
Simon Says the Color:
The Digital Evolution of an Outdoor Kids Game

Claudio E. Palazzi
Dipartimento di Matematica Pura e Applicata

Università di Padova
via Trieste, 63, 35121 Padova, Italy

cpalazzi@math.unipd.it

Dario Maggiorini
Dipartimento di Informatica e Comunicazione

Università degli Studi di Milano
via Comelico, 39, 20135 Milano, Italy

dario@dico.unimi.it

Andrea Burattin
Dipartimento di Matematica Pura e Applicata

Università di Padova
via Trieste, 63, 35121 Padova, Italy

burattin@math.unipd.it

Riccardo Ferro
Dipartimento di Matematica Pura e Applicata

Università di Padova
via Trieste, 63, 35121 Padova, Italy
rferro@studenti.math.unipd.it

ABSTRACT

In the last decades mobile phones have evolved from simple instru-

ments to make calls to complex and powerful devices. Following

this trend, a popular application as gaming has extended its domain

from home computers and consoles to the mobile realm. Mobile

games represent now a killer application for smart phones and are

attracting millions of subscribers worldwide. Nowadays, the chal-

lenge is that of creating a new generation of mobile games propos-

ing something more than just a tiny version of home entertainment

blockbusters; the ubiquitous use and the interesting features (cam-

era, gyroscope, connectivity, GPS, etc.) of mobile phones should

be fully exploited to generate a completely new kind of gaming

experience. To this aim, we have created an application for mo-

bile phones exploiting new features available in every modern mo-

bile phone (in particular, bluetooth communication and camera), to

digitally replicate and enhance an outdoor game for children that

would not be playable (with fun) on an desktop PC.

Categories and Subject Descriptors

K.8.0 [Personal Computing]: General—games

General Terms

Design, Experimentation

Keywords

Mobile Games, Mobile Devices, Games, Wireless

1. INTRODUCTION
We are living in a revolutionary era for communication: the num-

ber of mobile phones have surpassed landline ones in many coun-

tries (such as Italy and Finland). These devices, in the last few

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DISIO 2010 March 15, Torremolinos, Malaga, Spain.
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

years, have increased their capabilities in terms of memory storage,

CPU power, and connectivity (e.g., GPRS, UMTS, Wi-Fi, Blue-

tooth). Furthermore, the use of well known and open software plat-

forms (like Symbian [1] and Android [2]), and the free availability

of development frameworks (like Java ME) has attracted the busi-

ness world together with researchers from various fields: gaming,

networking, artificial intelligence, communication, imaging, and

many others. As a result from this growing interest the mobile cus-

tomers evolved from simple callers to messengers (first with SMS,

then using MMS) and now they are becoming users of complex ap-

plications [3], [4]. Great examples of applications can be found on

the Apple iPhone online applications store [5], which has been the

first large-scale mobile applications distributor. In particular, mar-

ket analysts report incomes for the wireless gaming industry in the

order of billions of US dollars worldwide and with a 40% growth

each year [6].

Gaming industry is moving from the classical, first generation,

way to play (closed in a room, using a joypad) to new experiences,

particularly focusing on two fronts:

1. allowing to play everywhere, with always better visual ef-

fects (e.g., Sony Play Station Portable) and

2. using controllers that require a physical control on the game

(e.g., the Wii Remote and the Wii Balance Board, for the

Nintendo Wii console).

Our approach tries to merge the above points: an ubiquitous game

combined with strong physical involvement. We believe this pur-

pose can be reached with common (and low priced) devices, such

as mobile/smart phones, using the typical equipment supplied with

them, such as bluetooth connection and a coarse camera.

Classic games are simple to be played and they do not require

high performing hardware; it is hence relatively easy to develop

these games for modern mobile phones that are computationally

equivalent to old computers. Old amusement arcade games have

wide diffusion between mobile applications, but they fall short to

exploit the potential of new technologies [7], [8]. New technologies

permit to make old games more amusing and to increase their fun

potential through remote gaming, impartial automatic arbitrage,

score ranking, augmented reality, etc. The small size of mobile

phones and easy games allow people to have fun everywhere and

anytime.

