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Abstract—Process mining is a relatively new field of research: is
final aim is to bridge the gap between data mining and business
process modelling. In particular, the assumption underpinning
this discipline is the availability of data coming from business
process executions. In business process theory, once the process
has been defined, it is possible to have a number of instances of
the process running at the same time. Usually, the identification
of different instances is referred to a specific “case id” field in the
log exploited by process mining techniques. The software systems
that support the execution of a business process, however, often
do not record explicitly such information. This paper presents an
approach that faces the absence of the “case id” information: we
have a set of extra fields, decorating each single activity log, that
are known to carry the information on the process instance. A
framework is addressed, based on simple relation algebra notions,
to extract the most promising case ids from the extra fields. The
work is a generalization of a real business case.

I. INTRODUCTION

Process mining is a relatively young discipline emerged
from the join of data mining with BPM [1]. The final goal
of this discipline is the reconstruction of a process model,
that points out a certain perspective of a given business
process. Together with discovery, process mining provides also
techniques for process conformance analysis (given a model,
it tries to map the actual executions into the original model). It
has a lot of real-world applications, such as the one described
in [2].

The idea underpinning process mining techniques is that
most business processes, that are executed with the support of
an information system, leave traces of their activity executions
and this information is stored in the so-called “log” files. The
aim of process mining is to discover, starting from those logs,
as much information as possible. Examples of reconstructed
information are the control flow of the activities [3], or the net-
work of social interactions between the originators involved in
the process [4]. In order to perform such reconstructions, it is
necessary that the log contains a minimum set of information.
In particular, for all the recorded activities, there must be:
• the name of the activity;
• the name of the process the activity belongs to;
• the process case identifier (i.e. a field with the same value

for all the executions of the same process instance);
• the time when the activity is performed;
• the activity originator (if available).

Typically, these logs are collected in MXML files [5] or,
according to a new recent standard, in XES files [6], so that
they can be analyzed using the ProM tool [7]. When process
mining techniques are introduced in new environments, the
data can be sufficient for the mining (or can even be more
than the necessary, as in [8]) or can lack some fundamental
information, as considered in this paper.

In the context of this work, two similar concepts are used in
different ways: “process instance” and “case id”. The first term
indicates the logical flow of the activities for one particular
instance of the process. The “case id” is the way the process
instance is implemented: typically, the case id is a set of one
or more fields of the dataset, whose values identify a single
execution of the process. It is important to note that there can
be many possible case ids but, of course, not all of them are
going to recognize the actual process.

The final aim of this paper is to give a general framework
for the selection of the “most interesting” case ids and then
let the final decision to an expert user. The source of this
work is a real business need encountered by Siav S.p.A. on
logs coming from its document management solution.

Section II introduces the main issues related to the selection
of the case id and the contexts where the problem arises. In
Section III we recall other works addressing the question, and
the differences from our paper are highlighted. Section IV
presents the conditions that enable the use of our technique,
which is described in Section V. Sections VI reports some
notes about the implementation of the algorithms, the settings
and results of our experiments. Finally, Section VII concludes
and sketches a line for future work.

II. THE PROBLEM OF SELECTING THE CASE ID

As already introduced in the previous section, it is worth-
while observing that process mining techniques assume that
all logs, used as input for the mining, come from executions
of business process activities. In a typical environment, there
is a formal process definition (it is not required to the model
to be explicit) that is “implemented” and executed. All these
executions are sequentially recorded into the log files; those act
as input for the mining algorithms [3] and these will generate
the mined models (possibly different from the original process
models).



One of the fundamental principles that underpins the idea of
“process modeling” is that a defined process can generate any
number of concurrent instances, “running” at the same time.
Consider, as an example, the process model defined (in terms
of Petri Net) in Figure 1: it is composed of five activities.
The process always starts executing A; then B; C and D can
run in any order and, finally, E. We can have more than one
instance running at the same time so, for example, at the time
t we can observe any number of activities that are executed.
Figure 2 shows three instances of the same process: the first
is almost complete; the second is just started and the last one
has just completed the first two activities.

