uses few more threshold parameters. Let us give

below a short description for all of them, so to have a

complete list to refer to.

a) Relative-to-best threshold: this parameter indicates

that we are going to accept the current edge (i.e. to insert the

edge into the resulting control-flow network) if the difference

between the value of the dependency measure computed for it

and the greatest value of the dependency measure computed

over all the edges is lower than the value of this parameter.

b) Positive observations threshold: with this parameter

we can control the minimum number of times that a depen-

dency relation must be observed, between two activities: the

relation is considered only when this number is above the

parameter’s value.

c) Dependency threshold: this parameter is useful to

discard all the relations whose dependency measure is below

the value of the parameter.

d) Length-one loop threshold: this parameter indicates

that we are going to insert a length-one loop (i.e. a self loop)

only if the corresponding measure is above the value of this

parameter.

e) Length-two loop threshold: this parameter indicates

that we are going to insert a length-two loop only if the

corresponding measure is above the value of this parameter.

f) Long distance threshold: with this parameter we can

control the minimum value of the long distance measure in

order to insert the dependency into the final model.

g) AND threshold: this parameter is used to distinguish

between AND and XOR splits (if there is more than one

connection exiting from an activity): if the AND measure is

above (or equal) to the threshold, an AND-split is introduced,

otherwise a XOR-split is introduced.

In order to successfully understand the next steps, let’s

point out an important observation: by definition, all these

parameters can have values between -1 and 1 or between 0

and 1. Only the positive observation threshold requires an

integer value that expresses the absolute minimum number

of observations.

Heuristics Miner++, as first step, extracts all the required

information from the process log; then it uses the threshold

parameters described above. Specifically, before starting the

control-flow model mining, it creates the following data

structures, where AW is the set of activities contained in

the log W :

• directSuccessionCount, a matrix of size |AW |2;

• parallelCount, a matrix of size |AW |2;

• dependencyMeasures, a matrix of size |AW |2;

• L1LdependencyMeasures, a vector of size |AW |;
• L2LdependencyMeasures, a matrix of size |AW |2;

• longRangeDependencyMeasures, a matrix of size

|AW |2;

• andMeasures, a matrix of size |AW |2.

All the entries of the above data structures are initial-

ized to 0. Then, for each process instance (usually called

case, in process mining) registered into the log, if two

activities (ai, ai+1) are in a direct succession relation, the

value of directSuccessionCount[ai, ai+1] is incremented,

while if they are executed in parallel (i.e., the time in-

tervals associated to the two activities overlap) the value

of parallelCount[ai, ai+1] is incremented; moreover, for

each activity a, Heuristics Miner++ calculates the length-

one loop measure a ⇒W a, by Eq. (4), and adds its value

to L1LdependencyMeasures[a]. Then, for each activities

pair (ai, aj) Heuristics Miner++ calculates the following:

• the dependency measure ai ⇒W aj , by Eq. (1),

and adds its value to dependencyMeasures[ai, aj ].
It must be noticed that in order to compute

Eq. (1) the values |ai>Waj | and |ai‖Waj | must

be available: these values corresponds to the val-

ues found in directSuccessionCount[ai, aj ] and

parallelCount[ai, aj ], respectively;

• the long distance relation measure a1 ⇒l
W a2,

by Eq. (3), and adds its value to

longRangeDependencyMeasures[a1, a2];
• the length 2 loop measure a1 ⇒2

W a2, by Eq. (5), and

adds its value to L2LdependencyMeasures[a1, a2].

Finally, for each triple (a1, a2, a3) the procedure calculates

the AND/XOR measure a1 ⇒W (a2 ∧ a3), by Eq. (2), and

adds its value to andMeasures[a1, a2, a3].
When all these values are calculated, Heuristics Miner++

proceeds to the real control-flow construction. These are

the main steps: first of all, a node for each activity is

inserted; then, an edge (i.e. a dependency relation) be-

tween two activities ai and aj is inserted if the entry

dependencyMeasures[ai, aj ] satisfies all the constraints

imposed by thresholds a), b), and c).

