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Abstract. Nowadays, organizational information systems are able to
collect high volumes of data in event logs every day. Through process
mining techniques, it is possible to extract information from such logs to
support organizations in checking process conformance, detecting bottle-
necks, and carrying on performance analysis. However, to analyze such
“big data” through process mining, events coming from process execu-
tions (in the form of event streams) must be processed on-the-fly as they
occur. The work presented in this paper is built on top of a technique
for the online discovery of declarative process models presented in our
previous work. In particular, we introduce a tool providing a dynamic
visualization of the models discovered over time showing, as a “process
movie”, the sequence of valid business rules at any point in time based
on the information retrieved from an event stream. The effectiveness of
the visualizer is validated through an event stream pertaining to health
insurance claims handling in a travel agency.
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1 Introduction

Process innovation and optimization is a crucial step of the business process
management lifecycle of an organization. In addition, nowadays, high volumes
of data are available and can be used for process improvement. In this scenario,
process mining techniques [1] may support analysts in extracting useful informa-
tion from data recorded during process executions in the so-called event logs that
can provide valuable insights for process enhancement. In particular, the goal of
one of the main branches of this discipline, process discovery, is to build process
models representing the process behavior as recorded in the logs. However, one
of the challenges that exist when several gigabytes of data need to be analyzed is



to process the data on-the-fly through techniques that work at runtime and ana-
lyze the data as soon as it becomes available. Unfortunately, traditional process
discovery techniques are limited to the off-line analysis of event logs and require
several iterations on the data for discovering a process model. For this reason,
these techniques cannot be used in an online setting with the consequence of a
reduced capability to support real-time process comprehension and monitoring.

In [15], we propose an approach to automatically discover declarative pro-
cess models from streams of data, at runtime. A declarative process model is
a set of business rules that describe the process behavior under an open world
assumption, i.e., everything that is not forbidden by the model is allowed. These
models can be used to express process behaviors involving multiple alternatives
in a compact way and are very suitable to be used in changeable and instable
environments with respect to the conventional procedural approaches. In [15], an
online process discovery technique is proposed to automatically construct, from
an event stream, a representation of complex business processes in the form of
business rules, without using any a-priori information and processing the events
on-the-fly, as they occur. In addition, this approach is able to detect concept
drifts, i.e., changes in the process execution due to periodic/seasonal phenom-
ena that are vital to be detected and analyzed to deeply understand how the
process adapts its behavior over longer periods of time.

Even if this approach has been implemented in the process mining tool ProM
[19], its previous implementation was able to cope only with “static” objects and
a graphical visualization of the evolution of the process model over time was
missing. In this work, we try to address this limit by presenting a graphical visu-
alizer for process models extracted from an event stream through the declarative
process discovery approach presented in [15]. The visualizer has been developed
using a client-server architecture in which the stream source is the server and
a number of miners, modeled as clients, can be connected to the source using
TCP connections. When a new event is emitted, a log fragment is encoded only
containing that event and sent to the clients. The reconstruction of the com-
plete final process instance (by grouping together events belonging to the same
case) is delegated to the miners. The output models are visualized in the form of
an animated “process movie” that dynamically shows how the behavior of the
process that produces the event stream changes over time. The process models
are represented using Declare [2] a declarative process modeling language to de-
scribe process behaviors through business rules. The added value provided by
the visualizer to the process stakeholders is to have continuously updated “de
facto” models showing the real behavior of the process as recorded in the stream.

The paper is structured as follows. Section 2 introduces the characteristics of
event stream mining as well as some basic notions about Declare. Here, we also
give a short description of the online process discovery technique underlying
the proposed visualizer. Section 3 introduces the visualizer and describes its
implementation. In Section 4, the tool is applied to an event stream pertaining
to health insurance claims handling in a travel agency. Finally, Section 5 reports
some conclusion and final remarks.



2 Preliminaries

This section provides a general introduction to the basic elements we are going
to use throughout the paper. In particular, we introduce the notion of event
stream and we give a quick overview of the Declare language. Also, we introduce
the approach for the online discovery of Declare models that we use to produce
the process movies presented in this paper.