We created an application that digitally mimics an old outdoor

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8719 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8719 



Italian game for kids named “Strega Comanda Colore” (Color Com-

manding Witch) which, in the english culture, may be more famil-

iar as “Simon Says” with the goal to seek out colors. For sake of

simplicity, from here on we call this game and the corresponding

mobile phone application that we have developed with the name

“Color Witch”.

A nice feature of this application is that it also leeds users to the

playgrounds of their childhood.

1.1 Game Description
The rules of the original game are simple. The game can be

played by a minimum of two children, but it is certainly more fun

when many players are participating. One of the player is the witch

and her/his aim is to catch the other players. A session of the game

starts with the witch deciding a color; from that moment on all the

other players run away trying to find an object or a texture of the

chosen color. If a player can touch the chosen color before the

witch catches her/him, then that player is safe. On the contrary, if

the witch catches a player before she/he can find the chosen color,

the player becomes the new witch. If all players touches the chosen

color before the witch can catch any of them, then the witch has to

select another color and the game goes on.

Color Witch is clearly an outdoor game so that kids can run

around looking for the color that can make them safe. It is a pop-

ular outdoor game and part of the fun is to choose colors which

are not widespread in the environment where the kids are playing;

for instance, green would not be a smart choice for a witch when

playing in a park.

We have chosen to create a version of this game which can be

played on mobile phones: a player is required to take a picture of

an object/texture of the required color and the phone, once recog-

nized the picture as valid will declare the player safe. Simple rules

and modern technologies may be the right combination to success,

especially when the technology required has a very large diffusion,

as in our case. From a research point of view, Color Witch rep-

resents an interesting case study as its deployment includes some

technological challenges such as, for instance, the interpretation of

images taken with the phone camera. Moreover, this application

shows how certain games that would not be playable or fun on a

home PC/consoles applications can instead be even better if ex-

ploiting the right devices, i.e., mobile phones, thus allowing a free

play experience [9]. Therefore, mobile games do not necessarily

be just as a limited version of highly performing PC games; rather,

they can add new segments to the gaming market.

Indeed, our digital game can be seen as specifically tailored for

mobile devices, exploiting their peculiar features. Furthermore,

it can enhance the fun of the original outdoor game by adding

some new features as: (i) considering object identification instead

of simple colors, and (ii) remote gaming with participants con-

nected through the Internet. To demonstrate the feasibility of the

project and of its benefits, we have created a proof-of-concept ver-

sion of the game where two players can compete against each other

through bluetooth connectivity. We discuss here issues related to

the game design, communication protocols, and color recognition

algorithm.

The rest of this paper is organized as follows. In Section II we

analyze basic requirements for our application. Then, in Section

III, we delve into design and implementation issues related to the

project, whereas in Section IV we discuss several interesting direc-

tions for expanding the current work. Finally, Section V concludes

this paper.

2. APPLICATION REQUIREMENTS
Before discussing the project design, we need to describe our

digital game and to point out some basic requirements for the project;

here, we present a list and a description of the main ones.

2.1 Game Mechanics
In our digital version of the Color Witch game, a player starts

the game session and her/his mobile phone runs the witch program

that has to choose a color. Other players can join the game with

their own phones and receive on their display the information about

which color has to be captured to be safe from the witch. The

operation of capturing a color is performed through taking a picture

of the object/texture of that color; in essence, a player has to take

a picture which has a predominance of pixels of the chosen color

(within a certain threshold). The game can be played in various

ways; for instance, employing a timer; however, for this specific

case and without loss of generality we have decided a simple rule:

the player which first takes a picture containing the requested color,

wins. Of course, this implies that the information about the picture

just taken, or the picture itself, should be immediately transmitted

to the witch in order to elect the winner; we have actually done this

through bluetooth connectivity.