The algorithm continues iterating through all the activities

that have more than one connection exiting from it: it is

necessary to disambiguate the split behaviour between a

XOR and an AND. In these cases (e.g., activity ai has two

exiting connections with activities aj and ak), Heuristics

Miner++ checks the entry andMeasures[ai, aj , ak] and, if

it’s above the AND threshold, it is marked as an AND-

split, otherwise as a XOR-split. If there are more than two

activities in the “output-set” of ai then all the pairs are

checked.

A similar procedure is used to identify length-one loop:

Heuristics Miner++ iterates through each activity and checks

in the L1LdependencyMeasures vector if the correspond-

ing measure is greater than the d) threshold. For the length-

two loops the procedure checks, for each activities pairs

(ai, aj), if L2LdependencyMeasures[ai, aj ] satisfies the e)

threshold and, if necessary, adds the loop.

The same process is repeated even for the long distance

dependency: for each activity pairs (ai, aj), if the value

of longRangeDependencyMeasures[ai, aj ] is above the

value of the Long distance threshold parameter, then the

dependency between the two activities is added.

Once Heuristics Miner++ has completed all these steps,

it can return the final process model. In this case, the final



model is expressed as a Heuristics Net (an oriented graph,

with information on edges, that can be easily converted into

a Petri Net).

III. FACING THE PARAMETERS SETTING PROBLEM

As already said, it is not easy for a user (typically

process miner users are business process managers, resources

managers, or business unit directors) to decide which values

to use for the parameters described above: he/she is not an

expert in process mining, and anyway, also an experts in

process mining may have an hard time to figure out which

setting makes more sense.

The main issue that makes this decision difficult is the fact

that almost all parameters take values in real-valued ranges:

there is an infinite number of possible choices! Moreover,

how can it be possible to select the “right” value for each

parameter? Is it preferable to set the parameters so as to

generate a control-flow network able to explain all the cases

contained in the log (even if the resulting network is very

complex and thus hard to understand by a human), or a

simpler, and so more readable, model (even if it does not

explain all the data)?

Here we assume that the user’s desired result of the mining

is a “sufficiently” simple control-flow network able to explain

as many as possible cases contained in the log. In fact, if the

log is noisy, a control-flow network explaining all the cases

is necessarily very complex because it has to explain also

the noise itself (see [5], for a discussion on this issue).

On the basis of this assumption, we suggest addressing the

parameters setting problem by a two step approach:

1) identification of the candidate hypothesis, that corre-

spond to the assignments of values to the parameters

that induce Heuristics Miner++ to produce different

control-flow networks;

2) exploration of the hypothesis space to find the “best

solution”, i.e. generation of the simplest control-flow

network able to explain the maximum number of cases.

The aim of step 1) is to identify the set of different process

models which can be generated by Heuristics Miner++ by

varying the values of the parameters. Among these process

models, the aim of step 2) is to select the process model

with the best trade-off between complexity of the model

description and number of cases that the model is not able

to explain. Here, our suggestion is to use the Minimum

Description Length (MDL) [6] approach to formally identify

this trade-off. In the next two sections, we describe in detail

our definition of these two steps.

IV. DISCRETIZATION OF THE PARAMETERS’ VALUES

As discussed in the previous section, by definition, most of

Heuristics Miner++ parameters can take an infinite number

of values. In practice, only some of them produce a different

model as output. In fact, the size of the log used to perform

the mining can be assumed to be finite, and thus Equations

(1)-(5) can return only a finite number of different values.

These sets, with all the possible values, are obtained by

calculating the results of the formulas against all single

activities (Eq. (4)), all pairs (Eq. (1), (3), (5)) and all triples

(Eq. (2)). Specifically, if we look at the data structures used

by Heuristics Miner++ and described in Section II, these data

structures are populated with all the results just described so

they contain all the possible values of the measures of interest

for the given log. Even considering the worst case, i.e. when

each activity configuration has a different measure value, the

mining algorithm cannot observe more than |AW |i different

values for parameters described by a i-dimensional matrix.