In order to identify different instances, it is easy to figure
out the need of an element that connects all the observations
belonging to the same instance. This element is called “case
identifier” (or “case id”). Fig. 2 represents it with different
colors and with the three labels ci, ci+1 and ci+2.

A. Process Mining in New Contexts

There is a clear distinction between a process model and
its implementation, and there exists a lot of software tools for
supporting the application of a business process. Nonetheless,
a lot of software systems concur to support the process
implementation, but typically the information they provide
is not explicitly linked to the process model because of the
lack of a case id. This is mainly due to business reasons and
software interoperability issues.

Consider, for example, a document management system
(DMS): a tool which can store and manage digital documents
(or images of paper documents). Those systems are widely
used in large companies, public administrations, municipal-
ities, etc. Of course, the documents managed with a DMS
can be referred to processes and protocols (consider, for the
example, the documents involved in supporting the process of
selling a product). In this case, the set of documents managed
by the DMS users leaves a trace of what happens at the
“business process level”, since they are a support for the
process activities.

The idea presented in this paper is to exploit the information
produced by such a support system, not limiting to DMSs,
in order to mine the processes in which the system itself is
involved. The nodal point is that such systems typically do not
log explicitly the case id. Therefore, it is necessary to infer
this information, that enables to relate the system entities (e.g.
documents in a DMS) to process instances.

III. RELATED WORK

The problem of relating a set of activities to the same
process instance is already known in literature. In [9], Ferreira
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Figure 1. Example of a process model. In this case, activities C and D can
be executed in parallel, i.e. in no specific order.
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Figure 2. Two representations (one graphical and one tabular) of three
instances of the same process (the one of Figure 1). It can be noticed that, at
time t, the three executions of the same process reached different points.

and Gillblad presented an approach for the identification of
the case id based on the Expectation-Maximization (EM)
technique. The main characteristics of this approach are its
generality, that allows to execute it in all possible environ-
ments, and its computational complexity; furthermore, the
EM-based algorithms converge to a local maximum of the
likelihood function.

Other approaches, such as the one presented by Ingvaldsen
et al., in [10] and in [11], use the input and output produced
by the activities registered in the SAP ERP. In particular, they
construct “process chains” (composed by activities belonging
to the same instance) by identifying the events that produce
and consume the same set of resources. The assumption
underpinning this approach (i.e. the presence of resources
produced and consumed by two “joint” activities) seems too
strong for a broad and general application.

Other works that can be reduced to the same issue are
presented in [12], [13], but all of them solve only partially the
problem and do not provide a sufficiently general approach
that can be applied to other environments.

The most important difference between this work and others
in literature is that, in our case, the information on the process
instance is “hidden inside the log” (it is recorded in some fields
we ignore), and therefore it has to be extracted properly. Such
a difference is very important for two main reasons: (i) the
settings we required are sufficiently general to be observed
in a number of real environments and (ii) our technique is
devised for this particular problem, hence it is more efficient
than others.

IV. WORKING FRAMEWORK

The process mining framework we address is based on a set
L of log entries originated by auditing activities on a given
system. Each log entry l ∈ L is a tuple of the form

(activity, timestamp, originator, info1, . . . , infom)



being
• activity the name of the registered activity;
• timestamp the temporal instant in which the activity is

registered;
• originator the agent that executed the registered activity;
• info1, . . . , infom possibly empty additional attributes. The

semantics of these additional attributes is a function of
the activity of the respective log entry, that is, given an
attribute infok and activities a1, a2, infok entries may rep-
resent different information for a1 and a2; moreover, the
semantics is not explicit. We call these data “decorative”
or “additional” since they are not exploited by standard
process mining algorithms. Observe that two log entries,
referring to the same activity, are not required to share
the values of their additional attributes.

