
Data Streams in ProM 6: A Single-node Architecture

S.J. van Zelst1, A. Burattin2, B.F. van Dongen1 and H.M.W. Verbeek1

1 Eindhoven University of Technology
{s.j.v.zelst,b.f.v.dongen,h.m.w.verbeek}@tue.nl

2 University of Padova
burattin@math.unipd.it

Abstract. Process mining is an active field of research that primarily builds upon
data mining and process model-driven analysis. Within the field, static data is
typically used. The usage of dynamic and/or volatile data (i.e. real-time streaming
data) is very limited. Current process mining techniques are in general not able to
cope with challenges posed by real-time data. Hence new approaches that enable
us to apply process mining on such data are an interesting new field of study. The
ProM-framework that supports a variety of researchers and domain experts in the
field has therefore been extended with support for data-streams. This paper gives
an overview of the newly created extension that lays a foundation for integrating
streaming environments with ProM. Additionally a case study is presented in
which a real-life online data stream has been incorporated in a basic ProM-based
analysis.

1 Introduction

We assume the reader to be acquainted with the field of process mining and refer to [1]
for an elaborate overview of the field. Henceforth we turn our focus towards the ProM
framework3 [2, 5] which since its introduction greatly enhanced the availability of sev-
eral process mining techniques. Current analyses within ProM are primarily based on
static data in the form of “transaction logs” originating from one or many information
systems. The current state of art in computer science technology enables us to both store
and generate large quantities of data at tremendous throughput rates. Within this context
there has only been a limited amount of research conducted towards the integration of
streaming data and process mining.

Present approaches able to deal with streams in ProM [3, 4, 7] are based on Java
sockets. In these implementations a stream is represented by a network connection using
TCP. The stream’s source is a network-server that accepts connections from stream-
miners. After a network connection has been established between a miner and a stream-
source, the latter starts “emission” of events into the channel.

The available implementations do not provide any means of standardization of
event-like data-packets send over a stream apart from sending multiple single events
containing log-fragments using XES [6]. The use of TCP limits the maximum through-
put speed of the stream by the computational speed of the slowest connected analysis

3 http://www.promtools.org/

http://www.promtools.org/


2

AuthorPublisher Stream Reader Subscriber

1

1..*

1

1

1

0..* 1..*

1

Fig. 1: A generalized overview of the ProM-stream architecture.

tool, resulting in a very strong coupling between sending and receiving parties. In prac-
tical applications, events are emitted independent of the analysis performed on them
and therefore it is desirable to decouple these entities as much as possible, even in a
single node setting. An additional problem with the aforementioned implementations is
limited reuse-ability of code.

In this demo paper we present a standardized approach to the use of streaming data
within ProM. In that sense the framework has been extended with basic support for
handling streaming data. The newly created extension simplifies application of process
mining on dynamic and volatile sources of data. The general aim of this paper is to
create awareness for the adoption of handling streaming data within process mining.

2 Architecture

2.1 Entities

The basic architecture chosen within ProM w.r.t. streaming is mainly intended to help
developers in structuring stream handling4. The Publisher-Subscribe pattern acts as a
fundamental basis of using streams in ProM. A basic UML-diagram of the most impor-
tant architectural components is shown in Fig. 1.

Streams, publishers and subscribers are “ProM Objects”. This means that they are
visible and selectable objects in the ProM workspace. A publisher consists of a set of
authors. Each author writes data onto a dedicated stream. A subscriber consists of a set
of readers. Each reader reads data from a dedicated stream. Different readers are able
to connect to the same stream. The stream entity will in fact create a dedicated channel
for each connected reader. In this way we achieve maximal decoupling between sending
and receiving party.

The publisher and subscriber entities are completely standardized and independent
of the data-type sent over a stream. On the other hand, authors, readers and streams
are strongly typed. Some of these entities are standardized and/or predefined (e.g. the
notion of an EventStream, a standardized XLog to EventStream author etc.).