2.1 Event Streams

Several works in the data mining literature, such as [12, 3, 4], agree in defining
a data stream as a fast sequence of data items. It is common to assume that:
(i) data has a small, typically predefined, number of attributes; (ii) mining algo-
rithms are able to analyze an infinite number of data items, handling problems
related to memory bounds; (iii) the amount of memory that the learner can use
is finite and much smaller than the memory required to store the data observed
in a reasonable span of time; (iv) each item is processed within a certain small
amount of time (algorithms have to linearly scale with respect to the number
of processed items): typically the algorithms work with one pass on the data;
(v) data models associated to a stream (i.e., the “underlying concepts”) can
either be stationary or evolving [20].

An event stream is a potentially infinite sequence of events. It is possible to
assume that sequence indexes comply with the time order of events (i.e., given
the sequence S, for all indexes i ∈ N+, #time(S(i)) ≤ #time(S(i + 1))). Starting
from a general data stream (not necessarily a stream of events), it is possible
to perform different analysis. The most common are clustering, classification,
frequency counting, time series analysis, and change diagnosis (concept drift
detection) [10, 20, 3].

2.2 Declare: Some Basic Notions

In this paper, the process behavior as recorded in an event stream is described
using Declare rules. Declare is a declarative process modeling language originally
introduced by Pesic and van der Aalst in [2]. Instead of explicitly specifying the
flow of the interactions among process events, Declare describes a set of rules
that must be satisfied throughout the process execution. The possible orderings
of events are implicitly specified by rules and anything that does not violate
them is possible during execution. In comparison with procedural approaches
that produce “closed” models, i.e., all what is not explicitly specified is forbidden,
Declare models are “open” and tend to offer more flexibility for the execution.

A Declare model consists of a set of rules applied to events. Declare rules, in
turn, are based on templates. Templates are patterns that define parameterized
classes of properties, and Declare rules are their concrete instantiations. Tem-
plates have a user-friendly graphical representation understandable to the user
and their semantics can be formalized using different logics [17], the main one



Template Meaning Notation

Responded Existence(A,B) if A occurs then B occurs before or after A A •−−−− B

Co-Existence(A,B) if A occurs then B occurs before or after A and vice versa A •−−−• B

Response(A,B) if A occurs then eventually B occurs after A A •−−−I B

Precedence(A,B) if B occurs then A occurs before B A −−−I• B

Succession(A,B) for A and B both precedence and response hold A •−−I• B

Alternate Response(A,B) if A occurs then eventually B occurs after A without another A in between A •===I B

Alternate Precedence(A,B) if B occurs then A occurs before B without another B in between A ===I• B

Alternate Succession(A,B) for A and B both alternate precedence and alternate response hold A •==I• B

Chain Response(A,B) if A occurs then B occurs in the next position after A A •=−=−=−I B

Chain Precedence(A,B) if B occurs then A occurs in the next position before B A =−=−=−I• B

Chain Succession(A,B) for A and B both chain precedence and chain response hold A •=−=−I• B

Not Co-Existence(A,B) A and B cannot occur together A •−−−•‖ B

Not Succession(A,B) if A occurs then B cannot eventually occur after A A •−−I•‖ B

Not Chain Succession(A,B) if A occurs then B cannot occur in the next position after A A •=−=−I•‖ B

Table 1. Graphical notation and meaning of the Declare templates.

being LTL, making them verifiable and executable. Each rule inherits the graph-
ical representation and semantics from its templates. The major benefit of using
templates is that analysts do not have to be aware of the underlying logic-based
formalization to understand the models. They work with the graphical repre-
sentation of templates, while the underlying formulas remain hidden. Table 1
summarizes some of the Declare templates (we indicate template parameters
with capital letters and concrete activities in their instantiations with lower case
letters). For a complete overview on the language the reader is referred to [18].