Table I shows an example of such a log in a document
management environment; please note the semantic
dependency of attribute info1 on activities: in case of
“Invoice” it may represent the sender, in case of “Cash order”
it may represent the account owner. The difference between
such log entries and an event in the standard process mining
approach is the lack of process instance information: bridging
this gap, i.e. identifying the case id, is the target of our work.
More in general, it can be observed that the source systems
we consider do not implement explicitly some workflow
concepts, since L might not come from the sampling of a
formalized business process at all. Actually, L lacks also a
process information: the issue is addressed in Section V-D.

In the following we assume a relational algebra point of
view over the framework: a log L is a relation (set of tuples)
whose attributes are (activity, timestamp, originator, info1, . . . ,
infom). As usual, we define the projection operator πa1,...,an
on a relation R as the restriction of R to attributes a1, . . . , an
(observe that duplicates are removed by projection otherwise
the output would not be a set). For the sake of brevity, given
a set of attributes A = {a1, . . . , an}, we denote a projection
on all the attributes in A as πA(R). Analogously, given an
attribute a, a value constant v and a binary operation θ, we
define the selection operator σaθv(R) as the selection of tuples
of R for which θ holds between a and v; for example, given
a = activity, v = “Invoice”, and θ being the identity function,
σaθv(L) is the set of elements of L having “Invoice” as value
for attribute activity. For a complete survey about relational
algebra concepts refer to [14].

It is worthwhile to notice that relational algebra does not
deal with tuples ordering, a crucial issue in process mining.
This is not a problem, however, because (i) the log can be
sorted whenever required and (ii) this work concerns the
generation of a log suitable for applying process mining
techniques (and not a process mining algorithm itself).

From now on, identifiers a1, . . . , an will range over
activities. Moreover, given a log L, we define the set
A(L) = πactivity(L) (distinct activities occurring in L). Finally,
we denote with I the set of attributes {info1, . . . , infom}.

As stated above, our efforts are concentrated on extracting
flow of information from L, that is, guessing the case id for
each entry l ∈ L, according to the following restrictions on
the framework. Fixed a log L, we assume that

1) given a log entry l ∈ L, if a case id exists in l, then it is
a combination of values in the set of attributes PI ⊆ I
(i.e. activity, timestamp, originator do not participate in
the process instance definition);

2) given two log entries l1, l2 ∈ L such that πactivity(l1) =
πactivity(l2), if PI contains the case id for l1, then it
also contains the case id for l2 (i.e., process instance
attributes set is fixed per activity); this is implied by the
assumption that the semantics of additional fields is a
function of the activity, as stated above.

V. IDENTIFICATION OF PROCESS INSTANCES

From the basis we defined, it follows that the process
instance has to be guessed as a subset of I; however, since
the semantics is not explicitly given, it cannot be exploited
to establish correlation between activities, hence the process
instance selection must be carried out looking at the entries
πinfoi(L), for each i ∈ [1, |I|]. Nonetheless, since the seman-
tics of I is a function of the activity, the selection should be
performed for each activity in A(L), for each attribute in I,
resulting in a computationally expensive procedure. In order
to reduce the search space, in the following Section some
intuitive heuristics are depicted, that we applied successfully
in our experimental environment (cf. Section VI). Then, in
Section V-B, we show how to carry out the selection process
over the resulting search space.

A. Exploiting a-priori Knowledge

Experts of the source domain typically hold some knowl-
edge about the data, that can be exploited to discard the less
promising attributes. Let a be an activity, and C(a) ⊆ I the
set of attributes candidate to participate in the process instance
definition, with respect to the given activity. Clearly, if no a-
priori knowledge can be exploited to discard some attributes,
then C(a) = I.

The experiments we carried out helped us define some
simple heuristics for reducing the cardinality of C(a), basing
on

• assumptions on the data type (e.g. discarding times-
tamps);

• assumptions on the case id expected format, like average
length upper and lower bounds, length variance, presence
or absence of given symbols, etc.