Since |AW | is typically a quite low value, even the worst

case does not produce a huge number of possible values.

Thus it does not make sense to let the thresholds to assume

any real-value in the associated range.

Given a log W , let sort, in ascending order, all the different

values v1, . . . , vs, that a given measure can take. Then,

all the values in the ranges [vi, vi+1) with i = 1, . . . , s
constitute equivalence classes with respect to the choice

of a value for the threshold associated to that measure. In

fact, if we pick any value in [vi, vi+1), the output of the

mining, i.e. the generated control-flow network, is not going

to change. If the parameters were independent, it would

be easy to define the set of equivalence classes. In fact,

given n independent parameters p1, . . . , pn with domains

D1, . . . , Dn, it is sufficient to compute the set of equivalence

classes Epi
for each parameter pi, and then obtain the set of

equivalence classes over configurations of the n parameters

as the Cartesian product Ep1
× Ep2

× . . .× Epn
. This means

that we can uniquely enumerate process models by tuples

(d1,i1 , . . . , dn,in), where dj,ij ∈ Dj , j = 1, . . . , n.

Unfortunately, by definition, Heuristics Miner++ param-

eters are not independent. This is clearly exemplified by

considering only the two parameters “positive observation

threshold” and “dependency threshold”. If the first one is

set to a value that does not allow a particular dependency

relation to compare in the final model (because it does

not occur frequently enough in the log), then, there is no

value for the dependency threshold, involving the excluded

dependency relation, that will modify the final model. As

shown in the example, the lack of independence entails

that the mining procedure may generate exactly the same

control-flow network starting by different settings for the

parameters. This means that it is not possible to uniquely

enumerate all the different process models by defining the

equivalence classes over the parameters values as discussed

above under the independence assumption. So, since there is

not a bijective function between process models and tuples of

discretized parameters, it is not possible to efficiently search

the “best” model by searching among the discretized space

of parameters. However, discovering all the dependences

among the parameters and then defining a restricted tuple

space where there is a one to one correspondence between

tuples and process models would be difficult and expensive.

Therefore, we decided to adopt the independence assumption

to generate the tuple space, while using high level knowledge

about the dependences among parameters to factorize the



tuple space in order to perform an approximate search. This

feature will be discussed in the next section.

As a final remark, let us give some implementation details

about the discretization of the parameters. After the calcula-

tion of all formulas values (and the directSuccessionCount

matrix in order to cope with discretization of parameter (b)),

we implemented a procedure that adds the computed values

into an HashSet (one HashSet per parameter).2 When this

calculation is finished, each HashSet will contain all the

possible different values, for each parameter, referring to the

input log W . This discretization process does not alter the

time complexity of the algorithm, however it augments the

space required: it has to store all the different measure values

for each matrix which, in the worst case, is |A|+4|A|2+|A|3

(but remember that |A|, usually, is small). Let us recall, now,

the list of steps done in this first phase:

1) calculation of the measure values for all the possible

activities configuration;

2) from these values we can populate the various matrices

used by Heuristics Miner++;

3) from the same set of values we can also compute the

HashSet with the “discretized parameter set”.

V. EXPLORATION OF THE HYPOTHESIS SPACE

What we have just described is a possible way to construct

a set with all values, for each parameter, that produce distinct

process models. As we have discussed in Section III, each

process model mined from a particular parameters configura-

tion constitutes, for us, a hypothesis (i.e. a potential candidate

to be the final process model). We are, now, in this situation:

• we can build a set with all possible parameters values;

• each parameters configuration produces a process model

hypothesis.

Starting from these two elements, we can realize that we

have all the information required for the construction of the

hypothesis space: if we enumerate all the tuples of possible

parameters configurations (and this is possible, since these

sets are finite) we can build the set of all possible hypothesis,

that is the hypothesis space. The second step, described in

our approach, requires the exploration of this space, in order

to find the “best” hypothesis.