Consider, for example, a response rule connecting activities a and b. This
rule indicates that if a occurs, b must eventually follow. Therefore, this rule is
satisfied for traces such as t1 = 〈a, a, b, c〉, t2 = 〈b, b, c, d〉, and t3 = 〈a, b, c, b〉,
but not for t4 = 〈a, b, a, c〉 because, in this case, the second instance of a is
not followed by a b. Note that, in t2, the considered response rule is satisfied
in a trivial way because a never occurs. In this case, we say that the rule is
vacuously satisfied [14]. In [6], the authors introduce the notion of behavioral
vacuity detection according to which a rule is non-vacuously satisfied in a trace
when it is activated in that trace. An activation of a rule in a trace is an event
whose occurrence imposes, because of that rule, some obligations on other events
in the same trace. For example, a is an activation for the response rule between
a and b, because the execution of a forces b to be executed eventually.

An activation of a rule can be a fulfillment or a violation for that rule. When
a trace is perfectly compliant with respect to a rule, every activation of the rule
in the trace leads to a fulfillment. Consider, again, the response rule connecting



activities a and b. In trace t1, the rule is activated and fulfilled twice, whereas,
in trace t3, the same rule is activated and fulfilled only once. On the other hand,
when a trace is not compliant with respect to a rule, an activation of the rule in
the trace can lead to a fulfillment but also to a violation (at least one activation
leads to a violation). In trace t4, for example, the response rule between a and b is
activated twice, but the first activation leads to a fulfillment (eventually b occurs)
and the second activation leads to a violation (b does not occur subsequently).
An algorithm to discriminate between fulfillments and violations for a rule in a
trace is presented in [6].

2.3 Online Discovery of Declare Models

In this section, we describe how to discover, at runtime, a Declare model out of
a stream of events. The approach for online discovery of Declare models we use
in this paper is based on three algorithms. The first algorithm is called Sliding
Window [11]. The basic idea of this algorithm is to keep the latest observed
events and consider them as a static event log. The other two approaches are
called Lossy Counting [16] and Lossy Counting with Budget [9]. The basic idea
of these approaches is to consider aggregated representations of the latest obser-
vations, i.e., instead of storing repetitions of the same event, to save space, they
store a counter keeping trace of the number of instances of the same observa-
tion. As presented in [15], we use these algorithms for memory management in
combination with algorithms for the online discovery of Declare rules referring
to different templates.

Algorithm 1: Online discovery scheme
Input: S: event stream, conf: approximate algorithm configuration (either LC or LCB, with

the corresponding configuration: ε or B), update model condition
1 R← ∅ /* Set of template replayers */
2 foreach Declare template t do
3 Add a replayer for t (according to conf) to R
4 end

5 forever do
6 e← observe(S)
7 if analyze(e) then
8 foreach r ∈ R do
9 r(e, conf) /* Replay e on replayer r */

10 end

11 end

12 if update model condition then
13 model← initially empty Declare model
14 foreach r ∈ R do
15 Update model with rules in r
16 end
17 Use model /* For example, update a graphical representation */

18 end

19 end

Algorithm 1 presents a general overview of our online discovery approach.
Here, we keep a set R of replayers, one for each template we want to discover



(line 3). Note that replayers for different templates implement different discovery
algorithms each one developed based on the characteristics of the corresponding
template. Then, when a new event e is observed from the stream S, if it is
necessary to analyze it, the algorithm replays e on all the template replayers of
R (line 9). Periodically (the period may depend either on the number of events
observed, or on the actual elapsed time), it is possible to update the discovered
Declare model, by querying each replayer for the set of satisfied rules (line 15).
These models are used in our visualizer as “frames” to build the process movies.

The candidate rules to be included in the discovered Declare model can be
selected based on the percentage of activations that leads to a fulfillment (event-
based rule support) or based on the percentage of cases in which the rule is
satisfied (trace-based support). Of course, in this latter case, the event stream
should provide not only information about the case to which each event belongs
but also an indication on the exact point in which each trace starts and ends.