It is worthwhile to notice that this procedure may lead to dis-
card all the attributes infoi’s for some activities in A(L). In the
following we denote with A(C) the set of all the activities that
overcome this step, that is A(C) = ∪a∈A(L){a | C(a) 6= ∅}.
A(C) contains all the activities which have some candidate
attribute, that is, all the activities that can participate in the
process we are looking for.



Table I
AN EXAMPLE OF LOG EXTRACTED FROM THE DOCUMENT MANAGEMENT SYSTEM: THERE IS ALL THE BASIC INFORMATION (SUCH AS THE ACTIVITY,

THE TIMESTAMPS AND THE ORIGINATOR), PLUS A SET OF INFORMATION ON THE DOCUMENTS (info1 . . . infom).

Activity Timestamp Originator info1 info2 . . . infom
a1 = Invoice 2010-06-02 12:35:47 Alice A 2010-06-02 . . . . . .
a2 = Waybill 2010-06-02 12:36:18 Alice A B . . . . . .
a3 = Cash order 2010-06-03 17:41:01 Bob A 2010-06-03 . . . . . .
a4 = Carrier receipt 2010-06-04 09:12:28 Charlie A B . . . . . .
a1 2010-06-05 08:45:12 Eve B 2010-05-12 . . . . . .
a2 2010-06-06 07:21:02 Alice B A . . . . . .
a3 2010-06-06 11:54:23 Bob C 2010-02-20 . . . . . .
a4 2010-06-06 15:15:37 Charlie B A . . . . . .
a1 2010-06-08 09:55:14 Bob D 2010-03-30 . . . . . .
a2 2010-06-08 10:11:22 Bob D C . . . . . .
a3 2010-06-09 16:01:28 Bob C 2010-06-08 . . . . . .
a4 2010-06-09 18:45:09 Charlie D D . . . . . .

B. Selection of the Identifier

After the search space has been reduced and the set C(a)
has been computed for each activity a ∈ A(L), we must select
those elements of C(a) that participate in the process instance.
The only information we can exploit in order to automatically
perform this selection is the amount of data shared by different
attributes. Aiming at modeling real settings, we fix a sharing
threshold T , and we retain as candidate those subsets of
C(a) that share at least T entries with some attribute sets of
other activities. This threshold must be defined with respect
to the number of distinct entries of the involved activities,
for instance as a fraction of the number of entries of the less
frequent one.

Let (a1, a2) be a pair of activities, such that a1 6= a2 and let
PIa1 and PIa2 the corresponding process instances field. We
define the function S that calculates the shared values among
them:

S(a1, a2, P Ia1 , P Ia2) = |πPIa1
(σactivity=a1(L)) ∩
πPIa2

(σactivity=a2(L))|

Observe that, in order to perform the intersection, it must hold
|PIa1 | = |PIa2 |. Using such function, we define the process
instance candidates for (a1, a2) as:

ϕ(a1, a2) = {(PIa1 ∈ P(C(a1)), P Ia2 ∈ P(C(a2))) |
S(a1, a2, P Ia1 , P Ia2) > T}

where P denotes the power set. Elements of ϕ(a1, a2) are
pairs, whose components are those attribute sets, respectively
of a1, a2, that share a number of values greater than T (i.e.
the cardinality of the intersection of PIa1 and PIa2 is greater
than T ). In the following, we denote with ϕa the set of all the
candidate attribute sets for activity a, i.e. ϕa = {PI | ∃a1 ∈
A(C), P Ia1 ∈ P(C(a1)).(PI, PIa1) ∈ ϕ(a, a1)}.