2.2 Game Modes
First, we have to decide which game modes are available.

1. Single player: a user may want to improve her/his ability

on shooting the required colors (each phone camera can have

different resolutions, different color sensitivity, etc.), in order

to be the quicker and have more chances to win;

2. Multi-player: this is the general game mode involving more

than one player, it can be split into the following two sub-

modes:

(a) Server: the witch mode, the player can start the game,

and decides the color;

(b) Client: all the other non-witch players.

The game modes are mapped onto a default client-server archi-

tecture: there is only one server (the witch); all the other players

connect to the server to transmit their game events (e.g., informa-

tion about the predominant color in a picture that the player has just

taken).

2.3 Number of Players
In a real scenario Color Witch must have at least three players:

the witch and two other players competing for survival. The greater

the number of players, the funnier the game will be due to the in-

creasing competition.

Being mostly a proof-of-concept, in this first implementation the

application supports only the single player mode and two non-witch

players in multi-player mode. Yet, this is currently sufficient for

successful testing, and the subscription functionality can be easily

extended to support a (greater) variable number of players.

2.4 Cameras Resolution Compatibility
Different phones are equipped with different cameras with vari-

ous resolutions and color sensibilities. A player could take advan-

tage of the situation and win more games by exploiting the fact that

its camera allows an easier match of the predominant color in a

picture just taken and the color chosen by the witch. Even the op-

posite can happen, where a player has a hard time to convince the

game logic that the picture she/he has just taken actually includes

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8719 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8719 



in a predominant way the color that was chosen by the witch. In

both cases, we have to take care of unfairness by carefully flatten-

ing the camera outputs: pictures taken from every player will be

reduced to a minimum common format for resolution and number

of colors before processing; this way, the game logic will give even

possibilities to all players for a successful shot.

3. DESIGN AND IMPLEMENTATION

3.1 General Architecture
The proposed application has been implemented using Java Mi-

cro Edition. In particular, the project makes use of a number of con-

current threads, each one dedicated to a specific task. To hold the

code dedicated to each task, we have also defined some libraries.

These libraries provide middleware interface APIs for the core to

access basic functionalities.

• Graphical user interface. It manages user interactions and

screen.

• Color recognition. This function is mainly in charge to iden-

tify the dominant color in a picture.

• Media capturing. It provides an interface to the camera hard-

ware, this way the main program is not required to interface

any external software provided by the phone vendor. The

game execution flow lies in the thread implemented by this

library: it keeps taking pictures until one of the player wins

or the network connection is lost. This library coordinates

directly with the one in charge for network management so

as to send pictures and receive notification messages. There

are three variants of media capturing depending on the game

mode: single player, multi-player client, and multi-player

server. In single player mode there is no network involve-

ment, whereas in the other two modes the network is used

to send information about a taken picture or to communicate

the winner of the match.

• Network management. In this package connections with other

phones are managed. The basic idea is to provide APIs to the

application core to be independent by the network technol-

ogy. Currently, the only supported technology is bluetooth

but we are investigating the use of UMTS/GPRS and WiFi.

This library takes care of connection set-up, tear-down, and

packet exchange. When a player starts a new game session, a

new instance of a server thread is created. This thread creates

a Bluetooth connection and announce itself while waiting for

players to join the game. Players looking for a game session

create an instance of a client thread, which waits for blue-

tooth announces to join the game.

Other operations are managed by the main thread, including data

synchronization and storage configuration.

The goal of the above structure is that of keeping all hardware-

and interface-dependent functionalities separated by the applica-

tion logic; this way porting to new phones and hardware platforms

will be much easier.

3.2 Bluetooth Management
In this section we are going to focus on the bluetooth connection

management; first, we describe the protocol and then we provide

some implementation details.

Communication between phones is organized using message bun-

dles composed by a command and an optional parameter. Serial-

ized bundles are sent over the bluetooth connection. With this kind

of approach we can easily transfer messages with a semi-structured

semantic.