As we have already explained, the parameters discretiza-

tion process does not produce a large number of possible

values but, since the hypothesis space is given by the

combination of all the parameters’ values, this can become

quite large, and finding the best hypothesis easily turns into

a quite complex search problem: an exhaustive search of the

hypothesis space (that will lead to the optimal solution) is

not feasible. So we decided to factorize the search space

by exploiting high level knowledge about independence

relations (total and conditional) among parameters, and to

explore the factorized space by a local search strategy. Let

start by describing how we factorized the search space.

2The whole procedure has been written in Java language and encoded as
a plugin of the ProM Framework [7].

A. Factorization of the Search Space

As presented in Section IV, Heuristics Miner++ pa-

rameters are not independent. These dependencies can be

characterized by listing the main operations performed by

the mining algorithm and the corresponding parameters (as

defined in Section II-A):

1) calculation of the length-one loop and check of param-

eters (d) and (b);

2) calculation of the length-two loop and check of param-

eters (e) and (b);

3) calculation of the dependency measure and check of

parameters (a), (b) and (c);

4) calculation of AND measure and check of parameter

(g);

5) calculation of long distance measure and check of

parameter (f).

When more than one parameter is checked in the same

operation, all the corresponding checks have to be considered

as in ‘and’ relation, meaning that all constraints must be

satisfied. The most frequent parameter that is checked is the

(b) (positive observation threshold), occurring in three steps;

under these conditions, if, as an example, the dependency

relation under consideration does not reach a sufficient num-

ber of observations in the log, then the check of parameters

(a), (c), (d) and (e) can be skipped because the whole check

(the ‘and’ with all other parameters) will not pass, regardless

of the success of the single checks involving the (a), (c), (d)

and (e) parameters.

Besides that, there are some other rules intrinsic on the

design of the algorithm: the first is that if an activity is

detected as part of a length-one loop, then it can’t be in

a length-two loop and vice versa (so, checks in step 1) and

step 2) are in mutual exclusion); another is that if an activity

has less than two exiting edges then it is impossible to have

an AND or XOR split (and, in this case, step 4) does not

need to be performed).

In order to simplify the analysis of the possible mined

networks, we think is useful to distinguish two types of

networks, based on the structural elements that compose

them:

• “Simple networks”, which includes process models with

no loops and no long distance dependencies;

• “Complete networks”, which includes simple networks

extended with at least one loop and/or one long distance

dependency.

For the creation of the first type of networks, only steps

3) and 4) (on the list at the beginning of this section) are

involved, and so only parameters (a), (b), (c) and (g) have

an important role in the creation of this class of networks.

Complete networks are obtained by adding, to a simple

network, one or more loops, by using steps 1) and 2), and/or

one or more long distance dependencies via step 5). It can

be observed that, once the value for parameter (b) is fixed,

steps 1), 2), and 5), are in practice controlled independently

by parameters (d), (e), and (f), respectively.



“Simple network” space
“Complete network” space

Final solution

Fig. 2. A graphical representation of the searching procedure: (left hand

side) the system looks for the best solution within the parameters subspace
generating the ‘simple network’ class of process models. When a (local)
optimal solution is found, the system tries to improve it by moving into the
‘complete network’ space (right hand side).

In the following, we explain how we have exploited this

factorization to perform the search for the “best” process

model.

B. Searching for the Best Hypothesis

At this point, the new objective is the definition of the

process for the identification of the “best” model (actually,

we have to find the best parameters’ configuration). There

are two issues here: the first is the definition of some

criterion to define what means “best model”. Secondly, there

is the problem of the hypothesis space that is too big to

be exhaustively explored. Let start from the latter problem,

assuming that we have a criterion to quantify the goodness

of a process model.

For what concerns the big dimension of the search space,

we start the search within the class of simple networks and,

once the system finds the “best” local model it tries to extend

it into the complete network space. With this division of the

work the system reduces the dimensionality of the search

spaces.