This formula figures out some candidate process instances
that may relate two activities: it is worthwhile noticing,
however, that our target is the correlation of a set of activities
whose cardinality is in general greater than 2. Actually, we
want to build a sequence S = aS1

, . . . , aSn
of distinct

activities. Nonetheless, given activity aSi , there may be a

number of choices for aSi+1
, and then a number of process

instances in ϕ(aSi , aSi+1). Hence, a number of sequences may
be built. We call chain a finite sequence C of n components
of the form [a,X], being a an activity and X ∈ ϕa. Let us
denote it as follows:

C = [a1, P Ia1 ], [a2, P Ia2 ], . . . , [an, P Ian ]

such that (PIai , P Iai+1) ∈ ϕ(ai, ai+1), with i ∈ [1, n−1]. We
denote with Cai the i-th activity of the chain C, and with CPIi
the i-th PI of the chain C. Observe that a given activity must
appear only once in a chain, since a process instance is defined
by a single attribute set. Given a chain C ending with element
[aj , P Iaj ], we say that C is extensible if there exists an activity
ak ∈ A(C) such that (PIaj , X) ∈ ϕ(aj , ak), for some set X ∈
P(C(ak)). Otherwise, C is said to be complete. Moreover, we
say that an activity a occurs in a chain C, denoted a ∈ C, if
there exists a chain component [a,X] in C for some attribute
set X . Since an activity can occur in more than one chain with
different process instances, in some case we write PIai,C to
denote the process instance of activity ai in chain C. Finally,
let A(C) denote the set of activities occurring in a chain C.
The empty chain is denoted with ⊥.

Given a chain C we define the average value sharing S(C)
among selected attributes of C as:

S(C) =

∑
1≤i<n S

(
Cai , C

a
i+1, C

PI
i , CPIi+1

)
n− 1

where n denotes the chain length.
All the possible complete chains on L are built according

to Algorithms 1 and 2.

Algorithm 1 Build Chains
1: for all a ∈ A(C) do
2: for all PI ∈ ϕa do
3: Extend Chain([a, PI])
4: end for
5: end for

Algorithm 1 calls Algorithm 2 for all the extensible chains
of length 1. Observe that the pseudo code of Algorithms 1
and 2 builds also some chains which are permutations of one



Algorithm 2 Extend Chain
Require: a chain C = [a1, P I1], ..., [ai−1, P Ii−1]

1: for all ai ∈ A(C) | ai /∈ C do
2: for all PIi ∈ ϕai | (PIi−1, P Ii) ∈ ϕ(ai−1, ai) do
3: C = C, [ai, P Ii]
4: return Extend Chain(C)
5: end for
6: end for

another (cf. Section V-D).

Example 1. The following example highlights the bias in-
troduced by the order of activities and attributes selection in
building chains. Limiting to the first two attributes of the log
given in Table I we can derive the following settings:
• A(C) = {a1, a2, a3, a4}
• C(a1) = {info1}
• C(a2) = {info1, info2}
• C(a3) = {info1}
• C(a4) = {info1, info2}

Observe that field info2 is discarded as a candidate attribute
for activities a1, a3, since its values have the form of times-
tamps (cf. Section V-A). We compute now the values of function
ϕ for the activities in A(C). Let T = 1 and consider ϕ(a1, a2):
• PIa1 = {info1}, since it is the only available candidate

attribute;
• PIa2 may be chosen among the sets
{info1}, {info2}, {info1, info2}.

We need to find those attribute sets of a1, a2 respectively, that
share at least two values in the log (since T = 1). It is simple
to see that the values of info1 exactly overlap for both the
activities, thus ({info1}, {info1}) is such a pair; another valid
pair is ({info1}, {info2}), since

S(a1, a2, {info1}, {info2}) = |πinfo1(σactivity=a1(L)) ∩
πinfo2(σactivity=a2(L))|

= 2 > 1

in fact
πinfo1(σactivity=a1(L)) = {A, B, D}

and
πinfo2(σactivity=a2(L)) = {B, A, C}

Follow the values of function ϕ for all the activities in A(C)
and the respective values of S

• ϕ(a1, a2) =

{
({info1}, {info1}),
({info1}, {info2})

}
with S = 3 and S = 2, respectively;

• ϕ(a1, a3) = ∅

• ϕ(a1, a4) =

{
({info1}, {info1}),
({info1}, {info2})

}
with S = 3 and S = 3, respectively;

• ϕ(a2, a3) = {({info2}, {info1})} with S = 2;