3 The Visualizer

The visualizer described in this paper has been implemented as plug-in of the
process mining tool ProM.4 In the following sections we describe the tool and
its characteristics.

3.1 The Event Streamer

The current implementation of ProM is able to cope only with “static” objects,
e.g., log files and process models. Instead, as previously stated, an event stream
cannot be fit into a static object, because of its dynamic nature. In particular,
when someone queries an event stream for the “next” event, the provided answer
will depend on the “query time”.

In order to achieve our goal, we decided to model event streams using TCP
connections [7, 8]. In particular, we employed a client-server architecture in which
the stream source acts as a server and several miners, modeled as clients, can
be connected to the same source. Figure 1 reports a graphical representation of
such idea: the stream source forwards each event, represented as a box, to all
the connected miners (clients) via TCP connections.

When a new event is emitted, a log fragment is encoded only containing that
event and sent to the clients. Specifically, the log fragment contains only one
trace which contains only the event emitted and is encoded in XML, using the
XES standard [13]. It is important to note that, differently from what happens
with static log files, events are not grouped anymore by process instance. Instead,
each event is wrapped into different trace elements which have the same value
for the “case id” attribute. The reconstruction of the complete trace is delegated
to the clients.

The log fragment reported in Listing 1.1 represents an example of data writ-
ten through the network connection.

4 See http://www.processmining.org for more information.
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Fig. 1. Graphical representation of the stream architecture: the stream source is a
server, and each miner is a client connected via TCP. Each square box represents an
event. The background color of a box corresponds to the case id of the event.

1 <log openxes.version="1.0 RC7" xes.features="nested -attributes"
xes.version="1.0" xmlns="http ://www.xes -standard.org/">

2 <trace >

3 <string key="concept:name" value="7235124248 -6934584346" />

4 <event >

5 <string key="concept:name" value="Activity A" />

6 </event >

7 </trace >

8 </log >

Listing 1.1. Log fragment streamed over the network and encoded using XES.

We opted for this architecture since it is an extremely flexible solution and
allows different computational nodes to communicate easily. Moreover, it is ex-
tremely easy, for an existing information system, to emit events to be analyzed
using our implemented solution. In order to simulate specific stream scenarios,
we use an event streamer, which takes as input a (finite) event log and simu-
lates an event stream using the events contained in the log. Specifically, all the
events of the log are sorted according to their timestamp. Then, each event is
sent through the network. The time passing between two consecutive events is a
parameter of the streamer. Clearly, the stream generated using this tool is not
infinite, but it is still useful for testing purposes.

Fig. 2 reports a screenshot of the ProM implementation of the event streamer.
On the right hand side of the screenshot there is a graphical representation of
the stream: each colored point represents an event of the stream (green dots
represent sent event whereas blue dots represent the events that still need to
be sent). The x axis represents the time, the y axis has no specific semantic
(simultaneous events are vertically distributed for readability purposes). The left
hand side of the screenshot contains some configuration panels. In particular, it
is possible to configure the network port that is used to accept incoming miners,
the time passing between the emission of two consecutive events, and the control
buttons to start and to stop emitting events on the network channel. Few other
controllers are available as well. For example, it is possible to assign different
colors to the events visualization according to the activity name or according to
the case id.



Fig. 2. Screenshot of the streamer interface.

3.2 The Declare Stream Miner

The ProM implementation of the Declare stream miner is fundamentally based
on the “observer pattern”: every time the stream receives a new event, different
replayers update their internal status with the new observation. With a certain
periodicity, either with respect to the number of events received or with respect
to the time passed, the Declare model is updated, taking into account the new
status recorded by each replayer.