From an implementing point of view, in the first phase,

the system has to inspect the joint space composed only of

the parameters (a), (b), (c) and (g) (the parameters involved

in “simple networks”) and, when it finds a (potentially only

local) optimal solution, it can try to extend it introducing

loops and long dependency. In Fig. 2 we propose a graphical

representation of the main phases of the exploration strategy.

Of course, this search strategy is not complete for two

reasons: i) local search is, by definition, not complete; and

ii) the “best” process model may be obtained by extending

with loops and/or long dependencies a sub-optimal simple

network.

In order to complete the definition of our search strategy,

it remains to give a formal definition of our measure of

“goodness” for a process model. To this aim, we adopt the

Minimum Description Length (MDL) principle [6]. MDL

is a widely known approach, based on the Occam’s Razor:

“choose a model that trades-off goodness-of-fit on the ob-

served data with ‘complexity’ or ‘richness’ of the model”.

Let’s take as an example the problem of communicating

through a very expensive channel: we can build a com-

pression algorithm whereby the most frequent words are

represented in the shortest way and, the less frequent have

a longer representation. Now, as first thing to do, we have

to transmit the algorithm and then we can use it to send our

encoded messages. We have to pay attention in not building

a too complex (that can handle many cases) algorithm: its

transmission may neutralize the benefits of its use, in terms

of total amount of data to be transmitted. Consider now the

set H of all possible algorithms that can be built and, given

h ∈ H , let L(h) be its description size and L(D|h) will

be the size of the message D after its compression using h.

The MDL principle tells us to choose the ‘best’ hypothesis

hMDL as

hMDL = argmin
h∈H

L(h) + L(D|h).

The same situation can be reproduced in our context: the

algorithm size becomes the ‘complexity’ of the mined model

and the message size becomes the number of log traces that

the mined model can ‘explain’.

In this work we studied, as model complexity, the number

of edges in the network. This is an easily computable

measure, although it may underestimate the complexity of

the network because it disregards the different constructs

that compose the network. Anyway, this is a good way

characterize the description length of the process model.

As L(D|h) measure, we use the fitness measure intro-

duced in [8] and, in particular, we opted for the continuous

semantics one. Differently from the stop semantics, the one

chosen does not stop at the first error, but continues until

it reaches the end of the model. This choice is consistent

with our objective to evaluate the whole process model. This

measure is expressed as:

fM,W = 0.4 ·
parsedActs(M,W )

|AW |
+

0.6 ·
parsedTraces(M,W )

logTraces(W )

where M is the current model and W , as usual, is the

log to “validate”; |AW | is the number of activities in the

log and logTraces(W ) is the number of traces in W ;

parsedActs(M,W ) gives the sum of all parsed activities

for all traces in W and parsedTraces(M,W ) returns the

number of traces in W completely parsed by the model M

(when the final marking involves only the last activity).

The search algorithm starts from a random point in the

“simple network” space and, following a hill-climbing ap-

proach, evaluates all the neighbour simple networks obtained

by moving the current value of one of the parameters up or

down of a position within the discretized space of possible

values. If there exists a neighbour network with a better MDL

value, then that network becomes the current one and the

search is resumed until no better network is discovered. The

“optimal” simple network is then used as starting point for

a similar search in the remaining parameters space, so to

discover the “optimal” complete network, if any.

In order to improve the quality of the result, the system

restarts the search from another random point in the hypoth-

esis space. At the end, only the best solution among all the



ones obtained by the restarts is proposed as “final optimal”

solution.

VI. EXPERIMENTAL RESULTS

In order to evaluate our approach we tried to test it against

a large dataset of processes. In order to assign a score to each

mining, we built some random processes and we generated

some logs from these models; starting from these the system

tries to mine the models. Finally, we compared the original

models versus the mined ones.

A. Experimental set up

The set of processes to test is composed of 125 process

models. These processes were created with a tool that we de-

veloped for the random generation of this kind of processes:

Process Log Generator3.