2.2 Data stream handling

Given an external data stream/source of some arbitrary type. An author’s task is to
translate this stream/source into a ProM stream object. An author is part of a publisher
instance which itself is part of a ProM-plugin mapping the source data (stream) to an

4 Handling a “stream” on a single node just concerns the (re)allocation of in-memory objects to
several threads/workers.



3

(n+1)-tuple consisting of the publisher instance and n ProM stream objects, given that
the publisher consists of n authors.

A preliminary task w.r.t. ProM stream creation is determining of what type the ProM
stream should be. If a non-existing type is preferred, it is possible to create a new typed
data-stream.

Once the external data stream/source is translated to a ProM stream object, it is
ready for analysis. Readers are in general designated with this task. The analysis can be
of any type ranging from just counting the total number of data-packets sent to mining
an organizational-network etc. A reader is part of a subscriber which itself is part of a
ProM plug-in returning just the subscriber instance.

A reader may have one or many result value(s) (e.g. a reconstructed log, a series of
mined process models etc.). These results are however not return values of the reader’s
designated ProM plugin. They can be either visualized (section 3) or added to the ProM
workspace in a later phase.

3 User Interface

As indicated, streams, subscribers and publishers act as ProM objects. Both publishers
and subscribers have partly standardized graphical user interfaces.

The standardized publisher visualization is depicted in figure 2a. The visualization
contains two separate panes. The left pane of the visualization (blue outlined in figure
2a) is a standardized visualization, currently only consisting of a list of active authors
within the publisher. Underneath the list a button is located that allows the user to start
the currently selected author.

The right-hand pane is customizable and author specific. Whenever a publisher con-
tains more than one authors, selecting a different author from the list will result in a
different visualization in the right-hand pane.

The standardized subscriber visualization is very similar w.r.t. the publisher visu-
alization. Again the visualization contains two separate panes, one standardized pane
depicting all the readers within the subscriber entity and one custom pane depicting the
reader’s visualization. An example screen-shot of a subscriber visualization is depicted
in figure 2b.

(a) ProM publisher visualization (b) ProM subscriber visualization

Fig. 2: ProM screen-shots of both a publisher and subscriber visualization



4

4 Case Study

As an explanatory case we have used the ProM Stream infrastructure on real and live
event data. The data used as an input was the open event stream of http://www.
meetup.com5. A more elaborate demonstration of the case study is published on the
first author’s scientific web page6.

meetup.com is a website where people can plan happenings. Within meetup.com

happenings are called events. However, to avoid ambiguity w.r.t. the well-defined no-
tion of events within process mining we will use the term happenings when we refer
to meetup events. An example of a happening is a jam-session for musicians or an af-
ternoon walk through Central Park in New York. A happening has several parameters
(name, status, venue etc.). A user can create a happening and later-on change some
parameters of the happening (for example, after creating a happening we decide to in-
crease the total number of accepted guests). Every data-manipulation of a happening
which has a public access level will be published on the meetup.com event stream.

The goal of the performed case study is to repeatedly run a process discovery algo-
rithm over the event stream. In this way we can identify whether there is any behavioral
pattern w.r.t. creation and manipulation of happenings. As the case study is purely of
a demonstrative fashion we have not incorporated any frequent event set mining or
memory reducing approach. We just collect “happening data packets” from the external
stream, classify them within traces and store them. On a fixed regular basis (and if the
user specifies to do so) the collected data will be converted to a log and passed to the
α-miner. Note that it is very unlikely that there is actually a behavioral pattern involved
in changing happenings.

For execution of the case study, two plug-ins are constructed. The “XSEventStream
Publisher(meetup.com/JSON)” plug-in creates a publisher that consists of one au-
thor that takes meetup.com’s JSON-stream as an input and converts it to a standardized
event stream (called XSEvent). The “XSEventStreamSubscriber(XSEvent->
PetriNet|α-Miner)” plug-in creates a subscriber that consists of one reader that
takes an event-stream (XSEvent) as an input. After a series of messages received, the
reader’s visualization will be updated with the latest process representation.