Even if it could be considered as quite simple, we deem that

it could be useful to illustrate it. In essence, the communication

protocol can be divided into two main phases:

1. a handshake phase;

2. a game phase.

In the handshake phase (see Fig. 1) two applications try to play

together. In the picture, typewriter text is the message content and

colon (:) separates the command from its optional parameter. As

soon as the incoming player opens the connection a WELCOMEmes-

sage is sent by the server with the color to seek out as a parameter.

The incoming player may reply with a WANNAPLAY message to

register and start the game.

SERVER CLIENT

WELCOME:colorName

++XXXXXXXXXXXXXXXXX

WANNAPLAY

ssfffffffffffffffff

Game starts Game starts

Figure 1: Handshake messages.

During the game phase, each application show to the player the

output from the camera. Players keep taking pictures until winning

the game or receiving a “game over” message. At a certain point,

each player either loses or gets a correct color picture.

When the application is in game phase in a multi-player game

mode, the network management thread is waiting for a bundle with

the YOULOSE command. This command tells the receiver that the

other player has already shot the required color.

As in many other phone-based games, the evaluation of the con-

dition to win (the decision on whether the image contains the re-

quested color or not) is performed by the client. Of course this

architecture is open to cheating, but sending all pictures over the

network and performing evaluation by the witch would use a lot of

bandwidth and consume way to many energy. Moreover, calcula-

tion on the server side will limit the scalability of the game when

engaging a greater number of players. Identification of the optimal

trade-off between cheating possibility and energy consumption is

still under investigation.

When the winning condition is met, (i.e., a picture with the cho-

sen color has been taken), a message IWON is sent to the server.

Currently, with the mobile phones we used in experiments and due

to bluetooth’s limited bandwidth, it is not possible to send the win-

ning picture along with the IWON message quickly enough. The

witch would have to wait for a time which – although quite limited

– results unacceptable by users. For this reason, currently, only a

notification bundle is sent back to the server.

Finally, in Fig. 2 we can see an UML state diagram with all the

“high-level” application states. In this figure, the possible states for

the application are described. Basically, there is an infinite loop in

which the player chooses the game mode and has a match. At the

end of the match, the player can decide whether to terminate the

application or to play again immediately.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8719 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8719 



3.3 Media and Colors Management
To decide the image’s dominant color, we apply the following

formula to the raster image:

arg max
c∈C

X

p∈P,p=c

p

where C is the set of colors and P is the image pixels set. In other

words, the image dominant color is the one that covers the largest

surface on the picture.

In the current implementation, the available colors are: black,

white, red, green, blue, and yellow.

As already mentioned, there are considerable portability prob-

lems caused by different phone cameras.

3.4 Dominant Color Identification
An important function of the application is the identification of

the image’s dominant color.

Acquired images are represented in raster format: a matrix con-

taining color information for each pixel. This information is ini-

tially stored in ARGB (Alpha, Red, Green, Blue) format and then

we convert it into RGB (Red, Green, Blue) as the transparency fea-

ture provided by the Alpha channel is not useful for our purpose.

Indeed, the ARGB format is a compulsory choice since the Java

ME APIs manage images only in this format; yet, in order to com-

pare the pixels with the chosen color, we have preferred for sim-

plicity to ignore the alpha channel and to use the RGB image for-

mat. To further simplify and speed up color recognition we have

adopted the HSV (Hue, Saturation, and Value of lightness) repre-

sentation for the RGB color space. With HSV it is possible, for

every color, to pinpoint bounds for its identification.

A possible representation of HSV is reported in Fig. 3. In the

figure all possible hues are shown in the right column, whereas

lightless and saturation scales are reported in the left square.

After associating a color to every pixel of a taken picture, it is

possible to find the dominant color of the image by identifying

which color is present in the picture with the greatest number of

pixels, and then return it.

Creation of bounds for each color is an important point to choose

the precision we want in color recognition. It is easy to see that, by

giving small bounds, we increase the precision, but the game will

be more difficult.