The generation of the random processes is based on

some basic “process patterns”, like the AND-split/join, XOR-

split/join, the sequence of two activities, and so on. In Figure

3 some statistical features of the dataset are shown. For each

of the 125 process models, two logs were generated: one with

250 traces and one with 500 traces. In these logs, the 75%

of the activities are expressed as time intervals (the other

ones are instantaneous) and 5% of the traces are noise. In

this context “noise” is considered either a swap between two

activities or removal of an activity.

We tried the same procedure under various configurations:

using 5, 10, 25 and 50 restarts. In the implemented experi-

ments, we run the algorithm allowing 0, 1, 5 and 10 lateral

step, in case of local minimum (in order to avoid problems

in case of very small plateau).

The distance of the mined process from the correct one is

evaluated with the F1 measure, which is the harmonic mean

between precision and recall: ‘true positives’ are the correctly

mined dependencies between activities, ‘false positives’ are

dependencies present in the original model but not in the

mined one, and ‘false negatives’ are dependencies present in

the mined model but not in the original one.

B. Results

The number of improvement steps performed by the

algorithm is reported in Fig. 4. As shown in the figure, if

the algorithm is run with no lateral steps, then it stops early.

Instead, if lateral steps are allowed, the algorithm seems to

be able, at least in some cases, to get out of plateaus. In our

case, even 1 step shows a good improvement in the search.

The lower number of improvement steps (plot on the right

hand side), in the case of 500 traces, is due to the fact, with

more cases, it is easier to reach an optional solution.

The quality of the search mining result, as measured by

the F1 measure, is shown in Fig. 5. Results for 250 traces

are reported in the left hand side plot, while results for 500

traces are shown in the right hand side plot. It is noticeable

that the average F1 is higher in the 500-traces case.

3See the project web page, at http://www.processmining.it/
sw/plg, for more information.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have discussed an important problem

that prevents the wide use of process mining algorithms

able to deal with noisy logs, i.e. how to set the mining

parameters. We focused on a specific process mining algo-

rithm, i.e. Heuristics Miner++, and proposed to discretize

the parameters space according to the traces in the log. Then

we suggested to perform a constrained local search in that

space to cope with the complexity of exploring the full set

of candidate process models. The local search is driven by

the MDL principle to look for the process model trading-off

the complexity of its description with the number of traces

that can be explained by the model. The experimental results

obtained on a set of randomly generated processes seem to

be encouraging.

In principle, the same approach can be applied to other

similar mining procedures.

Possible improvements of the technique can involve the

increase in the number of explored hypothesis. A dynamic

generation of the hypothesis space could help to cope with

the corresponding computational burden. Another improve-

ment that we think can be very useful is the introduction

of machine learning techniques, that may allow the system

to learn which process patterns have to be preferred in the

search and to improve the “goodness measure” by directly

encoding this information.
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Fig. 3. Main features of the processes dataset built. The first plot, at the left hand side, reports how many processes (y-axis) contain a given number
of AND-split/join (x-axis); a similar curve is reported for XOR-split/join and for the number of loop. The plot in the right hand side contains the same
distribution versus the number of edges, the number of activities and the Cardoso metric (all these are grouped using bins of size 5).
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Fig. 4. Number of processes whose best hypothesis is obtained with the given number of steps, under the two conditions of the mining (with 0, 1, 5
and 10 lateral steps). The left hand side plot refers to the processes mined with 250 traces while the right hand side refers to the mining using 500 traces.
Both these datasets consist of 125 processes and have been generated with a 5% of noise and the 75% expressed as time intervals (the other ones are
instantaneous).
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Fig. 5. “Goodness” of the mined networks, as measured by the F1 measure, versus the size of the process (in terms of Cardoso metric). The left hand size
plot refers to the mining with 250 traces, while the right hand side plot refers to the mining with 500 traces. Both these datasets consist of 125 processes
and have been generated with a 5% of noise and the 75% expressed as time intervals (the other ones are instantaneous).