5 Future Work

Currently the architecture only consists of input and output nodes w.r.t. streams (e.g.
authors and readers contained in publishers and subscribers respectively). It is however
likely that there might be a need for entities that comprise both functionalities. It might
be the case that we are only interested in emitting just a fraction of all events on the
stream (i.e. filtering). Therefore within the future a new element might be introduced in
the form of a “hub” which can consist of both a set of readers and a set of authors.

The architecture presented concerns a single-node implementation. If data through-
put speed is extremely high using a single node might not be the most effective solution

5 http://www.meetup.com/meetup_api/docs/2/open_events/
6 http://www.win.tue.nl/˜svzelst/publications/2014_bpm_haifa_
streams_in_prom/screencast/

http://www.meetup.com
http://www.meetup.com
http://www.meetup.com/meetup_api/docs/2/open_events/
http://www.win.tue.nl/~svzelst/publications/2014_bpm_haifa_streams_in_prom/screencast/
http://www.win.tue.nl/~svzelst/publications/2014_bpm_haifa_streams_in_prom/screencast/


5

(apart from the necessity of applying frequent item-item/sequence mining). In the fu-
ture, the architecture and implementation should be extended to support a multi-node
setting as well. In this way we can assign separate nodes to perform stream production/-
conversion, stream filtering, stream reading etc.

Although we have standardized several objects within ProM from an architectural
perspective we have not yet spend a lot of attention in standardizing event streams.
A future goal is to incorporate the notion of “streamed events” within the OpenXES
standard such that it can be adopted even outside the context of ProM.

6 Conclusion

The newly presented single-node stream extension of ProM enables researchers and
business users in the field to also apply process mining on streaming-data instead of
solely relying on static data. The extension poses several new standardized architec-
tural concepts and associated implementations aimed at re-usability and simplicity with
respect to stream-handling within ProM. The case study shows that we are now able to
effectively use (real) data-streams in the ProM framework.

Using the lessons learned in development of the current implementation, new chal-
lenges such as a multi-node setting and the notion of hubs can be tackled which will
hopefully lead to a full integration of streaming-data analysis within the field of process
mining.

Acknowledgements The work by Andrea Burattin is supported by the Eurostars-
Eureka Project PROMPT (E!6696).

References
1. W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of Busi-

ness Processes. Springer Publishing Company, Incorporated, 1st edition, 2011.
2. W.M.P. van der. Aalst, B.F. van Dongen, C.W. Günther, R.S. Mans, A.K. Alves de Medeiros,

A. Rozinat, V. Rubin, M.S. Song, H.M.W. Verbeek, and A.J.M.M. Weijters. Prom 4.0: Com-
prehensive support for real process analysis. In J. Kleijn and A. Yakovlev, editors, Petri Nets
and Other Models of Concurrency – ICATPN 2007, volume 4546 of Lecture Notes in Com-
puter Science, pages 484–494. Springer Berlin Heidelberg, 2007.

3. A. Burattin, A. Sperduti, and W.M.P. van der Aalst. Heuristics Miners for Streaming Event
Data. CoRR, abs/1212.6383, 2012.

4. A. Burattin, A. Sperduti, and W.M.P. van der Aalst. Control-flow Discovery from Event
Streams. In Proceedings of the IEEE Congress on Evolutionary Computation. IEEE, (to ap-
pear), 2014.

5. B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and W.M.P.
van der Aalst. The prom framework: A new era in process mining tool support. In G. Cia-
rdo and P. Darondeau, editors, Applications and Theory of Petri Nets 2005, volume 3536 of
Lecture Notes in Computer Science, pages 444–454. Springer Berlin Heidelberg, 2005.

6. C.W. Günther and H.M.W. Verbeek. XES Standard Definition. www.xes-standard.org, 2009.
7. F.M. Maggi, A. Burattin, M. Cimitile, and A. Sperduti. Online Process Discovery to Detect

Concept Drifts in LTL-Based Declarative Process Models. In Proceedings of the OTM 2013
Conferences, pages 94–111. Springer Berlin Heidelberg, 2013.


	Data Streams in ProM 6: A Single-node Architecture