A big problem we have faced during development is related to

light reflection on surfaces. Indeed, reflection hue is recognized as

the white color thus cheating our software: an object/texture having

a clearly dominant color, but a great light reflection, is often recog-

nized as white. This effect depends on the position of the light,

but also on poorly manufactured camera lenses; this way, differ-

ent phones may have different color evaluations due to poor image

Single Player mode

Server mode

Client mode

Playing (Camera)

Game Finished

Opponent arrived

Opponent selected

Figure 2: Application UML state diagram.

Figure 3: HSV representation for a reddish color.

Figure 4: The application main menu, running on the SUN sim-

ulator.

quality. This problem can been partially solved taking off white

from the list of selectable colors and increasing slightly the value

of V before processing. Nevertheless, this approach would reduce

choices for the witch, reducing the fun, and does not work in the

same way on all mobile phones due to the ability of some camera

to perform color correction.

3.5 Application Deployment
In Fig. 4 it is possible to see the application main menu running

in the SUN simulator, which is built inside a NetBeans IDE project.

Our application has been tested also on a couple of real phones:

NOKIA N70 and 6085. In Fig. 5 a NOKIA 6085 running our appli-

cation is shown. To stimulate contributions we decided to released

the source code to the public domain using Source Forge [14].

4. ONGOING WORK AND EXTENSIONS
In this section we describe ongoing work about extending our

game. Note that these are only a subset of all possible extensions:

we deem the following points have a higher priority than others.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8719 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8719 



Figure 5: The application running on a NOKIA 6085.

4.1 Improved Colors Identification
We think the most important extension is the improvement of

the dominant color identification. Currently, this task presents var-

ious issues; in particular, the identification of the most appropriate

threshold for color identification. As explained in Section 3.4, the

application identifies a color using some bounds check. A possible

extension could involve the automatic identification of these values

after a training session. During the training session the application

learns the bound values which maximize the similarity between the

real-object dominant color and the calculated one. This could also

be a better way to avoid the unfair advantage/disadvantage for play-

ers with a better/worse camera, as mentioned in Section 2.4.

4.2 More-Than-Two-Players Mode
Another extension which can increase the appeal of our appli-

cation is the implementation of a multi-player game mode where

more than two players are allowed to participate. Indeed, it is well

known that humans are social beings and this characteristic has

been well captured by online game researchers that have devoted

significant effort in developing scalable solutions [15]. Clearly, it

would be very interesting to extend this application in order to al-

low more clients connected to the server. Even in this new scenario,

we think to the server as the game witch, and to all the clients as

peer players.

This new feature will involve added complexity in the network

management, like client/server disconnections and messages for-

warding. Indeed, to generalize this option, the game should pro-

vide the possibility for players to play even when remotely located

with respect to each other. As an example, using 4G connectivity

(the best available among Wi-Fi, bluetooth, UMTS, GPRS, etc.)

players could participate virtually from everywhere improving the

scalability and the fun of the game; or even building a community.

4.3 Game Scores and Web Leaderboard
An important part of the gaming experience is represented by the

scoring function of the game. This is generally associated to the

rewarding possibility for players to perceive, improve, and record

their skills, and to compare their highest scores against each other.

To facilitate the last point, a nice game service may be an on-line

score sharing functionality. In any case, to determine a score, the

first thing to do is to determine a score function. Possible options

for this function could be:

• the time elapsed before shooting the correct color (the quick-

est the better);

• the number of game sessions won;

• a grade to the best picture given by the witch;

Whit the application able to collect the game score, it will also

be possible to send it to an Internet website containing global and

regional ranking. Score submission can be easily performed using

the HTTP protocol.

4.4 Simon Says... a Shape!
The ultimate goal of this project is actually to extend the cur-

rent game, moving out of the color realm. One possibility would

be to ask players to take a picture where a pre-determined shape is

present. This will change the game into an more interesting activ-

ity: it would still be used as a game, but also as a learning platform

for kids or a rehabilitation cure for some mental disorders.