• ϕ(a2, a4) =


({info1}, {info1}),
({info1}, {info2}),
({info2}, {info1}),
({info2}, {info2}),
({info1, info2}, {info1, info2})


with S = 3, S = 3, S = 2, S = 2 and S = 2,
respectively;

• ϕ(a3, a4) = ∅.
Assume to start the chain building process from activity
a1 and, for the sake of simplicity, assume to restrict the
log to activities a1, a2, a3. The next activity ai has to be
chosen among those such that ϕ(a1, ai) 6= ∅, thus only a2
is selectable. ϕ(a1, a2) contains two pairs: suppose to select
({info1}, {info1}). The first selection step is finished and the
chain is

C = [a1, {info1}], [a2, {info1}]

Then, in order to extend the chain, we must look for an
activity ai 6= a1, a2 such that ϕ(a2, ai) 6= ∅ and there exists a
pair in ϕ(a2, ai) that contains {info1} as its first component.
For such conditions an activity does not exist, the chain is
complete. It is simple to see, however, that both choosing
the process instances pair ({info1}, {info2}) for (a1, a2), or
starting from a3, would produce complete chains of length 3.
Since the candidate attributes are computed on a statistical
basis, the chain length is not the only significant parameter to
take into account, but the example underlines the importance
of building all the complete chains. �

1) Match Heuristics: In computing the amount of data
shared by two activities via function ϕ, heuristics approaches
may help in modeling the complexity of a real domain.
Actually, the comparison performed between values does not
need to be an identity match, but rather a fuzzy match can
be implemented. Guided by this basic heuristics, we can
substitute the intersection operator in ϕ with an approximation
of its, whose definition may be domain specific or not. Simple
examples we tested in our experimental environment are:
• equality match up to X leading characters,
• equality match up to Y trailing characters,

and their combinations. In general it is possible to use a
measure for string distance.

C. Results Organization and Filtering
In the previous Sections we shown how to compute a

number of chains (i.e. a number of logs); in general, a
domain expert is able of telling apart “good chains” from less
reasonable ones, but this could be a demanding task. This
section aims presenting the problem of comparing different
chains. In order to address this issue, it is worthwhile to
analyze a methodology that helps restricting the number of
possible chains.

Generally, we can reject a chain in favor of another one if
and only if the latter contains all the activities of the former,
and it is either simpler or it supports a higher confidence.
Example of parameters to take into account are:



• the number of attributes in the process instance of a
chain component (recall that each component has the
same number of process instance attributes): a chain that
concerns less attributes may be considered simpler, thus
preferable since more readable for a human agent;

• the cardinality of the value sharing between chain compo-
nents (S(·)): a chain whose share factor is higher gives
higher confidence; this parameter could be tuned by a
threshold.

LetH be the set of complete chains computed by Algorithms 1
and 2, without permutations. Given two chains

C1 = [a1, P Ia1 ], . . . , [an, P Ian ]
C2 = [b1, P Ib1 ], . . . , [bm, P Ibm ]

in the set H, we define an ordering operator v as in Equa-
tion 1. v defines a reflexive, antisymmetric, and transitive
relation over chains, hence (H,v) is a partially ordered set
[15]. For the sake of simplicity, in the above formulation we
do not use any threshold to tune the value sharing comparison.

The ordering we defined strives to equip the framework
with a notion of “best chains”, i.e. those chains which it
is worthwhile suggesting to a domain expert. The maximal
elements of the poset are exactly those chains, as underlined
in Example 2.

Example 2. Recall the settings of Example 1. In this case the
set H contains the complete chains listed below.