Since the mined model is not static (it evolves over time), it is not possible
to generate one model to be added to the ProM workspace. Therefore, we de-
cided to implement a dashboard in the ProM toolkit. This dashboard (Fig. 3)
shows the current status of the stream, together with some general historical
information. The current behavior as detected from the event stream is shown
in the form of a list of Declare rules that change over time. While the stream pro-
gresses, the visualization in the dashboard is periodically updated showing the
currently valid Declare rules. The dashboard is composed of several parts: the
bottom panel contains some general controllers, to turn on and off the miner,
together with some general information about the number of received events.
The main panel is vertically splitted: the left hand side part reports a graphical
representation of the top 10 rules currently valid (the ones with the highest ful-
fillment ratio). In this panel, the value of the fulfillment ratio is encoded using
different colors: brighter blue indicates the lowest values, darker blue indicates
the highest values. The same panel contains two more controllers: one to export
the currently displayed Declare model into the ProM workspace, and another
one to attach the rule name to each connector in the model. The right hand side



Fig. 3. Screenshot of the stream miner dashboard.

of the dashboard contains two panels: the one on the top contains a list with the
complete set of discovered rules (with the corresponding statistics), the panel on
the bottom part contains a line chart with some historical information. In our
specific case, the chart shows the trend of the number of rules discovered over
time, but several other statistics can easily be added as well (e.g., the average
fulfillment ratio of the rules).

4 Case Study

For our experiment,5 we have generated two synthetic logs (L1 and L2) by
modeling two variants of the insurance claim process described in [5] in CPN
Tools6 and by simulating the models. The following characteristics are common
to both process variants. Upon registration of a claim, a general questionnaire
is sent to the claimant. In addition, a registered claim is classified as high or
low. A cheque and acceptance decision letter is prepared in cases where a claim
is accepted while a rejection decision letter is created for rejected claims. In
both cases, a notification is sent to the claimant. Three modes of notification are
supported, i.e., by email, by telephone (fax) and by postal mail. The case should
be archived upon notifying the claimant. The case is closed upon completion of
archiving task.
L1 contains 14,840 events and L2 contains 16,438 events. We merged the logs

(four alternations of L1 and L2) using the Stream Package, publicly available

5 The entire process movie generated in our experiment can be found at http://

youtu.be/9gbrhkSfRTc.
6 See http://cpntools.org.



Fig. 4. Screenshot of the visualizer (frame from L1).

in the ProM repositories. The same package has been used to transform the
resulting log into an event stream. The event stream contains 250,224 events
and has three concept drifts (one for every switch from L1 to L2).

The event stream has been simulated with the event streamer. The events,
received by the Declare stream miner has been processed to discover Declare rules
that hold with a fulfillment ratio of 1. A Declare model is generated every 100
milliseconds, i.e., every 100 milliseconds the model shown through the visualizer
is refreshed and the process movie progresses with a new frame.

In Fig. 4, a frame of the process movie is shown generated by simulating the
event stream. The figure shows one of the frames of the movie when the events
from L1 are sent to the miner. The frame indicates that at that point in time
during the stream evolution the Declare rules involving claims classified as “low”
are prevalent in terms of fulfilment ratio. As already mentioned, this view can
be exported to create a snapshot of the process behavior at that point in time
during the stream progression. Fig. 5 shows one of the frames of the movie when
the events from L2 are sent to the miner. In this case, the Declare rules involving
claims classified as “high” correspond to a higher fulfilment ratio.

In Fig. 6, the entire trend of the number of discovered constraints from the
beginning to the end of the process movie is shown. The concept drifts when
passing from one of the two logs to the other are evident and indicated as peaks
in the curve.



Fig. 5. Screenshot of the visualizer (frame from L2).

Fig. 6. Trend of the number of discovered constraints from the beginning to the end
of the process movie.

5 Conclusion

This paper proposes a tool for the dynamic visualization of process models dis-
covered through a technique for the online discovery of Declare rules described
in our previous work. The different models are discovered in different evalua-
tion points from an event stream. These models represent different frames of
a process movie. A process movie is a way of dynamically visualizing the re-
sults of an online process discovery technique like the ones implemented in the
Declare stream miner. Our experimentation shows that the tool is able to re-
produce graphically the evolution of process cases encoded in an event stream.
In addition, concept drifts are also graphically captured through the trend line
representing the number of discovered Declare rules over time.
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