We envision two major difficulties along this path. The first prob-

lem is that, despite the fact shapes recognition can already be per-

formed on a PC, we do not know whether the existing solutions

would be energy efficient and fast enough for an average-level mo-

bile phone. Probably, new solutions, specifically designed for a

limited device have to be developed. The second problem is how to

define an interface to let the witch draw a shape on the considered

phones and be able to transfer that, possibly irregular, shape to the

players.

5. CONCLUSIONS
Games represent a killer application for mobile phones. In this

paper we have discussed the importance of providing games which

are not just a tiny version of a PC game. Indeed, nowadays, a

new generation of mobile games is possible by fully exploiting the

unique features of current phones (e.g., camera, gyroscope, connec-

tivity, GPS). To this aim, we have created a proof-of-concept appli-

cation that shows how to use the mobile phone’s camera and ubiq-

uitous connectivity among players to digitally replicate and even

enhance a popular outdoor game for kids.

Finally, we have also proposed several extensions to our game

so as to improve its scalability, social inclusion, and computational

intelligence.

6. REFERENCES

[1] Symbian foundation http://www.symbian.org/

[2] Android consortium official website

http://www.android.com/

[3] M. Furini, “Mobile Games: What to Expect in the Near

Future”, in Proc. of GAMEON Conference on Simulation and

AI in Computer Games, Bologna, Italy, Nov 2007.

[4] S. Ferretti, S. Mirri, M. Roccetti, C. Sermenghi, V. Conforti,

“Managing First Response Medical Aids With An Altruistic

Web Application”, in Proc. of the 3rd ICST/ACM/IEEE

Pervasive Health 2009, London, UK, Apr 2009.

[5] Apple iPhone “App Store”

http://www.apple.com/iphone/appstore/

[6] Mobile gaming grows to EUR 6 billion in 2006, 2003 http:

//cellular.co.za/news_2003/101503-mobile_

gaming_grows_to_eur_6_bil.htm

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8719 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8719 



[7] K. Jegers, M. Wiberg, “Pervasive Gaming in the Everyday

World”, Pervasive Computing, IEEE, vol. 5, no. 1, pp. 78-85,

Jan-Mar 2006.

[8] A. D. Cheok, K. H. Goh, W. Liu, F. Farbiz, S. W. Fong, S. L.

Teo, Y. Li, X. Yang, “Human Pacman: A Mobile, Wide-area

Entertainment System Based on Physical, Social, and

Ubiquitous Computing”, Personal and Ubiquitous Computing,

Springer London, vol. 8, no. 2, pp. 71-81, May 2004.

[9] Regan L. Mandryk, Kori M. Inkpen, “Supporting Free Play in

Ubiquitous Computer Games”, in Proc. of the Workshop on

Designing Ubiquitous Computing Games (UbiComp 2001),

Atlanta, GA, USA, Dec 2001.

[10] Martin J. Wells, J2ME Game Programming, 1st ed. Course

Technology PTR, 2004.

[11] C. Bala Kumar, Paul Kline and Timothy J. Thompson,

Bluetooth Application Programming with the Java APIs,

1st ed. Morgan Kaufmann, 2003.

[12] Rafael C. Gonzales and Richard E. Woods, Digital Image

Processing, 3rd ed. Pearson Prentice Hall, 2008.

[13] Sun Microsystem, Documentation for the Java Platform,

Micro Edition (Java ME) and Java Card technologies, http:

//java.sun.com/javame/reference/apis.jsp

[14] Color Witch on Source Forge, 2009

http://sourceforge.net/projects/wcr/

[15] A. Ploss, S. Wichmann, F. Glinka, S. Gorlatch, “From a

Single- to Multi-Server Online Game: A Quake 3 Case Study

Using RTF,” in Proc. of ACM Advances in Computer

Entertainment (ACE 2008), Yokohama, Japan, Dec 2008.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8719 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8719 