C1 = [a1, {info1}], [a2, {info1}], [a4, {info1}], S(C1) = 3
C2 = [a1, {info1}], [a2, {info1}], [a4, {info2}], S(C2) = 3
C3 = [a1, {info1}], [a2, {info2}], [a3, {info1}], S(C3) = 2
C4 = [a1, {info1}], [a2, {info2}], [a4, {info1}], S(C4) = 2
C5 = [a1, {info1}], [a2, {info2}], [a4, {info2}], S(C5) = 2
C6 = [a1, {info1}], [a4, {info2}], [a2, {info2}], [a3, {info1}]
C7 = [a2, {info1, info2}], [a4, {info1, info2}]

Applying the ordering relation we can compare different
chains, as follows:
• C1 = C2: in fact both C1 v C2 nor C1 w C2 holds;
• C1, C2 are not comparable with C3, since A(C1) =
A(C2) neither contain nor are contained in A(C3);

• C1 = C2 A C4 since S(C1) = S(C2) > S(C4);
• C4 = C5;
• @i ∈ [1, 5] ∪ {7} such that Ci A C6;
• C7 is not comparable with C3.

The Hasse diagram representing the poset (H ∪ {⊥},v)
is given in Figure 3. It follows that only chain C6 should
undergo the experts’ inspection. �

D. Deriving a Log to Mine

For each chain C with positive length, we can build a log
L′ whose tuples have the form:

(activity, timestamp, originator, caseid, processid)

Please observe that the process instance we selected is a set of
attributes, whereas a single one is expected by standard process

C6

C1 = C2

C4 = C5

C7

⊥

C3

Figure 3. Hasse diagram representing the poset (H∪{⊥},v) of Example 2.

mining techniques. Hence, a composition function k from a set
of values to a single one is needed (e.g. string concatenation).
Eventually, the log L′ is obtained, starting from L with the
execution of Algorithm 3.

Algorithm 3 Conversion of L to L′

1: L′ ← ∅
2: chainno← 0
3: for all C ∈ H do
4: LC ← σactivity∈A(C)(L)
5: for all l ∈ LC do
6: activity← πactivity(l)
7: timestamp← πtimestamp(l)
8: originator← πoriginator(l)
9: caseid← k

(
πPIactivity,C (l)

)
10: processid← chainno
11: L′ ← L′ ∪ {(activity, timestamp, originator,

caseid, processid)}
12: end for
13: chainno← chainno + 1
14: end for

Observe that the chain construction is sequential (i.e. it
iteratively adds a component) and hence there is an implicit
ordering among its elements. In order to build the log L′, once
all the chains are complete (no more extensible), it is possible
to ignore the chains that are permutations of a given one. Thus,
some chains computed by Algorithm 1 can be discarded.

It is worthwhile observing, however, that maximal elements
in the poset represent different processes. A conservative ap-
proach compels us considering each maximal chain as defining
a distinct process. The following example illustrates the reason
why we chose this approach: let

C1 = . . . , [ai−1, P Iai−1 ], [ai, P Iai ], [ai+1, P Iai+1 ], . . .

C2 = . . . , [bj−1, P Ibj−1
], [bj , P Ibj ], [bj+1, P Iaj+1

], . . .

be two maximal chains where PIai−1
6= PIbj−1

; PIai 6=
PIbj ; PIai+1 6= PIbj+1 and ai = bj . In other words, C1



A v B ⇔


∣∣API1

∣∣ ≥ ∣∣BPI1

∣∣ if A(A) = A(B) ∧ S(A) = S(B)

S(A) ≤ S(B) if A(A) = A(B) ∧ S(A) 6= S(B)

A(A) ⊆ A(B) otherwise

(1)

and C2 contain the same activity ai but with different process
instances. Considering C1 and C2 as belonging to the same
process is not desirable, since it can lead to inconsistent control
flow reconstruction. Hence, each maximal chain defines a
process and the domain expert is in charge of recognizing
if different chains belong to the same real process. During the
conversion of L to the process log L′, we assign as process
id a chain counter.

VI. EXPERIMENTAL RESULTS

As explained in the introduction, this paper is connected
to a real business need, and it presents a generalization of
a research activity carried out by Siav S.p.A. The existing
implementation is limited to process instances constituted by
a single attribute (e.g. |PIi| = 1), due both to a-priori
knowledge about the domain and computational requirements.
In particular, all the preprocessing steps that reduce the search
space are implemented as Oracle store procedures, written in
PL/SQL. Then the chain building algorithms are implemented
in C#. Moreover, for improving performances, we do not
compute the heuristics on the whole log, but on a fraction
of random entries of its.

We experimented our implementation on logs coming from
a document management system; the source log is reduced
to the form described in Section IV after undergoing some
preprocessing steps. We applied the algorithms to real logs
obtaining concrete results, validated by domain experts. In
Table II the main information is summarized: please notice that
the expert chains are always within the set of maximal chains
(computed by the algorithm) because selected among the fists.
Figure 4 shows how chains evolve when the log cardinality
scales up: in particular, notice that the number of chains tends
to increase, while the poset structure tears down the number
of chains we presented to the domain experts. Figure 5 plots
the processing time: it is a function of the log cardinality,
of the number of activities in the log (i.e. the number of
possible chain components), and of the number of decorative
attributes (i.e. the number of possible ways of chaining two
components).

The knowledge of the application domain gave us the
opportunity to implement some heuristics, as explained in
Sections V-A and V-B1. The following criteria were selected
in order to reduce the search space:
• a candidate attribute must have a string type (e.g. we

discard timestamps and numeric types, that in our case
mostly represent prices);

• the values of a candidate attribute must fulfill these
requirements:

– maximum average length: 20 characters,
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Figure 4. This figure plots the total number of chains the procedure identifies,
the number of maximal chains and the number of chains the expert will select,
given the size of the preprocessed log.
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Figure 5. This figure represents the time (expressed in seconds) required for
the extraction of the chains.

– minimum average length: 3 characters,
– maximum variation w.r.t. the average length: 10.

Finally, we relax the intersection operator in ϕ requiring values
identity up to the first leading character and up to 2 trailing
characters.

The experiments were carried out on an Intel Core2 Quad at
2,4 GHz, equipped with 4GB of RAM. The DBMS where the
logs were stored was local to the machine, thus no network
overhead has to be considered.

VII. CONCLUSION AND FUTURE WORK

This work presents a new approach for the identification
of process instances on logs generated from systems that are
not process-aware. Process instance information is guessed
exploiting additional information with respect to a standard
process mining framework, but this information is typically
available when dealing with software systems. Our work is a
generalization of a real business case related to a document



Table II
RESULTS SUMMARY. HORIZONTAL LINES SEPARATE DIFFERENT LOG SOURCES.

|L′| |A(L′)| |I| Time |H| Maximal chains Experts’ chains
10000 13 26 6 s 3 2 1
20000 39 26 20s 5 2 1
40000 47 26 1m 40s 8 3 2

60000 2 18 2 s 2 1 0
140000 4 18 15s 3 1 1

20000 12 16 40s 3 3 1
30000 16 16 2 m 11 3 1

management system, where discovering the process instance
means correlating different document sets. The procedure
we described to solve the problem is entirely based on
the information that decorates documents, and relies on a
relational algebra approach. Moreover, we deem that our
generalization can be fairly adoptable in a number of domains,
with a reasonable effort. Eventually, observe that we aim at
applying some process mining techniques on a log computed
on statistical basis, thus error-robust mining algorithms must
be used.

There is still some important work that could improve the
presented results. For example, we think it would be interesting
to consider not only the value of the case id candidates, but
to go deeper, to their semantic meaning (if any), which could
act as a-priori knowledge. Moreover, a flexible framework for
expressing and feeding the system with a-priori knowledge is
desirable, in order to earn a higher level of generalization.
Then, other refinements are domain-specific: dealing with
documents, for instance, we could exploit their content in order
to confirm or reject the findings of our algorithms, when the
result confidence is low. Finally, before carrying on these new
ideas, we are planning a wider test campaign on logs coming
from other systems.

From the implementation point of view, it is desirable to
extend the current version of the software in order to consider
more than one attribute per process instance.
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